Add function build_carbon_budget()
For the myopic method, based on the carbon budget indicated in the config file (sector_opts), a CO2 limit is calculated for every planning_horizon following an exponential or beta decay. A file with CO2 limit in every planning_horizon and a plot showing historical and planned CO2 emissions are saved in the results
This commit is contained in:
parent
ceba265c0a
commit
4a681749d7
@ -292,6 +292,7 @@ rule build_retro_cost:
|
||||
output:
|
||||
retro_cost="resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
|
||||
floor_area="resources/floor_area_{network}_s{simpl}_{clusters}.csv"
|
||||
resources: mem_mb=1000
|
||||
script: "scripts/build_retro_cost.py"
|
||||
|
||||
|
||||
|
@ -24,11 +24,15 @@ scenario:
|
||||
# B for biomass supply, I for industry, shipping and aviation
|
||||
# solarx or onwindx changes the available installable potential by factor x
|
||||
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
|
||||
# for myopic/perfect foresight cb states the carbon budget in GtCO2 (cumulative
|
||||
# emissions throughout the transition path in the timeframe determined by the
|
||||
# planning_horizons), be:beta decay; ex:exponential decay
|
||||
planning_horizons : [2030] # investment years for myopic and perfect; or costs year for overnight
|
||||
# for example, set to [2020, 2030, 2040, 2050] for myopic foresight
|
||||
|
||||
# CO2 budget as a fraction of 1990 emissions
|
||||
# this is over-ridden if CO2Lx is set in sector_opts
|
||||
# this is also over-ridden if cb is set in sector_opts
|
||||
co2_budget:
|
||||
2020: 0.7011648746
|
||||
2025: 0.5241935484
|
||||
|
@ -20,6 +20,8 @@ import pytz
|
||||
|
||||
from vresutils.costdata import annuity
|
||||
|
||||
from scipy.stats import beta
|
||||
from build_energy_totals import build_eea_co2, build_eurostat_co2, build_co2_totals
|
||||
|
||||
#First tell PyPSA that links can have multiple outputs by
|
||||
#overriding the component_attrs. This can be done for
|
||||
@ -45,6 +47,206 @@ override_component_attrs["Generator"].loc["lifetime"] = ["float","years",np.nan,
|
||||
override_component_attrs["Store"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Store"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
|
||||
|
||||
|
||||
def co2_emissions_year(year):
|
||||
"""
|
||||
calculate co2 emissions in one specific year (e.g. 1990 or 2018).
|
||||
"""
|
||||
eea_co2 = build_eea_co2(year)
|
||||
|
||||
#TODO: read Eurostat data from year>2014, this only affects the estimation of
|
||||
# CO2 emissions for "BA","RS","AL","ME","MK"
|
||||
if year > 2014:
|
||||
eurostat_co2 = build_eurostat_co2(year=2014)
|
||||
else:
|
||||
eurostat_co2 = build_eurostat_co2(year)
|
||||
|
||||
co2_totals=build_co2_totals(eea_co2, eurostat_co2, year)
|
||||
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
pop_layout["ct"] = pop_layout.index.str[:2]
|
||||
cts = pop_layout.ct.value_counts().index
|
||||
|
||||
co2_emissions = co2_totals.loc[cts, "electricity"].sum()
|
||||
|
||||
if "T" in opts:
|
||||
co2_emissions += co2_totals.loc[cts, [i+ " non-elec" for i in ["rail","road"]]].sum().sum()
|
||||
if "H" in opts:
|
||||
co2_emissions += co2_totals.loc[cts, [i+ " non-elec" for i in ["residential","services"]]].sum().sum()
|
||||
if "I" in opts:
|
||||
co2_emissions += co2_totals.loc[cts, ["industrial non-elec","industrial processes",
|
||||
"domestic aviation","international aviation",
|
||||
"domestic navigation","international navigation"]].sum().sum()
|
||||
co2_emissions *=0.001 #MtCO2 to GtCO2
|
||||
return co2_emissions
|
||||
|
||||
def historical_emissions():
|
||||
"""
|
||||
read historical emissions to add them to the carbon budget plot
|
||||
"""
|
||||
#https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
||||
#downloaded 201228 (modified by EEA last on 201221)
|
||||
fn = "data/eea/UNFCCC_v23.csv"
|
||||
df = pd.read_csv(fn, encoding="latin-1")
|
||||
df.loc[df["Year"] == "1985-1987","Year"] = 1986
|
||||
df["Year"] = df["Year"].astype(int)
|
||||
df = df.set_index(['Year', 'Sector_name', 'Country_code', 'Pollutant_name']).sort_index()
|
||||
|
||||
e = pd.Series()
|
||||
e["electricity"] = '1.A.1.a - Public Electricity and Heat Production'
|
||||
e['residential non-elec'] = '1.A.4.b - Residential'
|
||||
e['services non-elec'] = '1.A.4.a - Commercial/Institutional'
|
||||
e['rail non-elec'] = "1.A.3.c - Railways"
|
||||
e["road non-elec"] = '1.A.3.b - Road Transportation'
|
||||
e["domestic navigation"] = "1.A.3.d - Domestic Navigation"
|
||||
e['international navigation'] = '1.D.1.b - International Navigation'
|
||||
e["domestic aviation"] = '1.A.3.a - Domestic Aviation'
|
||||
e["international aviation"] = '1.D.1.a - International Aviation'
|
||||
e['total energy'] = '1 - Energy'
|
||||
e['industrial processes'] = '2 - Industrial Processes and Product Use'
|
||||
e['agriculture'] = '3 - Agriculture'
|
||||
e['LULUCF'] = '4 - Land Use, Land-Use Change and Forestry'
|
||||
e['waste management'] = '5 - Waste management'
|
||||
e['other'] = '6 - Other Sector'
|
||||
e['indirect'] = 'ind_CO2 - Indirect CO2'
|
||||
e["total wL"] = "Total (with LULUCF)"
|
||||
e["total woL"] = "Total (without LULUCF)"
|
||||
|
||||
pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"]
|
||||
|
||||
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
pop_layout["ct"] = pop_layout.index.str[:2]
|
||||
cts = pop_layout.ct.value_counts().index.to_list()
|
||||
if "GB" in cts:
|
||||
cts.remove("GB")
|
||||
cts.append("UK")
|
||||
|
||||
year = np.arange(1990,2018).tolist()
|
||||
|
||||
idx = pd.IndexSlice
|
||||
co2_totals = df.loc[idx[year,e.values,cts,pol],"emissions"].unstack("Year").rename(index=pd.Series(e.index,e.values))
|
||||
|
||||
co2_totals = (1/1e6)*co2_totals.groupby(level=0, axis=0).sum() #Gton CO2
|
||||
|
||||
co2_totals.loc['industrial non-elec'] = co2_totals.loc['total energy'] - co2_totals.loc[['electricity', 'services non-elec','residential non-elec', 'road non-elec',
|
||||
'rail non-elec', 'domestic aviation', 'international aviation', 'domestic navigation',
|
||||
'international navigation']].sum()
|
||||
|
||||
emissions = co2_totals.loc["electricity"]
|
||||
if "T" in opts:
|
||||
emissions += co2_totals.loc[[i+ " non-elec" for i in ["rail","road"]]].sum()
|
||||
if "H" in opts:
|
||||
emissions += co2_totals.loc[[i+ " non-elec" for i in ["residential","services"]]].sum()
|
||||
if "I" in opts:
|
||||
emissions += co2_totals.loc[["industrial non-elec","industrial processes",
|
||||
"domestic aviation","international aviation",
|
||||
"domestic navigation","international navigation"]].sum()
|
||||
return emissions
|
||||
|
||||
|
||||
def build_carbon_budget(o):
|
||||
#distribute carbon budget following beta or exponential transition path
|
||||
if "be" in o:
|
||||
#beta decay
|
||||
carbon_budget = float(o[o.find("cb")+2:o.find("be")])
|
||||
be=float(o[o.find("be")+2:])
|
||||
if "ex" in o:
|
||||
#exponential decay
|
||||
carbon_budget = float(o[o.find("cb")+2:o.find("ex")])
|
||||
r=float(o[o.find("ex")+2:])
|
||||
|
||||
e_1990 = co2_emissions_year(year=1990)
|
||||
|
||||
#emissions at the beginning of the path (last year available 2018)
|
||||
e_0 = co2_emissions_year(year=2018)
|
||||
#emissions in 2019 and 2020 assumed equal to 2018 and substracted
|
||||
carbon_budget -= 2*e_0
|
||||
planning_horizons = snakemake.config['scenario']['planning_horizons']
|
||||
CO2_CAP = pd.DataFrame(index = pd.Series(data=planning_horizons,
|
||||
name='planning_horizon'),
|
||||
columns=pd.Series(data=[],
|
||||
name='paths',
|
||||
dtype='float'))
|
||||
t_0 = planning_horizons[0]
|
||||
if "be" in o:
|
||||
#beta decay
|
||||
t_f = t_0 + (2*carbon_budget/e_0).round(0) # final year in the path
|
||||
#emissions (relative to 1990)
|
||||
CO2_CAP[o] = [(e_0/e_1990)*(1-beta.cdf((t-t_0)/(t_f-t_0), be, be)) for t in planning_horizons]
|
||||
|
||||
if "ex" in o:
|
||||
#exponential decay without delay
|
||||
T=carbon_budget/e_0
|
||||
m=(1+np.sqrt(1+r*T))/T
|
||||
CO2_CAP[o] = [(e_0/e_1990)*(1+(m+r)*(t-t_0))*np.exp(-m*(t-t_0)) for t in planning_horizons]
|
||||
|
||||
CO2_CAP.to_csv(path_cb + 'carbon_budget_distribution.csv', sep=',',
|
||||
line_terminator='\n', float_format='%.3f')
|
||||
|
||||
"""
|
||||
Plot historical carbon emissions in the EU and decarbonization path
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
import seaborn as sns; sns.set()
|
||||
sns.set_style('ticks')
|
||||
plt.style.use('seaborn-ticks')
|
||||
plt.rcParams['xtick.direction'] = 'in'
|
||||
plt.rcParams['ytick.direction'] = 'in'
|
||||
plt.rcParams['xtick.labelsize'] = 20
|
||||
plt.rcParams['ytick.labelsize'] = 20
|
||||
|
||||
plt.figure(figsize=(10, 7))
|
||||
gs1 = gridspec.GridSpec(1, 1)
|
||||
ax1 = plt.subplot(gs1[0,0])
|
||||
ax1.set_ylabel('CO$_2$ emissions (Gt per year)',fontsize=22)
|
||||
ax1.set_ylim([0,5])
|
||||
ax1.set_xlim([1990,planning_horizons[-1]+1])
|
||||
ax1.plot(e_1990*CO2_CAP[o],linewidth=3,
|
||||
color='dodgerblue', label=None)
|
||||
|
||||
emissions = historical_emissions()
|
||||
|
||||
ax1.plot(emissions, color='black', linewidth=3, label=None)
|
||||
|
||||
#plot commited and uder-discussion targets
|
||||
#(notice that historical emissions include all countries in the
|
||||
# network, but targets refer to EU)
|
||||
ax1.plot([2020],[0.8*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='black',
|
||||
markeredgecolor='black')
|
||||
|
||||
ax1.plot([2030],[0.45*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='white',
|
||||
markeredgecolor='black')
|
||||
|
||||
ax1.plot([2030],[0.6*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='black',
|
||||
markeredgecolor='black')
|
||||
|
||||
ax1.plot([2050, 2050],[x*emissions[1990] for x in [0.2, 0.05]],
|
||||
color='gray', linewidth=2, marker='_', alpha=0.5)
|
||||
|
||||
ax1.plot([2050],[0.01*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='white',
|
||||
linewidth=0, markeredgecolor='black',
|
||||
label='EU under-discussion target', zorder=10,
|
||||
clip_on=False)
|
||||
|
||||
ax1.plot([2050],[0.125*emissions[1990]],'ro',
|
||||
marker='*', markersize=12, markerfacecolor='black',
|
||||
markeredgecolor='black', label='EU commited target')
|
||||
|
||||
ax1.legend(fancybox=True, fontsize=18, loc=(0.01,0.01),
|
||||
facecolor='white', frameon=True)
|
||||
|
||||
path_cb_plot = snakemake.config['results_dir'] + snakemake.config['run'] + '/graphs/'
|
||||
if not os.path.exists(path_cb_plot):
|
||||
os.makedirs(path_cb_plot)
|
||||
print('carbon budget distribution saved to ' + path_cb_plot + 'carbon_budget_plot.pdf')
|
||||
plt.savefig(path_cb_plot+'carbon_budget_plot.pdf', dpi=300)
|
||||
|
||||
def add_lifetime_wind_solar(n):
|
||||
"""
|
||||
Add lifetime for solar and wind generators
|
||||
@ -1775,15 +1977,15 @@ def get_parameter(item):
|
||||
return item
|
||||
|
||||
|
||||
#%%
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils.snakemake import MockSnakemake
|
||||
snakemake = MockSnakemake(
|
||||
wildcards=dict(network='elec', simpl='', clusters='37', lv='1.0',
|
||||
opts='', planning_horizons='2030', co2_budget_name="go",
|
||||
sector_opts='Co2L0-120H-T-H-B-I-solar3-dist1'),
|
||||
opts='', planning_horizons='2020',
|
||||
sector_opts='120H-T-H-B-I-solar3-dist1-cb40ex0'),
|
||||
input=dict( network='../pypsa-eur/networks/{network}_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc',
|
||||
energy_totals_name='resources/energy_totals.csv',
|
||||
co2_totals_name='resources/co2_totals.csv',
|
||||
@ -1819,10 +2021,10 @@ if __name__ == "__main__":
|
||||
solar_thermal_total="resources/solar_thermal_total_{network}_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_urban="resources/solar_thermal_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
retro_cost_energy = "resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
|
||||
retro_cost_energy = "resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
|
||||
floor_area = "resources/floor_area_{network}_s{simpl}_{clusters}.csv"
|
||||
),
|
||||
output=['pypsa-eur-sec/results/test/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_{planning_horizons}.nc']
|
||||
output=['results/version-8/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{planning_horizons}.nc']
|
||||
)
|
||||
import yaml
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
@ -1926,6 +2128,20 @@ if __name__ == "__main__":
|
||||
limit = get_parameter(snakemake.config["co2_budget"])
|
||||
print("CO2 limit set to",limit)
|
||||
|
||||
for o in opts:
|
||||
if "cb" in o:
|
||||
path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/'
|
||||
if not os.path.exists(path_cb):
|
||||
os.makedirs(path_cb)
|
||||
try:
|
||||
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv', index_col=0)
|
||||
except:
|
||||
build_carbon_budget(o)
|
||||
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv', index_col=0)
|
||||
|
||||
limit=CO2_CAP.loc[investment_year]
|
||||
print("overriding CO2 limit with scenario limit",limit)
|
||||
|
||||
for o in opts:
|
||||
if "Co2L" in o:
|
||||
limit = o[o.find("Co2L")+4:]
|
||||
|
Loading…
Reference in New Issue
Block a user