Merge branch 'master' into dac-location-consistency
This commit is contained in:
commit
5b71979547
27
.github/workflows/ci.yaml
vendored
27
.github/workflows/ci.yaml
vendored
@ -32,7 +32,14 @@ jobs:
|
||||
- ubuntu-latest
|
||||
- macos-latest
|
||||
- windows-latest
|
||||
|
||||
inhouse:
|
||||
- stable
|
||||
- master
|
||||
exclude:
|
||||
- os: macos-latest
|
||||
inhouse: master
|
||||
- os: windows-latest
|
||||
inhouse: master
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
defaults:
|
||||
@ -46,16 +53,6 @@ jobs:
|
||||
run: |
|
||||
echo -ne "url: ${CDSAPI_URL}\nkey: ${CDSAPI_TOKEN}\n" > ~/.cdsapirc
|
||||
|
||||
- name: Add solver to environment
|
||||
run: |
|
||||
echo -e "- glpk\n- ipopt<3.13.3" >> envs/environment.yaml
|
||||
if: ${{ matrix.os }} == 'windows-latest'
|
||||
|
||||
- name: Add solver to environment
|
||||
run: |
|
||||
echo -e "- glpk\n- ipopt" >> envs/environment.yaml
|
||||
if: ${{ matrix.os }} != 'windows-latest'
|
||||
|
||||
- name: Setup micromamba
|
||||
uses: mamba-org/setup-micromamba@v1
|
||||
with:
|
||||
@ -66,6 +63,11 @@ jobs:
|
||||
cache-environment: true
|
||||
cache-downloads: true
|
||||
|
||||
- name: Install inhouse packages
|
||||
run: |
|
||||
pip install git+https://github.com/PyPSA/atlite.git@master git+https://github.com/PyPSA/powerplantmatching.git@master git+https://github.com/PyPSA/linopy.git@master
|
||||
if: ${{ matrix.inhouse }} == 'master'
|
||||
|
||||
- name: Set cache dates
|
||||
run: |
|
||||
echo "WEEK=$(date +'%Y%U')" >> $GITHUB_ENV
|
||||
@ -86,7 +88,7 @@ jobs:
|
||||
snakemake -call all --configfile config/test/config.perfect.yaml --rerun-triggers=mtime
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4.3.0
|
||||
with:
|
||||
name: resources-results
|
||||
path: |
|
||||
@ -94,3 +96,4 @@ jobs:
|
||||
results
|
||||
if-no-files-found: warn
|
||||
retention-days: 1
|
||||
if: matrix.os == 'ubuntu' && matrix.inhouse == 'stable'
|
||||
|
@ -606,9 +606,34 @@ industry:
|
||||
MWh_NH3_per_MWh_H2_cracker: 1.46 # https://github.com/euronion/trace/blob/44a5ff8401762edbef80eff9cfe5a47c8d3c8be4/data/efficiencies.csv
|
||||
NH3_process_emissions: 24.5
|
||||
petrochemical_process_emissions: 25.5
|
||||
HVC_primary_fraction: 1.
|
||||
HVC_mechanical_recycling_fraction: 0.
|
||||
HVC_chemical_recycling_fraction: 0.
|
||||
#HVC primary/recycling based on values used in Neumann et al https://doi.org/10.1016/j.joule.2023.06.016, linearly interpolated between 2020 and 2050
|
||||
#2020 recycling rates based on Agora https://static.agora-energiewende.de/fileadmin/Projekte/2021/2021_02_EU_CEAP/A-EW_254_Mobilising-circular-economy_study_WEB.pdf
|
||||
#fractions refer to the total primary HVC production in 2020
|
||||
#assumes 6.7 Mtplastics produced from recycling in 2020
|
||||
HVC_primary_fraction:
|
||||
2020: 1.0
|
||||
2025: 0.9
|
||||
2030: 0.8
|
||||
2035: 0.7
|
||||
2040: 0.6
|
||||
2045: 0.5
|
||||
2050: 0.4
|
||||
HVC_mechanical_recycling_fraction:
|
||||
2020: 0.12
|
||||
2025: 0.15
|
||||
2030: 0.18
|
||||
2035: 0.21
|
||||
2040: 0.24
|
||||
2045: 0.27
|
||||
2050: 0.30
|
||||
HVC_chemical_recycling_fraction:
|
||||
2020: 0.0
|
||||
2025: 0.0
|
||||
2030: 0.04
|
||||
2035: 0.08
|
||||
2040: 0.12
|
||||
2045: 0.16
|
||||
2050: 0.20
|
||||
HVC_production_today: 52.
|
||||
MWh_elec_per_tHVC_mechanical_recycling: 0.547
|
||||
MWh_elec_per_tHVC_chemical_recycling: 6.9
|
||||
|
@ -62,6 +62,17 @@ Upcoming Release
|
||||
* The rule ``plot_network`` has been split into separate rules for plotting
|
||||
electricity, hydrogen and gas networks.
|
||||
|
||||
* To determine the optimal topology to meet the number of clusters, the workflow used pyomo in combination with ``ipopt`` or ``gurobi``. This dependency has been replaced by using ``linopy`` in combination with ``scipopt`` or ``gurobi``. The environment file has been updated accordingly.
|
||||
|
||||
* The ``highs`` solver was added to the default environment file.
|
||||
|
||||
* Default settings for recycling rates and primary product shares of high-value
|
||||
chemicals have been set in accordance with the values used in `Neumann et al.
|
||||
(2023) <https://doi.org/10.1016/j.joule.2023.06.016>`_ linearly interpolated
|
||||
between 2020 and 2050. The recycling rates are based on data from `Agora
|
||||
Energiewende (2021)
|
||||
<https://static.agora-energiewende.de/fileadmin/Projekte/2021/2021_02_EU_CEAP/A-EW_254_Mobilising-circular-economy_study_WEB.pdf>`_.
|
||||
|
||||
|
||||
PyPSA-Eur 0.9.0 (5th January 2024)
|
||||
==================================
|
||||
|
@ -35,8 +35,9 @@ dependencies:
|
||||
- netcdf4
|
||||
- networkx
|
||||
- scipy
|
||||
- glpk
|
||||
- shapely>=2.0
|
||||
- pyomo
|
||||
- pyscipopt
|
||||
- matplotlib
|
||||
- proj
|
||||
- fiona
|
||||
@ -47,7 +48,7 @@ dependencies:
|
||||
- tabula-py
|
||||
- pyxlsb
|
||||
- graphviz
|
||||
- ipopt
|
||||
- pre-commit
|
||||
|
||||
# Keep in conda environment when calling ipython
|
||||
- ipython
|
||||
@ -60,3 +61,4 @@ dependencies:
|
||||
|
||||
- pip:
|
||||
- tsam>=2.3.1
|
||||
- highspy
|
||||
|
@ -482,7 +482,7 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
"Link",
|
||||
nodes,
|
||||
suffix=f" {name} gas boiler-{grouping_year}",
|
||||
bus0=spatial.gas.nodes,
|
||||
bus0="EU gas" if "EU gas" in spatial.gas.nodes else nodes + " gas",
|
||||
bus1=nodes + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
|
@ -122,14 +122,15 @@ Exemplary unsolved network clustered to 37 nodes:
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
from functools import reduce
|
||||
|
||||
import geopandas as gpd
|
||||
import linopy
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyomo.environ as po
|
||||
import pypsa
|
||||
import seaborn as sns
|
||||
from _helpers import configure_logging, update_p_nom_max
|
||||
@ -214,7 +215,7 @@ def get_feature_for_hac(n, buses_i=None, feature=None):
|
||||
return feature_data
|
||||
|
||||
|
||||
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
||||
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="scip"):
|
||||
"""
|
||||
Determine the number of clusters per country.
|
||||
"""
|
||||
@ -254,31 +255,22 @@ def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
||||
L.sum(), 1.0, rtol=1e-3
|
||||
), f"Country weights L must sum up to 1.0 when distributing clusters. Is {L.sum()}."
|
||||
|
||||
m = po.ConcreteModel()
|
||||
|
||||
def n_bounds(model, *n_id):
|
||||
return (1, N[n_id])
|
||||
|
||||
m.n = po.Var(list(L.index), bounds=n_bounds, domain=po.Integers)
|
||||
m.tot = po.Constraint(expr=(po.summation(m.n) == n_clusters))
|
||||
m.objective = po.Objective(
|
||||
expr=sum((m.n[i] - L.loc[i] * n_clusters) ** 2 for i in L.index),
|
||||
sense=po.minimize,
|
||||
m = linopy.Model()
|
||||
clusters = m.add_variables(
|
||||
lower=1, upper=N, coords=[L.index], name="n", integer=True
|
||||
)
|
||||
|
||||
opt = po.SolverFactory(solver_name)
|
||||
if solver_name == "appsi_highs" or not opt.has_capability("quadratic_objective"):
|
||||
logger.warning(
|
||||
f"The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`."
|
||||
m.add_constraints(clusters.sum() == n_clusters, name="tot")
|
||||
# leave out constant in objective (L * n_clusters) ** 2
|
||||
m.objective = (clusters * clusters - 2 * clusters * L * n_clusters).sum()
|
||||
if solver_name == "gurobi":
|
||||
logging.getLogger("gurobipy").propagate = False
|
||||
elif solver_name != "scip":
|
||||
logger.info(
|
||||
f"The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `scip`."
|
||||
)
|
||||
opt = po.SolverFactory("ipopt")
|
||||
|
||||
results = opt.solve(m)
|
||||
assert (
|
||||
results["Solver"][0]["Status"] == "ok"
|
||||
), f"Solver returned non-optimally: {results}"
|
||||
|
||||
return pd.Series(m.n.get_values(), index=L.index).round().astype(int)
|
||||
solver_name = "scip"
|
||||
m.solve(solver_name=solver_name)
|
||||
return m.solution["n"].to_series().astype(int)
|
||||
|
||||
|
||||
def busmap_for_n_clusters(
|
||||
@ -372,7 +364,7 @@ def busmap_for_n_clusters(
|
||||
|
||||
return (
|
||||
n.buses.groupby(["country", "sub_network"], group_keys=False)
|
||||
.apply(busmap_for_country)
|
||||
.apply(busmap_for_country, include_groups=False)
|
||||
.squeeze()
|
||||
.rename("busmap")
|
||||
)
|
||||
@ -385,7 +377,7 @@ def clustering_for_n_clusters(
|
||||
aggregate_carriers=None,
|
||||
line_length_factor=1.25,
|
||||
aggregation_strategies=dict(),
|
||||
solver_name="cbc",
|
||||
solver_name="scip",
|
||||
algorithm="hac",
|
||||
feature=None,
|
||||
extended_link_costs=0,
|
||||
@ -462,7 +454,6 @@ if __name__ == "__main__":
|
||||
|
||||
params = snakemake.params
|
||||
solver_name = snakemake.config["solving"]["solver"]["name"]
|
||||
solver_name = "appsi_highs" if solver_name == "highs" else solver_name
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
|
@ -1319,22 +1319,6 @@ def add_storage_and_grids(n, costs):
|
||||
n, "H2 pipeline ", carriers=["DC", "gas pipeline"]
|
||||
)
|
||||
|
||||
h2_pipes["p_nom"] = 0.0
|
||||
|
||||
if snakemake.input.get("custom_h2_pipelines"):
|
||||
fn = snakemake.input.custom_h2_pipelines
|
||||
custom_pipes = pd.read_csv(fn, index_col=0)
|
||||
|
||||
h2_pipes = pd.concat([h2_pipes, custom_pipes])
|
||||
|
||||
# drop duplicates according to buses (order can be different) and keep pipe with highest p_nom
|
||||
h2_pipes["buses_sorted"] = h2_pipes[["bus0", "bus1"]].apply(sorted, axis=1)
|
||||
h2_pipes = (
|
||||
h2_pipes.sort_values("p_nom")
|
||||
.drop_duplicates(subset=["buses_sorted"], keep="last")
|
||||
.drop(columns="buses_sorted")
|
||||
)
|
||||
|
||||
# TODO Add efficiency losses
|
||||
n.madd(
|
||||
"Link",
|
||||
@ -1343,7 +1327,6 @@ def add_storage_and_grids(n, costs):
|
||||
bus1=h2_pipes.bus1.values + " H2",
|
||||
p_min_pu=-1,
|
||||
p_nom_extendable=True,
|
||||
p_nom_min=h2_pipes.p_nom.values,
|
||||
length=h2_pipes.length.values,
|
||||
capital_cost=costs.at["H2 (g) pipeline", "fixed"] * h2_pipes.length.values,
|
||||
carrier="H2 pipeline",
|
||||
|
Loading…
Reference in New Issue
Block a user