Merge pull request #267 from PyPSA/split_planning_horizons_into_investmentyear_and_costyear
Split planning horizons into investmentyear and costyear
This commit is contained in:
commit
413254e241
@ -474,7 +474,7 @@ rule prepare_sector_network:
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv',
|
||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||
costs=CDIR + "costs_{planning_horizons}.csv",
|
||||
costs=CDIR + "costs_{}.csv".format(config['costs']['year']) if config["foresight"] == "overnight" else CDIR + "costs_{planning_horizons}.csv",
|
||||
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),
|
||||
profile_offwind_dc=pypsaeur("resources/profile_offwind-dc.nc"),
|
||||
h2_cavern="resources/salt_cavern_potentials_s{simpl}_{clusters}.csv",
|
||||
@ -539,7 +539,7 @@ rule make_summary:
|
||||
RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
**config['scenario']
|
||||
),
|
||||
costs=CDIR + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
costs=CDIR + "costs_{}.csv".format(config['costs']['year']) if config["foresight"] == "overnight" else CDIR + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
plots=expand(
|
||||
RDIR + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
**config['scenario']
|
||||
@ -589,7 +589,7 @@ if config["foresight"] == "overnight":
|
||||
input:
|
||||
overrides="data/override_component_attrs",
|
||||
network=RDIR + "/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
costs=CDIR + "costs_{planning_horizons}.csv",
|
||||
costs=CDIR + "costs_{}.csv".format(config['costs']['year']),
|
||||
config=SDIR + '/configs/config.yaml'
|
||||
output: RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
shadow: "shallow"
|
||||
|
@ -40,8 +40,8 @@ scenario:
|
||||
# planning_horizons), be:beta decay; ex:exponential decay
|
||||
# cb40ex0 distributes a carbon budget of 40 GtCO2 following an exponential
|
||||
# decay with initial growth rate 0
|
||||
planning_horizons: # investment years for myopic and perfect; or costs year for overnight
|
||||
- 2030
|
||||
planning_horizons: # investment years for myopic and perfect; for overnight, year of cost assumptions can be different and is defined under 'costs'
|
||||
- 2050
|
||||
# for example, set to
|
||||
# - 2020
|
||||
# - 2030
|
||||
@ -154,11 +154,11 @@ sector:
|
||||
potential: 0.6 # maximum fraction of urban demand which can be supplied by district heating
|
||||
# increase of today's district heating demand to potential maximum district heating share
|
||||
# progress = 0 means today's district heating share, progress = 1 means maximum fraction of urban demand is supplied by district heating
|
||||
progress: 1
|
||||
# 2020: 0.0
|
||||
# 2030: 0.3
|
||||
# 2040: 0.6
|
||||
# 2050: 1.0
|
||||
progress:
|
||||
2020: 0.0
|
||||
2030: 0.3
|
||||
2040: 0.6
|
||||
2050: 1.0
|
||||
district_heating_loss: 0.15
|
||||
bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM
|
||||
bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
||||
@ -178,16 +178,16 @@ sector:
|
||||
bev_avail_mean: 0.8
|
||||
v2g: true #allows feed-in to grid from EV battery
|
||||
#what is not EV or FCEV is oil-fuelled ICE
|
||||
land_transport_fuel_cell_share: 0.15 # 1 means all FCEVs
|
||||
# 2020: 0
|
||||
# 2030: 0.05
|
||||
# 2040: 0.1
|
||||
# 2050: 0.15
|
||||
land_transport_electric_share: 0.85 # 1 means all EVs
|
||||
# 2020: 0
|
||||
# 2030: 0.25
|
||||
# 2040: 0.6
|
||||
# 2050: 0.85
|
||||
land_transport_fuel_cell_share: # 1 means all FCEVs
|
||||
2020: 0
|
||||
2030: 0.05
|
||||
2040: 0.1
|
||||
2050: 0.15
|
||||
land_transport_electric_share: # 1 means all EVs
|
||||
2020: 0
|
||||
2030: 0.25
|
||||
2040: 0.6
|
||||
2050: 0.85
|
||||
transport_fuel_cell_efficiency: 0.5
|
||||
transport_internal_combustion_efficiency: 0.3
|
||||
agriculture_machinery_electric_share: 0
|
||||
@ -195,29 +195,29 @@ sector:
|
||||
agriculture_machinery_electric_efficiency: 0.3 # electricity per use
|
||||
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
|
||||
shipping_hydrogen_liquefaction: false # whether to consider liquefaction costs for shipping H2 demands
|
||||
shipping_hydrogen_share: 1 # 1 means all hydrogen FC
|
||||
# 2020: 0
|
||||
# 2025: 0
|
||||
# 2030: 0.05
|
||||
# 2035: 0.15
|
||||
# 2040: 0.3
|
||||
# 2045: 0.6
|
||||
# 2050: 1
|
||||
shipping_hydrogen_share: # 1 means all hydrogen FC
|
||||
2020: 0
|
||||
2025: 0
|
||||
2030: 0.05
|
||||
2035: 0.15
|
||||
2040: 0.3
|
||||
2045: 0.6
|
||||
2050: 1
|
||||
time_dep_hp_cop: true #time dependent heat pump coefficient of performance
|
||||
heat_pump_sink_T: 55. # Celsius, based on DTU / large area radiators; used in build_cop_profiles.py
|
||||
# conservatively high to cover hot water and space heating in poorly-insulated buildings
|
||||
reduce_space_heat_exogenously: true # reduces space heat demand by a given factor (applied before losses in DH)
|
||||
# this can represent e.g. building renovation, building demolition, or if
|
||||
# the factor is negative: increasing floor area, increased thermal comfort, population growth
|
||||
reduce_space_heat_exogenously_factor: 0.29 # per unit reduction in space heat demand
|
||||
reduce_space_heat_exogenously_factor: # per unit reduction in space heat demand
|
||||
# the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221
|
||||
# 2020: 0.10 # this results in a space heat demand reduction of 10%
|
||||
# 2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita
|
||||
# 2030: 0.09
|
||||
# 2035: 0.11
|
||||
# 2040: 0.16
|
||||
# 2045: 0.21
|
||||
# 2050: 0.29
|
||||
2020: 0.10 # this results in a space heat demand reduction of 10%
|
||||
2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita
|
||||
2030: 0.09
|
||||
2035: 0.11
|
||||
2040: 0.16
|
||||
2045: 0.21
|
||||
2050: 0.29
|
||||
retrofitting : # co-optimises building renovation to reduce space heat demand
|
||||
retro_endogen: false # co-optimise space heat savings
|
||||
cost_factor: 1.0 # weight costs for building renovation
|
||||
@ -276,32 +276,32 @@ sector:
|
||||
|
||||
|
||||
industry:
|
||||
St_primary_fraction: 0.3 # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6
|
||||
# 2020: 0.6
|
||||
# 2025: 0.55
|
||||
# 2030: 0.5
|
||||
# 2035: 0.45
|
||||
# 2040: 0.4
|
||||
# 2045: 0.35
|
||||
# 2050: 0.3
|
||||
DRI_fraction: 1 # fraction of the primary route converted to DRI + EAF
|
||||
# 2020: 0
|
||||
# 2025: 0
|
||||
# 2030: 0.05
|
||||
# 2035: 0.2
|
||||
# 2040: 0.4
|
||||
# 2045: 0.7
|
||||
# 2050: 1
|
||||
St_primary_fraction: # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6
|
||||
2020: 0.6
|
||||
2025: 0.55
|
||||
2030: 0.5
|
||||
2035: 0.45
|
||||
2040: 0.4
|
||||
2045: 0.35
|
||||
2050: 0.3
|
||||
DRI_fraction: # fraction of the primary route converted to DRI + EAF
|
||||
2020: 0
|
||||
2025: 0
|
||||
2030: 0.05
|
||||
2035: 0.2
|
||||
2040: 0.4
|
||||
2045: 0.7
|
||||
2050: 1
|
||||
H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
|
||||
elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
|
||||
Al_primary_fraction: 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
||||
# 2020: 0.4
|
||||
# 2025: 0.375
|
||||
# 2030: 0.35
|
||||
# 2035: 0.325
|
||||
# 2040: 0.3
|
||||
# 2045: 0.25
|
||||
# 2050: 0.2
|
||||
Al_primary_fraction: # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
||||
2020: 0.4
|
||||
2025: 0.375
|
||||
2030: 0.35
|
||||
2035: 0.325
|
||||
2040: 0.3
|
||||
2045: 0.25
|
||||
2050: 0.2
|
||||
MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
|
||||
MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
|
||||
MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
|
||||
@ -327,6 +327,7 @@ industry:
|
||||
# Material Economics (2019): https://materialeconomics.com/latest-updates/industrial-transformation-2050
|
||||
|
||||
costs:
|
||||
year: 2030
|
||||
lifetime: 25 #default lifetime
|
||||
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
||||
discountrate: 0.07
|
||||
|
Loading…
Reference in New Issue
Block a user