changed implementation to always use 2020 cost
This commit is contained in:
parent
97acf2f12e
commit
46cd9a8274
@ -20,7 +20,7 @@ dependencies:
|
||||
- openpyxl!=3.1.1
|
||||
- pycountry
|
||||
- seaborn
|
||||
- snakemake-minimal>=8.5,<8.6
|
||||
- snakemake-minimal>=8.5
|
||||
- memory_profiler
|
||||
- yaml
|
||||
- pytables
|
||||
|
@ -248,8 +248,8 @@ rule build_solar_thermal_profiles:
|
||||
output:
|
||||
solar_thermal=resources("solar_thermal_{scope}_elec_s{simpl}_{clusters}.nc"),
|
||||
resources:
|
||||
mem_mb=20000,
|
||||
threads: 16
|
||||
mem_mb=8000,
|
||||
threads: 1
|
||||
log:
|
||||
logs("build_solar_thermal_profiles_{scope}_s{simpl}_{clusters}.log"),
|
||||
benchmark:
|
||||
@ -816,6 +816,34 @@ def input_profile_offwind(w):
|
||||
}
|
||||
|
||||
|
||||
rule build_egs_potentials:
|
||||
params:
|
||||
snapshots=config_provider("snapshots"),
|
||||
sector=config_provider("sector"),
|
||||
costs=config_provider("costs"),
|
||||
input:
|
||||
egs_cost="data/egs_costs.json",
|
||||
regions=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
air_temperature=(
|
||||
resources("temp_air_total_elec_s{simpl}_{clusters}.nc")
|
||||
if config_provider("sector", "enhanced_geothermal", "var_cf")
|
||||
else []
|
||||
),
|
||||
output:
|
||||
egs_potentials=resources("egs_potentials_s{simpl}_{clusters}.csv"),
|
||||
egs_overlap=resources("egs_overlap_s{simpl}_{clusters}.csv"),
|
||||
egs_capacity_factors=resources("egs_capacity_factors_s{simpl}_{clusters}.csv"),
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=2000,
|
||||
log:
|
||||
logs("build_egs_potentials_s{simpl}_{clusters}.log"),
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_egs_potentials.py"
|
||||
|
||||
|
||||
rule prepare_sector_network:
|
||||
params:
|
||||
time_resolution=config_provider("clustering", "temporal", "resolution_sector"),
|
||||
@ -931,6 +959,21 @@ rule prepare_sector_network:
|
||||
if config_provider("sector", "solar_thermal")(w)
|
||||
else []
|
||||
),
|
||||
egs_potentials=lambda w: (
|
||||
resources("egs_potentials_s{simpl}_{clusters}.csv")
|
||||
if config_provider("sector", "enhanced_geothermal", "enable")(w)
|
||||
else []
|
||||
),
|
||||
egs_overlap=lambda w: (
|
||||
resources("egs_overlap_s{simpl}_{clusters}.csv")
|
||||
if config_provider("sector", "enhanced_geothermal", "enable")(w)
|
||||
else []
|
||||
),
|
||||
egs_capacity_factors=lambda w: (
|
||||
resources("egs_capacity_factors_s{simpl}_{clusters}.csv")
|
||||
if config_provider("sector", "enhanced_geothermal", "enable")(w)
|
||||
else []
|
||||
),
|
||||
output:
|
||||
RESULTS
|
||||
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
|
@ -30,6 +30,9 @@ from shapely.geometry import Polygon
|
||||
|
||||
|
||||
def prepare_egs_data(egs_file):
|
||||
"""
|
||||
Processes the original .json file EGS data to a more human-readable format.
|
||||
"""
|
||||
with open(egs_file) as f:
|
||||
jsondata = json.load(f)
|
||||
|
||||
@ -86,6 +89,65 @@ def prepare_egs_data(egs_file):
|
||||
return egs_data
|
||||
|
||||
|
||||
def prepare_capex(prepared_data):
|
||||
"""
|
||||
The source paper provides only data for year and regions where LCOE <
|
||||
100Euro/MWh. However, this implementations starts with the costs for 2020
|
||||
for all regions and then adjusts the costs according to the user's chosen
|
||||
setting in the config file.
|
||||
|
||||
As such, for regions where cost data is available only from, say,
|
||||
2035, we need to reverse-engineer the costs for 2020. This is done
|
||||
in the following (unfortunately verbose) function.
|
||||
"""
|
||||
|
||||
default_year = 2020
|
||||
|
||||
# obtains all available CAPEX data
|
||||
capex_df = pd.DataFrame(columns=prepared_data.keys())
|
||||
|
||||
for year in capex_df.columns:
|
||||
|
||||
year_data = prepared_data[year].groupby("geometry").mean().reset_index()
|
||||
|
||||
for g in year_data.geometry:
|
||||
|
||||
if not g in year_data.geometry.tolist():
|
||||
# weird but apparently necessary
|
||||
continue
|
||||
|
||||
capex_df.loc[g, year] = year_data.loc[
|
||||
year_data.geometry == g, "CAPEX"
|
||||
].values[0]
|
||||
|
||||
capex_df = capex_df.loc[:, default_year:]
|
||||
|
||||
# fill up missing values assuming cost reduction factors similar to existing values
|
||||
for sooner, later in zip(capex_df.columns[::-1][1:], capex_df.columns[::-1]):
|
||||
|
||||
missing_mask = capex_df[sooner].isna()
|
||||
cr_factor = (
|
||||
capex_df.loc[~missing_mask, later] / capex_df.loc[~missing_mask, sooner]
|
||||
)
|
||||
|
||||
capex_df.loc[missing_mask, sooner] = (
|
||||
capex_df.loc[missing_mask, later] / cr_factor.mean()
|
||||
)
|
||||
|
||||
# harmonice capacity and CAPEX
|
||||
p_nom_max = prepared_data[2050].groupby("geometry")["PowerSust"].mean()
|
||||
p_nom_max = p_nom_max.loc[p_nom_max > 0]
|
||||
|
||||
capex_df = capex_df.loc[p_nom_max.index]
|
||||
|
||||
data = (
|
||||
pd.concat((capex_df[default_year], p_nom_max), axis=1)
|
||||
.reset_index()
|
||||
.rename(columns={2020: "CAPEX"})
|
||||
)
|
||||
return gpd.GeoDataFrame(data, geometry=data.geometry)
|
||||
|
||||
|
||||
def get_capacity_factors(network_regions_file, air_temperatures_file):
|
||||
"""
|
||||
Performance of EGS is higher for lower temperatures, due to more efficient
|
||||
@ -146,28 +208,9 @@ if __name__ == "__main__":
|
||||
egs_config = snakemake.params["sector"]["enhanced_geothermal"]
|
||||
costs_config = snakemake.params["costs"]
|
||||
|
||||
sustainability_factor = egs_config["sustainability_factor"]
|
||||
# the share of heat that is replenished from the earth's core.
|
||||
# we are not constraining ourselves to the sustainable share, but
|
||||
# inversely apply it to our underlying data, which refers to the
|
||||
# sustainable heat. Source: Relative magnitude of sustainable heat vs
|
||||
# nonsustainable heat in the paper "From hot rock to useful energy..."
|
||||
|
||||
egs_data = prepare_egs_data(snakemake.input.egs_cost)
|
||||
egs_data = prepare_capex(egs_data)
|
||||
|
||||
if egs_config["optimism"]:
|
||||
egs_data = egs_data[(year := costs_config["year"])]
|
||||
logger.info(
|
||||
f"EGS optimism! Building EGS potentials with costs estimated for {year}."
|
||||
)
|
||||
|
||||
else:
|
||||
egs_data = egs_data[(default_year := 2020)]
|
||||
logger.info(
|
||||
f"No EGS optimism! Building EGS potentials with {default_year} costs."
|
||||
)
|
||||
|
||||
egs_data = egs_data.loc[egs_data["PowerSust"] > 0].reset_index(drop=True)
|
||||
egs_regions = egs_data.geometry
|
||||
|
||||
network_regions = (
|
||||
@ -188,7 +231,12 @@ if __name__ == "__main__":
|
||||
|
||||
overlap_matrix.to_csv(snakemake.output["egs_overlap"])
|
||||
|
||||
# consider not only replenished heat
|
||||
# the share of heat that is replenished from the earth's core.
|
||||
# we are not constraining ourselves to the sustainable share, but
|
||||
# inversely apply it to our underlying data, which refers to the
|
||||
# sustainable heat. Source: Relative magnitude of sustainable heat vs
|
||||
# nonsustainable heat in the paper "From hot rock to useful energy..."
|
||||
sustainability_factor = egs_config["sustainability_factor"]
|
||||
egs_data["p_nom_max"] = egs_data["PowerSust"] / sustainability_factor
|
||||
|
||||
egs_data[["p_nom_max", "CAPEX"]].to_csv(snakemake.output["egs_potentials"])
|
||||
|
@ -190,7 +190,7 @@ def define_spatial(nodes, options):
|
||||
|
||||
# deep geothermal
|
||||
spatial.geothermal_heat = SimpleNamespace()
|
||||
spatial.geothermal_heat.nodes = ["EU deep geothermal"]
|
||||
spatial.geothermal_heat.nodes = ["EU enhanced geothermal systems"]
|
||||
spatial.geothermal_heat.locations = ["EU"]
|
||||
|
||||
return spatial
|
||||
@ -3599,15 +3599,11 @@ def add_enhanced_geothermal(
|
||||
|
||||
# under egs optimism, the expected cost reductions also cover costs for ORC
|
||||
# hence, the ORC costs are no longer taken from technology-data
|
||||
orc_capex = (
|
||||
costs.at["organic rankine cycle", "investment"]
|
||||
if not snakemake.params.sector["enhanced_geothermal_optimism"]
|
||||
else 0.0
|
||||
)
|
||||
orc_capex = costs.at["organic rankine cycle", "investment"]
|
||||
|
||||
# cost for ORC is subtracted, as it is already included in the geothermal cost.
|
||||
# The orc cost are attributed to a separate link representing the ORC.
|
||||
# also capital_cost conversion Eurofalse/kW -> Euro/MW
|
||||
# also capital_cost conversion Euro/kW -> Euro/MW
|
||||
|
||||
egs_potentials["capital_cost"] = (
|
||||
(egs_annuity + FOM / (1.0 + FOM))
|
||||
@ -3619,8 +3615,8 @@ def add_enhanced_geothermal(
|
||||
egs_potentials["capital_cost"] > 0
|
||||
).all(), "Error in EGS cost, negative values found."
|
||||
|
||||
plant_annuity = calculate_annuity(costs.at["organic rankine cycle", "lifetime"], dr)
|
||||
plant_capital_cost = (plant_annuity + FOM / (1 + FOM)) * orc_capex * Nyears
|
||||
orc_annuity = calculate_annuity(costs.at["organic rankine cycle", "lifetime"], dr)
|
||||
orc_capital_cost = (orc_annuity + FOM / (1 + FOM)) * orc_capex * Nyears
|
||||
|
||||
efficiency_orc = costs.at["organic rankine cycle", "efficiency"]
|
||||
efficiency_dh = costs.at["geothermal", "efficiency residential heat"]
|
||||
@ -3647,19 +3643,22 @@ def add_enhanced_geothermal(
|
||||
p_nom_extendable=True,
|
||||
)
|
||||
|
||||
if snakemake.params.sector["enhanced_geothermal_var_cf"]:
|
||||
if egs_config["var_cf"]:
|
||||
efficiency = pd.read_csv(
|
||||
snakemake.input.egs_capacity_factors, parse_dates=True, index_col=0
|
||||
)
|
||||
logger.info("Adding Enhanced Geothermal with time-varying capacity factors.")
|
||||
else:
|
||||
efficiency = pd.Series(1, overlap.index)
|
||||
efficiency = 1.0
|
||||
|
||||
# if urban central heat exists, adds geothermal as CHP
|
||||
as_chp = "urban central heat" in n.loads.carrier.unique()
|
||||
|
||||
if as_chp:
|
||||
logger.info("Adding Enhanced Geothermal as Combined Heat and Power.")
|
||||
logger.info("Adding EGS as Combined Heat and Power.")
|
||||
|
||||
else:
|
||||
logger.info("Adding EGS for Electricity Only.")
|
||||
|
||||
for bus, bus_overlap in overlap.iterrows():
|
||||
if not bus_overlap.sum():
|
||||
@ -3674,34 +3673,36 @@ def add_enhanced_geothermal(
|
||||
bus_egs["p_nom_max"] = bus_egs["p_nom_max"].multiply(bus_overlap)
|
||||
bus_egs = bus_egs.loc[bus_egs.p_nom_max > 0.0]
|
||||
|
||||
if egs_config["performant"]:
|
||||
bus_egs = bus_egs.sort_values(by="capital_cost").iloc[:1]
|
||||
appendix = pd.Index([""])
|
||||
else:
|
||||
appendix = " " + pd.Index(np.arange(len(bus_egs)).astype(str))
|
||||
appendix = " " + pd.Index(np.arange(len(bus_egs)).astype(str))
|
||||
|
||||
# add surface bus
|
||||
n.add(
|
||||
n.madd(
|
||||
"Bus",
|
||||
f"{bus} geothermal heat surface",
|
||||
pd.Index([f"{bus} geothermal heat surface"]),
|
||||
location=bus,
|
||||
unit="MWh_th",
|
||||
carrier="geothermal heat",
|
||||
)
|
||||
|
||||
bus_egs.index = np.arange(len(bus_egs)).astype(str)
|
||||
well_name = f"{bus} enhanced geothermal" + appendix
|
||||
|
||||
bus_eta = pd.concat(
|
||||
(efficiency[bus].rename(idx) for idx in well_name),
|
||||
axis=1,
|
||||
)
|
||||
if egs_config["var_cf"]:
|
||||
bus_eta = pd.concat(
|
||||
(efficiency[bus].rename(idx) for idx in well_name),
|
||||
axis=1,
|
||||
)
|
||||
else:
|
||||
bus_eta = efficiency
|
||||
|
||||
p_nom_max = bus_egs["p_nom_max"]
|
||||
capital_cost = bus_egs["capital_cost"]
|
||||
bus1 = pd.Series(f"{bus} geothermal heat surface", well_name)
|
||||
|
||||
# adding geothermal wells as multiple generators to represent supply curve
|
||||
n.madd(
|
||||
"Link",
|
||||
well_name,
|
||||
location=bus,
|
||||
bus0=spatial.geothermal_heat.nodes,
|
||||
bus1=bus1,
|
||||
carrier="geothermal heat",
|
||||
@ -3711,6 +3712,7 @@ def add_enhanced_geothermal(
|
||||
efficiency=bus_eta,
|
||||
)
|
||||
|
||||
# adding Organic Rankine Cycle as a single link
|
||||
n.add(
|
||||
"Link",
|
||||
bus + " geothermal organic rankine cycle",
|
||||
@ -3718,7 +3720,7 @@ def add_enhanced_geothermal(
|
||||
bus1=bus,
|
||||
p_nom_extendable=True,
|
||||
carrier="geothermal organic rankine cycle",
|
||||
capital_cost=plant_capital_cost * efficiency_orc,
|
||||
capital_cost=orc_capital_cost * efficiency_orc,
|
||||
efficiency=efficiency_orc,
|
||||
)
|
||||
|
||||
@ -3729,7 +3731,7 @@ def add_enhanced_geothermal(
|
||||
bus0=f"{bus} geothermal heat surface",
|
||||
bus1=bus + " urban central heat",
|
||||
carrier="geothermal district heat",
|
||||
capital_cost=plant_capital_cost
|
||||
capital_cost=orc_capital_cost
|
||||
* efficiency_orc
|
||||
* costs.at["geothermal", "district heating cost"],
|
||||
efficiency=efficiency_dh,
|
||||
@ -3745,8 +3747,8 @@ def add_enhanced_geothermal(
|
||||
# Hence, it is counter-intuitive to install it at the surface bus,
|
||||
# this is however the more lean and computationally efficient solution.
|
||||
|
||||
max_hours = egs_config["reservoir_max_hours"]
|
||||
boost = egs_config["reservoir_max_boost"]
|
||||
max_hours = egs_config["max_hours"]
|
||||
boost = egs_config["max_boost"]
|
||||
|
||||
n.add(
|
||||
"StorageUnit",
|
||||
@ -3756,6 +3758,7 @@ def add_enhanced_geothermal(
|
||||
p_nom_extendable=True,
|
||||
p_min_pu=-boost,
|
||||
max_hours=max_hours,
|
||||
cyclic_state_of_charge=True,
|
||||
)
|
||||
|
||||
|
||||
@ -3884,6 +3887,12 @@ if __name__ == "__main__":
|
||||
if options["electricity_distribution_grid"]:
|
||||
insert_electricity_distribution_grid(n, costs)
|
||||
|
||||
if options["enhanced_geothermal"].get("enable", False):
|
||||
logger.info("Adding Enhanced Geothermal Systems (EGS).")
|
||||
add_enhanced_geothermal(
|
||||
n, snakemake.input["egs_potentials"], snakemake.input["egs_overlap"], costs
|
||||
)
|
||||
|
||||
maybe_adjust_costs_and_potentials(n, snakemake.params["adjustments"])
|
||||
|
||||
if options["gas_distribution_grid"]:
|
||||
@ -3911,12 +3920,6 @@ if __name__ == "__main__":
|
||||
if options.get("cluster_heat_buses", False) and not first_year_myopic:
|
||||
cluster_heat_buses(n)
|
||||
|
||||
if options["enhanced_geothermal"].get("enable", False):
|
||||
logger.info("Adding Enhanced Geothermal Potential.")
|
||||
add_enhanced_geothermal(
|
||||
n, snakemake.input["egs_potentials"], snakemake.input["egs_overlap"], costs
|
||||
)
|
||||
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
|
||||
sanitize_carriers(n, snakemake.config)
|
||||
|
@ -801,7 +801,7 @@ def add_geothermal_chp_constraint(n):
|
||||
elec_index = n.links.loc[
|
||||
n.links.carrier == "geothermal organic rankine cycle"
|
||||
].index
|
||||
heat_index = n.links.loc[n.links.carrier == "geothermal heat district heat"].index
|
||||
heat_index = n.links.loc[n.links.carrier == "geothermal district heat"].index
|
||||
|
||||
p_nom_lhs = (
|
||||
n.model["Link-p_nom"].loc[heat_index] - n.model["Link-p_nom"].loc[elec_index]
|
||||
@ -824,7 +824,7 @@ def add_flexible_egs_constraint(n):
|
||||
|
||||
n.model.add_constraints(
|
||||
p_nom_lhs <= p_nom_rhs,
|
||||
name="Upper bounds the charging capacity of the storage unit",
|
||||
name="Upper bounds the charging capacity of the geothermal reservoir according to the well capacity",
|
||||
)
|
||||
|
||||
|
||||
@ -954,28 +954,6 @@ def solve_network(n, config, solving, **kwargs):
|
||||
n.model.print_infeasibilities()
|
||||
raise RuntimeError("Solving status 'infeasible'")
|
||||
|
||||
# check if enhanced_geothermal_performant might have changed model results
|
||||
if (
|
||||
snakemake.config["sector"]["enhanced_geothermal"]
|
||||
and snakemake.config["sector"]["enhanced_geothermal_performant"]
|
||||
):
|
||||
mask = (mask := n.links.carrier == "geothermal heat") & (
|
||||
n.links.loc[mask, "p_nom_max"] > 0.0
|
||||
)
|
||||
|
||||
saturated = n.links.loc[mask, "p_nom_max"] == n.links.loc[mask, "p_nom_opt"]
|
||||
|
||||
if saturated.any():
|
||||
logger.warning(
|
||||
(
|
||||
"Potential for enhanced geothermal heat is saturated at bus(es):\n"
|
||||
f"{', '.join(n.links.loc[saturated.loc[saturated.astype(bool)].index, 'location'].tolist())}.\n"
|
||||
"Consider setting config['sector']['enhanced_geothermal_performant'] to False."
|
||||
)
|
||||
)
|
||||
|
||||
return n
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
|
Loading…
Reference in New Issue
Block a user