Merge branch 'master' into scenario-management
This commit is contained in:
commit
3f3f752e8f
@ -16,6 +16,8 @@ Upcoming Release
|
||||
|
||||
* For industry distribution, use EPRTR as fallback if ETS data is not available.
|
||||
|
||||
* The minimum capacity for renewable generators when using the myopic option has been fixed.
|
||||
|
||||
PyPSA-Eur 0.8.1 (27th July 2023)
|
||||
================================
|
||||
|
||||
|
@ -107,6 +107,8 @@ rule plot_summary:
|
||||
countries=config_provider("countries"),
|
||||
planning_horizons=config_provider("scenario", "planning_horizons"),
|
||||
sector_opts=config_provider("scenario", "sector_opts"),
|
||||
emissions_scope=config_provider("energy", "emissions"),
|
||||
eurostat_report_year=config_provider("energy", "eurostat_report_year"),
|
||||
plotting=config_provider("plotting"),
|
||||
RDIR=RDIR,
|
||||
input:
|
||||
@ -114,6 +116,7 @@ rule plot_summary:
|
||||
energy=RESULTS + "csvs/energy.csv",
|
||||
balances=RESULTS + "csvs/supply_energy.csv",
|
||||
eurostat=input_eurostat,
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
output:
|
||||
costs=RESULTS + "graphs/costs.pdf",
|
||||
energy=RESULTS + "graphs/energy.pdf",
|
||||
|
@ -165,7 +165,7 @@ def sanitize_carriers(n, config):
|
||||
nice_names = (
|
||||
pd.Series(config["plotting"]["nice_names"])
|
||||
.reindex(carrier_i)
|
||||
.fillna(carrier_i.to_series().str.title())
|
||||
.fillna(carrier_i.to_series())
|
||||
)
|
||||
n.carriers["nice_name"] = n.carriers.nice_name.where(
|
||||
n.carriers.nice_name != "", nice_names
|
||||
|
@ -435,15 +435,20 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
# split existing capacities between residential and services
|
||||
# proportional to energy demand
|
||||
p_set_sum = n.loads_t.p_set.sum()
|
||||
ratio_residential = pd.Series(
|
||||
[
|
||||
(
|
||||
n.loads_t.p_set.sum()[f"{node} residential rural heat"]
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
/ (
|
||||
n.loads_t.p_set.sum()[f"{node} residential rural heat"]
|
||||
+ n.loads_t.p_set.sum()[f"{node} services rural heat"]
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
+ p_set_sum[f"{node} services rural heat"]
|
||||
)
|
||||
)
|
||||
# if rural heating demand for one of the nodes doesn't exist,
|
||||
# then columns were dropped before and heating demand share should be 0.0
|
||||
if all(f"{node} {service} rural heat" in p_set_sum.index for service in ["residential", "services"])
|
||||
else 0.
|
||||
for node in nodal_df.index
|
||||
],
|
||||
index=nodal_df.index,
|
||||
|
@ -17,6 +17,8 @@ import geopandas as gpd
|
||||
import pandas as pd
|
||||
from packaging.version import Version, parse
|
||||
|
||||
import country_converter as coco
|
||||
cc = coco.CountryConverter()
|
||||
|
||||
def locate_missing_industrial_sites(df):
|
||||
"""
|
||||
@ -93,6 +95,17 @@ def prepare_hotmaps_database(regions):
|
||||
gdf.rename(columns={"index_right": "bus"}, inplace=True)
|
||||
gdf["country"] = gdf.bus.str[:2]
|
||||
|
||||
# the .sjoin can lead to duplicates if a geom is in two overlapping regions
|
||||
if gdf.index.duplicated().any():
|
||||
# get all duplicated entries
|
||||
duplicated_i = gdf.index[gdf.index.duplicated()]
|
||||
# convert from raw data country name to iso-2-code
|
||||
code = cc.convert(gdf.loc[duplicated_i, "Country"], to="iso2")
|
||||
# screen out malformed country allocation
|
||||
gdf_filtered = gdf.loc[duplicated_i].query("country == @code")
|
||||
# concat not duplicated and filtered gdf
|
||||
gdf = pd.concat([gdf.drop(duplicated_i), gdf_filtered])
|
||||
|
||||
return gdf
|
||||
|
||||
|
||||
|
@ -711,5 +711,5 @@ if __name__ == "__main__":
|
||||
if snakemake.params.foresight == "myopic":
|
||||
cumulative_cost = calculate_cumulative_cost()
|
||||
cumulative_cost.to_csv(
|
||||
"results/" + snakemake.params.RDIR + "/csvs/cumulative_cost.csv"
|
||||
"results/" + snakemake.params.RDIR + "csvs/cumulative_cost.csv"
|
||||
)
|
||||
|
@ -387,6 +387,9 @@ def historical_emissions(countries):
|
||||
countries.remove("GB")
|
||||
countries.append("UK")
|
||||
|
||||
# remove countries which are not included in eea historical emission dataset
|
||||
countries_to_remove = {"AL", "BA", "ME", "MK", "RS"}
|
||||
countries = list(set(countries) - countries_to_remove)
|
||||
year = np.arange(1990, 2018).tolist()
|
||||
|
||||
idx = pd.IndexSlice
|
||||
@ -457,9 +460,20 @@ def plot_carbon_budget_distribution(input_eurostat):
|
||||
ax1.set_ylim([0, 5])
|
||||
ax1.set_xlim([1990, snakemake.params.planning_horizons[-1] + 1])
|
||||
|
||||
path_cb = "results/" + snakemake.params.RDIR + "/csvs/"
|
||||
path_cb = "results/" + snakemake.params.RDIR + "csvs/"
|
||||
countries = snakemake.params.countries
|
||||
e_1990 = co2_emissions_year(countries, input_eurostat, opts, year=1990)
|
||||
emissions_scope = snakemake.params.emissions_scope
|
||||
report_year = snakemake.params.eurostat_report_year
|
||||
input_co2 = snakemake.input.co2
|
||||
e_1990 = co2_emissions_year(
|
||||
countries,
|
||||
input_eurostat,
|
||||
opts,
|
||||
emissions_scope,
|
||||
report_year,
|
||||
input_co2,
|
||||
year=1990,
|
||||
)
|
||||
CO2_CAP = pd.read_csv(path_cb + "carbon_budget_distribution.csv", index_col=0)
|
||||
|
||||
ax1.plot(e_1990 * CO2_CAP[o], linewidth=3, color="dodgerblue", label=None)
|
||||
@ -535,7 +549,7 @@ def plot_carbon_budget_distribution(input_eurostat):
|
||||
fancybox=True, fontsize=18, loc=(0.01, 0.01), facecolor="white", frameon=True
|
||||
)
|
||||
|
||||
path_cb_plot = "results/" + snakemake.params.RDIR + "/graphs/"
|
||||
path_cb_plot = "results/" + snakemake.params.RDIR + "graphs/"
|
||||
plt.savefig(path_cb_plot + "carbon_budget_plot.pdf", dpi=300)
|
||||
|
||||
|
||||
|
@ -196,17 +196,15 @@ def get(item, investment_year=None):
|
||||
|
||||
|
||||
def co2_emissions_year(
|
||||
countries, input_eurostat, opts, emissions_scope, report_year, year
|
||||
countries, input_eurostat, opts, emissions_scope, report_year, input_co2, year
|
||||
):
|
||||
"""
|
||||
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
|
||||
"""
|
||||
emissions_scope = snakemake.params.energy["emissions"]
|
||||
eea_co2 = build_eea_co2(snakemake.input.co2, year, emissions_scope)
|
||||
eea_co2 = build_eea_co2(input_co2, year, emissions_scope)
|
||||
|
||||
# TODO: read Eurostat data from year > 2014
|
||||
# this only affects the estimation of CO2 emissions for BA, RS, AL, ME, MK
|
||||
report_year = snakemake.params.energy["eurostat_report_year"]
|
||||
if year > 2014:
|
||||
eurostat_co2 = build_eurostat_co2(
|
||||
input_eurostat, countries, report_year, year=2014
|
||||
@ -227,7 +225,7 @@ def co2_emissions_year(
|
||||
|
||||
|
||||
# TODO: move to own rule with sector-opts wildcard?
|
||||
def build_carbon_budget(o, input_eurostat, fn, emissions_scope, report_year):
|
||||
def build_carbon_budget(o, input_eurostat, fn, emissions_scope, report_year, input_co2):
|
||||
"""
|
||||
Distribute carbon budget following beta or exponential transition path.
|
||||
"""
|
||||
@ -245,12 +243,24 @@ def build_carbon_budget(o, input_eurostat, fn, emissions_scope, report_year):
|
||||
countries = snakemake.params.countries
|
||||
|
||||
e_1990 = co2_emissions_year(
|
||||
countries, input_eurostat, opts, emissions_scope, report_year, year=1990
|
||||
countries,
|
||||
input_eurostat,
|
||||
opts,
|
||||
emissions_scope,
|
||||
report_year,
|
||||
input_co2,
|
||||
year=1990,
|
||||
)
|
||||
|
||||
# emissions at the beginning of the path (last year available 2018)
|
||||
e_0 = co2_emissions_year(
|
||||
countries, input_eurostat, opts, emissions_scope, report_year, year=2018
|
||||
countries,
|
||||
input_eurostat,
|
||||
opts,
|
||||
emissions_scope,
|
||||
report_year,
|
||||
input_co2,
|
||||
year=2018,
|
||||
)
|
||||
|
||||
planning_horizons = snakemake.params.planning_horizons
|
||||
@ -3398,12 +3408,18 @@ if __name__ == "__main__":
|
||||
if "cb" not in o:
|
||||
continue
|
||||
limit_type = "carbon budget"
|
||||
fn = "results/" + snakemake.params.RDIR + "/csvs/carbon_budget_distribution.csv"
|
||||
fn = "results/" + snakemake.params.RDIR + "csvs/carbon_budget_distribution.csv"
|
||||
if not os.path.exists(fn):
|
||||
emissions_scope = snakemake.params.emissions_scope
|
||||
report_year = snakemake.params.eurostat_report_year
|
||||
input_co2 = snakemake.input.co2
|
||||
build_carbon_budget(
|
||||
o, snakemake.input.eurostat, fn, emissions_scope, report_year
|
||||
o,
|
||||
snakemake.input.eurostat,
|
||||
fn,
|
||||
emissions_scope,
|
||||
report_year,
|
||||
input_co2,
|
||||
)
|
||||
co2_cap = pd.read_csv(fn, index_col=0).squeeze()
|
||||
limit = co2_cap.loc[investment_year]
|
||||
|
@ -55,6 +55,9 @@ def _add_land_use_constraint(n):
|
||||
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
||||
|
||||
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
||||
extendable_i = (n.generators.carrier == carrier) & n.generators.p_nom_extendable
|
||||
n.generators.loc[extendable_i, "p_nom_min"] = 0
|
||||
|
||||
ext_i = (n.generators.carrier == carrier) & ~n.generators.p_nom_extendable
|
||||
existing = (
|
||||
n.generators.loc[ext_i, "p_nom"]
|
||||
@ -71,7 +74,7 @@ def _add_land_use_constraint(n):
|
||||
if len(existing_large):
|
||||
logger.warning(
|
||||
f"Existing capacities larger than technical potential for {existing_large},\
|
||||
adjust technical potential to existing capacities"
|
||||
adjust technical potential to existing capacities"
|
||||
)
|
||||
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
|
||||
existing_large, "p_nom_min"
|
||||
|
Loading…
Reference in New Issue
Block a user