gas_network: use IGGIELGN scigrid dataset
This commit is contained in:
parent
b39a852d3b
commit
4cd964b3bd
@ -85,20 +85,24 @@ if config["sector"]["gas_network"]:
|
||||
"IGGIELGN_LNGs.geojson",
|
||||
"IGGIELGN_BorderPoints.geojson",
|
||||
"IGGIELGN_Productions.geojson",
|
||||
"IGGIELGN_PipeSegments.geojson",
|
||||
]
|
||||
|
||||
|
||||
rule retrieve_gas_infrastructure_data:
|
||||
output: expand("data/gas_network/scigrid-gas/data/{files}", files=datafiles)
|
||||
script: 'scripts/retrieve_gas_infrastructure_data.py'
|
||||
|
||||
|
||||
rule build_gas_network:
|
||||
input:
|
||||
gas_network="data/gas_network/gas_network_dataset.csv"
|
||||
gas_network="data/gas_network/scigrid-gas/data/IGGIELGN_PipeSegments.geojson"
|
||||
output:
|
||||
cleaned_gas_network="resources/gas_network.csv"
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/build_gas_network.py"
|
||||
|
||||
|
||||
rule build_gas_input_locations:
|
||||
input:
|
||||
lng="data/gas_network/scigrid-gas/data/IGGIELGN_LNGs.geojson",
|
||||
@ -112,6 +116,7 @@ if config["sector"]["gas_network"]:
|
||||
resources: mem_mb=2000,
|
||||
script: "scripts/build_gas_input_locations.py"
|
||||
|
||||
|
||||
rule cluster_gas_network:
|
||||
input:
|
||||
cleaned_gas_network="resources/gas_network.csv",
|
||||
@ -122,6 +127,7 @@ if config["sector"]["gas_network"]:
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/cluster_gas_network.py"
|
||||
|
||||
|
||||
gas_infrastructure = {**rules.cluster_gas_network.output, **rules.build_gas_input_locations.output}
|
||||
else:
|
||||
gas_infrastructure = {}
|
||||
|
@ -1,38 +1,15 @@
|
||||
"""
|
||||
Preprocess gas network based on data from:
|
||||
|
||||
[1] the SciGRID Gas project
|
||||
(https://www.gas.scigrid.de/)
|
||||
|
||||
[2] ENTSOG capacity map
|
||||
(https://www.entsog.eu/sites/default/files/2019-10/Capacities%20for%20Transmission%20Capacity%20Map%20RTS008_NS%20-%20DWH_final.xlsx)
|
||||
"""
|
||||
"""Preprocess gas network based on data from bthe SciGRID Gas project (https://www.gas.scigrid.de/)."""
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import re
|
||||
import json
|
||||
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
from shapely.geometry import Point
|
||||
from pypsa.geo import haversine_pts
|
||||
|
||||
|
||||
def string2list(string, with_none=True):
|
||||
"""Convert string format to a list."""
|
||||
|
||||
if with_none:
|
||||
p2 = re.compile('None')
|
||||
string = p2.sub('\"None\"', string)
|
||||
else:
|
||||
p = re.compile('(?<!\\\\)\'')
|
||||
string = p.sub('\"', string)
|
||||
|
||||
return json.loads(string)
|
||||
|
||||
|
||||
def diameter2capacity(pipe_diameter_mm):
|
||||
def diameter_to_capacity(pipe_diameter_mm):
|
||||
"""Calculate pipe capacity in MW based on diameter in mm.
|
||||
|
||||
20 inch (500 mm) 50 bar -> 1.5 GW CH4 pipe capacity (LHV)
|
||||
@ -65,75 +42,81 @@ def diameter2capacity(pipe_diameter_mm):
|
||||
return a3 + m3 * pipe_diameter_mm
|
||||
|
||||
|
||||
def find_terminal_points(df):
|
||||
|
||||
latlon = []
|
||||
|
||||
for attr in ["lat", "long"]:
|
||||
|
||||
s = df[attr].apply(string2list)
|
||||
|
||||
s = s.apply(lambda x: [x[0], x[-1]])
|
||||
|
||||
latlon.append(pd.DataFrame(s.to_list(),
|
||||
columns=[f"{attr}0", f"{attr}1"]
|
||||
))
|
||||
|
||||
latlon = pd.concat(latlon, axis=1)
|
||||
|
||||
points = latlon.apply(
|
||||
lambda x: {
|
||||
"point0": Point(x.long0, x.lat0),
|
||||
"point1": Point(x.long1, x.lat1)
|
||||
},
|
||||
axis=1,
|
||||
result_type='expand'
|
||||
)
|
||||
|
||||
return pd.concat([df, points], axis=1)
|
||||
|
||||
|
||||
def process_gas_network_data(fn):
|
||||
|
||||
df = pd.read_csv(fn, sep=',')
|
||||
|
||||
df = find_terminal_points(df)
|
||||
|
||||
to_drop = ["name", "source_id", "country_code", "node_id",
|
||||
"long", "lat", "lat_mean", "long_mean", "num_compressor"]
|
||||
def load_dataset(fn):
|
||||
df = gpd.read_file(fn)
|
||||
param = df.param.apply(pd.Series)
|
||||
method = df.method.apply(pd.Series)[["diameter_mm", "max_cap_M_m3_per_d"]]
|
||||
method.columns = method.columns + "_method"
|
||||
df = pd.concat([df, param, method], axis=1)
|
||||
to_drop = ["param", "uncertainty", "method", "tags"]
|
||||
to_drop = df.columns.intersection(to_drop)
|
||||
df.drop(to_drop, axis=1, inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def prepare_dataset(
|
||||
df,
|
||||
length_factor=1.5,
|
||||
correction_threshold_length=4,
|
||||
correction_threshold_p_nom=8,
|
||||
bidirectional_below=10
|
||||
):
|
||||
|
||||
# extract start and end from LineString
|
||||
df["point0"] = df.geometry.apply(lambda x: Point(x.coords[0]))
|
||||
df["point1"] = df.geometry.apply(lambda x: Point(x.coords[-1]))
|
||||
|
||||
conversion_factor = 437.5 # MCM/day to MWh/h
|
||||
df["p_nom"] = df.max_cap_M_m3_per_d * conversion_factor
|
||||
|
||||
# for inferred diameters, assume 500 mm rather than 900 mm (more conservative)
|
||||
df.loc[df.diameter_mm_method != 'raw', "diameter_mm"] = 500.
|
||||
|
||||
keep = ["name", "diameter_mm", "is_H_gas", "is_bothDirection",
|
||||
"length_km", "p_nom", "max_pressure_bar",
|
||||
"start_year", "point0", "point1", "geometry"]
|
||||
to_rename = {
|
||||
"is_bothDirection": "bidirectional",
|
||||
"is_H_gas": "H_gas",
|
||||
"start_year": "build_year",
|
||||
"length_km": "length",
|
||||
"Capacity_GWh_h": "p_nom_data",
|
||||
"id": "tags",
|
||||
}
|
||||
df.rename(columns=to_rename, inplace=True)
|
||||
|
||||
df = df[keep].rename(columns=to_rename)
|
||||
|
||||
df.bidirectional = df.bidirectional.astype(bool)
|
||||
df.H_gas = df.H_gas.astype(bool)
|
||||
|
||||
# convert from GWh/h to MW
|
||||
df.p_nom_data *= 1e3
|
||||
# short lines below 10 km are assumed to be bidirectional
|
||||
short_lines = df["length"] < bidirectional_below
|
||||
df.loc[short_lines, "bidirectional"] = True
|
||||
|
||||
# for pipes with missing diameter, assume 500 mm
|
||||
df.loc[df.diameter_mm.isna(), "diameter_mm"] = 500.
|
||||
|
||||
# for nord stream and small pipelines take original capacity data
|
||||
# otherwise inferred values from pipe diameter
|
||||
df["p_nom"] = df.diameter_mm.map(diameter2capacity)
|
||||
df.p_nom.update(
|
||||
df.p_nom_data.where((df.diameter_mm < 500) | (df.max_pressure_bar == 220))
|
||||
)
|
||||
# correct all capacities that deviate correction_threshold factor
|
||||
# to diameter-based capacities, unless they are NordStream pipelines
|
||||
# also all capacities below 0.5 GW are now diameter-based capacities
|
||||
df["p_nom_diameter"] = df.diameter_mm.apply(diameter_to_capacity)
|
||||
ratio = df.p_nom / df.p_nom_diameter
|
||||
not_nordstream = df.max_pressure_bar < 220
|
||||
df.p_nom.update(df.p_nom_diameter.where(
|
||||
(df.p_nom <= 500) |
|
||||
((ratio > correction_threshold_p_nom) & not_nordstream) |
|
||||
((ratio < 1 / correction_threshold_p_nom) & not_nordstream)
|
||||
))
|
||||
|
||||
# lines which have way too discrepant line lengths
|
||||
# get assigned haversine length * length factor
|
||||
df["length_haversine"] = df.apply(
|
||||
lambda p: 1.5 * haversine_pts([p.point0.x, p.point1.y], [p.point1.x, p.point1.y]),
|
||||
axis=1
|
||||
lambda p: length_factor * haversine_pts(
|
||||
[p.point0.x, p.point1.y],
|
||||
[p.point1.x, p.point1.y]
|
||||
), axis=1
|
||||
)
|
||||
ratio = df.eval("length / length_haversine")
|
||||
df["length"].update(df.length_haversine.where(
|
||||
(df["length"] < 20) |
|
||||
(ratio > correction_threshold_length) |
|
||||
(ratio < 1 / correction_threshold_length)
|
||||
))
|
||||
|
||||
df.length.update(df.length_haversine.where(df.length.isna()))
|
||||
|
||||
return df
|
||||
|
||||
|
||||
@ -145,6 +128,8 @@ if __name__ == "__main__":
|
||||
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
|
||||
gas_network = process_gas_network_data(snakemake.input.gas_network)
|
||||
gas_network = load_dataset(snakemake.input.gas_network)
|
||||
|
||||
gas_network = prepare_dataset(gas_network)
|
||||
|
||||
gas_network.to_csv(snakemake.output.cleaned_gas_network)
|
@ -70,12 +70,12 @@ def aggregate_parallel_pipes(df):
|
||||
'bus0': 'first',
|
||||
'bus1': 'first',
|
||||
"p_nom": 'sum',
|
||||
"p_nom_data": 'sum',
|
||||
"p_nom_diameter": 'sum',
|
||||
"max_pressure_bar": "mean",
|
||||
"build_year": "mean",
|
||||
"diameter_mm": "mean",
|
||||
"length": 'mean',
|
||||
'tags': ' '.join,
|
||||
'name': ' '.join,
|
||||
"p_min_pu": 'min',
|
||||
}
|
||||
return df.groupby(df.index).agg(strategies)
|
||||
|
@ -1115,7 +1115,7 @@ def add_storage_and_grids(n, costs):
|
||||
p_nom_min=gas_pipes.p_nom_min,
|
||||
length=gas_pipes.length,
|
||||
capital_cost=gas_pipes.capital_cost,
|
||||
tags=gas_pipes.tags,
|
||||
tags=gas_pipes.name,
|
||||
carrier="gas pipeline",
|
||||
lifetime=costs.at['CH4 (g) pipeline', 'lifetime']
|
||||
)
|
||||
@ -1190,7 +1190,7 @@ def add_storage_and_grids(n, costs):
|
||||
p_nom_extendable=True,
|
||||
length=h2_pipes.length,
|
||||
capital_cost=costs.at['H2 (g) pipeline repurposed', 'fixed'] * h2_pipes.length,
|
||||
tags=h2_pipes.tags,
|
||||
tags=h2_pipes.name,
|
||||
carrier="H2 pipeline retrofitted",
|
||||
lifetime=costs.at['H2 (g) pipeline repurposed', 'lifetime']
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user