Merge branch 'master' into fix_biomass_transport

This commit is contained in:
Fabian Neumann 2024-05-20 22:24:59 +02:00 committed by GitHub
commit 3f01938eee
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
97 changed files with 2731 additions and 2569 deletions

View File

@ -19,7 +19,7 @@ on:
- cron: "0 5 * * TUE"
env:
DATA_CACHE_NUMBER: 1
DATA_CACHE_NUMBER: 2
jobs:
build:
@ -31,7 +31,7 @@ jobs:
os:
- ubuntu-latest
- macos-latest
# - windows-latest
- windows-latest
inhouse:
- stable
- master

16
.gitignore vendored
View File

@ -2,6 +2,8 @@
#
# SPDX-License-Identifier: CC0-1.0
master
.snakemake*
.ipynb_checkpoints
__pycache__
@ -37,18 +39,16 @@ dconf
/data/links_p_nom.csv
/data/*totals.csv
/data/biomass*
/data/bundle-sector/emobility/
/data/bundle-sector/eea*
/data/bundle-sector/jrc*
/data/bundle/emobility/
/data/bundle/eea*
/data/bundle/jrc*
/data/heating/
/data/bundle-sector/eurostat*
/data/bundle/eurostat*
/data/odyssee/
/data/transport_data.csv
/data/bundle-sector/switzerland*
/data/.nfs*
/data/bundle-sector/Industrial_Database.csv
/data/retro/tabula-calculator-calcsetbuilding.csv
/data/bundle-sector/nuts*
/data/retro/*
/data/bundle/nuts*
data/gas_network/scigrid-gas/
data/costs_*.csv

View File

@ -51,7 +51,7 @@ repos:
# Formatting with "black" coding style
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 24.4.0
rev: 24.4.2
hooks:
# Format Python files
- id: black
@ -74,7 +74,7 @@ repos:
# Format Snakemake rule / workflow files
- repo: https://github.com/snakemake/snakefmt
rev: v0.10.1
rev: v0.10.2
hooks:
- id: snakefmt

View File

@ -30,7 +30,3 @@ License: CC0-1.0
Files: borg-it
Copyright: 2017-2024 The PyPSA-Eur Authors
License: CC0-1.0
Files: graphics/*
Copyright: 2017-2024 The PyPSA-Eur Authors
License: CC-BY-4.0

View File

@ -80,7 +80,7 @@ all greenhouse gas emitters except waste management and land use.
This diagram gives an overview of the sectors and the links between
them:
![sector diagram](graphics/multisector_figure.png)
![sector diagram](doc/img/multisector_figure.png)
Each of these sectors is built up on the transmission network nodes
from [PyPSA-Eur](https://github.com/PyPSA/pypsa-eur):

View File

@ -8,7 +8,7 @@ from os.path import normpath, exists
from shutil import copyfile, move, rmtree
from snakemake.utils import min_version
min_version("8.5")
min_version("8.11")
from scripts._helpers import path_provider, copy_default_files, get_scenarios, get_rdir
@ -24,9 +24,11 @@ run = config["run"]
scenarios = get_scenarios(run)
RDIR = get_rdir(run)
logs = path_provider("logs/", RDIR, run["shared_resources"])
benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"])
resources = path_provider("resources/", RDIR, run["shared_resources"])
shared_resources = run["shared_resources"]["policy"]
exclude_from_shared = run["shared_resources"]["exclude"]
logs = path_provider("logs/", RDIR, shared_resources, exclude_from_shared)
benchmarks = path_provider("benchmarks/", RDIR, shared_resources, exclude_from_shared)
resources = path_provider("resources/", RDIR, shared_resources, exclude_from_shared)
CDIR = "" if run["shared_cutouts"] else RDIR
RESULTS = "results/" + RDIR

View File

@ -26,7 +26,9 @@ run:
enable: false
file: config/scenarios.yaml
disable_progressbar: false
shared_resources: false
shared_resources:
policy: false
exclude: []
shared_cutouts: true
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight
@ -38,17 +40,15 @@ scenario:
simpl:
- ''
ll:
- v1.5
- vopt
clusters:
- 37
- 128
- 256
- 512
- 1024
opts:
- ''
sector_opts:
- Co2L0-3H-T-H-B-I-A-dist1
- ''
planning_horizons:
# - 2020
# - 2030
@ -69,13 +69,9 @@ enable:
retrieve: auto
prepare_links_p_nom: false
retrieve_databundle: true
retrieve_sector_databundle: true
retrieve_cost_data: true
build_cutout: false
retrieve_irena: false
retrieve_cutout: true
build_natura_raster: false
retrieve_natura_raster: true
custom_busmap: false
drop_leap_day: true
@ -98,7 +94,6 @@ electricity:
co2limit_enable: false
co2limit: 7.75e+7
co2base: 1.487e+9
agg_p_nom_limits: data/agg_p_nom_minmax.csv
operational_reserve:
activate: false
@ -111,7 +106,7 @@ electricity:
H2: 168
extendable_carriers:
Generator: [solar, onwind, offwind-ac, offwind-dc, OCGT]
Generator: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float, OCGT, CCGT]
StorageUnit: [] # battery, H2
Store: [battery, H2]
Link: [] # H2 pipeline
@ -121,7 +116,7 @@ electricity:
everywhere_powerplants: [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass]
conventional_carriers: [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass]
renewable_carriers: [solar, onwind, offwind-ac, offwind-dc, hydro]
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float, hydro]
estimate_renewable_capacities:
enable: true
@ -129,7 +124,7 @@ electricity:
year: 2020
expansion_limit: false
technology_mapping:
Offshore: [offwind-ac, offwind-dc]
Offshore: [offwind-ac, offwind-dc, offwind-float]
Onshore: [onwind]
PV: [solar]
@ -197,7 +192,7 @@ renewable:
luisa: false # [0, 5230]
natura: true
ship_threshold: 400
max_depth: 50
max_depth: 60
max_shore_distance: 30000
excluder_resolution: 200
clip_p_max_pu: 1.e-2
@ -213,10 +208,28 @@ renewable:
luisa: false # [0, 5230]
natura: true
ship_threshold: 400
max_depth: 50
max_depth: 60
min_shore_distance: 30000
excluder_resolution: 200
clip_p_max_pu: 1.e-2
offwind-float:
cutout: europe-2013-era5
resource:
method: wind
turbine: NREL_ReferenceTurbine_5MW_offshore
# ScholzPhd Tab 4.3.1: 10MW/km^2
capacity_per_sqkm: 2
correction_factor: 0.8855
# proxy for wake losses
# from 10.1016/j.energy.2018.08.153
# until done more rigorously in #153
corine: [44, 255]
natura: true
ship_threshold: 400
excluder_resolution: 200
min_depth: 60
max_depth: 1000
clip_p_max_pu: 1.e-2
solar:
cutout: europe-2013-sarah
resource:
@ -232,6 +245,21 @@ renewable:
natura: true
excluder_resolution: 100
clip_p_max_pu: 1.e-2
solar-hsat:
cutout: europe-2013-sarah
resource:
method: pv
panel: CSi
orientation:
slope: 35.
azimuth: 180.
tracking: horizontal
capacity_per_sqkm: 4.43 # 15% higher land usage acc. to NREL
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
luisa: false # [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242, 1310, 1320, 1330, 1410, 1421, 1422, 2110, 2120, 2130, 2210, 2220, 2230, 2310, 2410, 2420, 3210, 3320, 3330]
natura: true
excluder_resolution: 100
clip_p_max_pu: 1.e-2
hydro:
cutout: europe-2013-era5
carriers: [ror, PHS, hydro]
@ -264,7 +292,7 @@ lines:
max_extension: 20000 #MW
length_factor: 1.25
reconnect_crimea: true
under_construction: 'zero' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity
under_construction: 'keep' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity
dynamic_line_rating:
activate: false
cutout: europe-2013-era5
@ -310,6 +338,8 @@ pypsa_eur:
- onwind
- offwind-ac
- offwind-dc
- offwind-float
- solar-hsat
- solar
- ror
- nuclear
@ -402,7 +432,6 @@ sector:
bev_availability: 0.5
bev_energy: 0.05
bev_charge_efficiency: 0.9
bev_plug_to_wheel_efficiency: 0.2
bev_charge_rate: 0.011
bev_avail_max: 0.95
bev_avail_mean: 0.8
@ -431,8 +460,9 @@ sector:
2040: 0.3
2045: 0.15
2050: 0
transport_fuel_cell_efficiency: 0.5
transport_internal_combustion_efficiency: 0.3
transport_electric_efficiency: 53.19 # 1 MWh_el = 53.19*100 km
transport_fuel_cell_efficiency: 30.003 # 1 MWh_H2 = 30.003*100 km
transport_ice_efficiency: 16.0712 # 1 MWh_oil = 16.0712 * 100 km
agriculture_machinery_electric_share: 0
agriculture_machinery_oil_share: 1
agriculture_machinery_fuel_efficiency: 0.7
@ -538,7 +568,7 @@ sector:
- nearshore # within 50 km of sea
# - offshore
ammonia: false
min_part_load_fischer_tropsch: 0.7
min_part_load_fischer_tropsch: 0.5
min_part_load_methanolisation: 0.3
min_part_load_methanation: 0.3
use_fischer_tropsch_waste_heat: true
@ -561,6 +591,8 @@ sector:
gas pipeline:
efficiency_per_1000km: 1 #0.977
compression_per_1000km: 0.01
electricity distribution grid:
efficiency_static: 0.97
H2_network: true
gas_network: false
H2_retrofit: false
@ -654,6 +686,9 @@ industry:
2040: 0.12
2045: 0.16
2050: 0.20
HVC_environment_sequestration_fraction: 0.
waste_to_energy: false
waste_to_energy_cc: false
sector_ratios_fraction_future:
2020: 0.0
2025: 0.1
@ -672,6 +707,7 @@ industry:
methanol_production_today: 1.5
MWh_elec_per_tMeOH: 0.167
MWh_CH4_per_tMeOH: 10.25
MWh_MeOH_per_tMeOH: 5.528
hotmaps_locate_missing: false
reference_year: 2015
@ -679,8 +715,7 @@ industry:
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#costs
costs:
year: 2030
version: v0.8.1
rooftop_share: 0.14 # based on the potentials, assuming (0.1 kW/m2 and 10 m2/person)
version: v0.9.0
social_discountrate: 0.02
fill_values:
FOM: 0
@ -752,11 +787,28 @@ solving:
# io_api: "direct" # Increases performance but only supported for the highs and gurobi solvers
# options that go into the optimize function
track_iterations: false
min_iterations: 4
max_iterations: 6
min_iterations: 2
max_iterations: 3
transmission_losses: 2
linearized_unit_commitment: true
horizon: 365
post_discretization:
enable: false
line_unit_size: 1700
line_threshold: 0.3
link_unit_size:
DC: 2000
H2 pipeline: 1200
gas pipeline: 1500
link_threshold:
DC: 0.3
H2 pipeline: 0.3
gas pipeline: 0.3
agg_p_nom_limits:
agg_offwind: false
include_existing: false
file: data/agg_p_nom_minmax.csv
constraints:
CCL: false
@ -855,6 +907,7 @@ plotting:
CCGT: "Combined-Cycle Gas"
offwind-ac: "Offshore Wind (AC)"
offwind-dc: "Offshore Wind (DC)"
offwind-float: "Offshore Wind (Floating)"
onwind: "Onshore Wind"
solar: "Solar"
PHS: "Pumped Hydro Storage"
@ -879,6 +932,9 @@ plotting:
offwind-dc: "#74c6f2"
offshore wind (DC): "#74c6f2"
offshore wind dc: "#74c6f2"
offwind-float: "#b5e2fa"
offshore wind (Float): "#b5e2fa"
offshore wind float: "#b5e2fa"
# water
hydro: '#298c81'
hydro reservoir: '#298c81'
@ -890,6 +946,7 @@ plotting:
# solar
solar: "#f9d002"
solar PV: "#f9d002"
solar-hsat: "#fdb915"
solar thermal: '#ffbf2b'
residential rural solar thermal: '#f1c069'
services rural solar thermal: '#eabf61'
@ -991,6 +1048,7 @@ plotting:
BEV charger: '#baf238'
V2G: '#e5ffa8'
land transport EV: '#baf238'
land transport demand: '#38baf2'
Li ion: '#baf238'
# hot water storage
water tanks: '#e69487'
@ -1095,6 +1153,7 @@ plotting:
methanolisation: '#83d6d5'
methanol: '#468c8b'
shipping methanol: '#468c8b'
industry methanol: '#468c8b'
# co2
CC: '#f29dae'
CCS: '#f29dae'
@ -1134,3 +1193,6 @@ plotting:
DC-DC: "#8a1caf"
DC link: "#8a1caf"
load: "#dd2e23"
waste CHP: '#e3d37d'
waste CHP CC: '#e3d3ff'
HVC to air: 'k'

View File

@ -5,7 +5,8 @@
run:
name: "entsoe-all"
disable_progressbar: true
shared_resources: false
shared_resources:
policy: false
shared_cutouts: true
scenario:
@ -38,6 +39,5 @@ lines:
enable:
retrieve: true
retrieve_databundle: true
retrieve_sector_databundle: false
retrieve_cost_data: true
retrieve_cutout: true

View File

@ -8,14 +8,15 @@ tutorial: true
run:
name: "test-elec" # use this to keep track of runs with different settings
disable_progressbar: true
shared_resources: "test"
shared_resources:
policy: "test"
shared_cutouts: true
scenario:
clusters:
- 5
opts:
- Co2L-24h
- ''
countries: ['BE']
@ -24,6 +25,7 @@ snapshots:
end: "2013-03-08"
electricity:
co2limit_enable: true
co2limit: 100.e+6
extendable_carriers:
@ -32,7 +34,7 @@ electricity:
Store: [H2]
Link: [H2 pipeline]
renewable_carriers: [solar, onwind, offwind-ac, offwind-dc]
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
atlite:
@ -53,12 +55,20 @@ renewable:
offwind-dc:
cutout: be-03-2013-era5
max_depth: false
offwind-float:
cutout: be-03-2013-era5
max_depth: false
min_depth: false
solar:
cutout: be-03-2013-era5
solar-hsat:
cutout: be-03-2013-era5
clustering:
exclude_carriers: ["OCGT", "offwind-ac", "coal"]
temporal:
resolution_elec: 24h
lines:
dynamic_line_rating:

View File

@ -7,7 +7,8 @@ tutorial: true
run:
name: "test-sector-myopic"
disable_progressbar: true
shared_resources: "test"
shared_resources:
policy: "test"
shared_cutouts: true
foresight: myopic
@ -18,7 +19,7 @@ scenario:
clusters:
- 5
sector_opts:
- 24h-T-H-B-I-A-dist1
- ''
planning_horizons:
- 2030
- 2040
@ -34,7 +35,6 @@ sector:
central_heat_vent: true
electricity:
co2limit: 100.e+6
extendable_carriers:
Generator: [OCGT]
@ -42,7 +42,7 @@ electricity:
Store: [H2]
Link: [H2 pipeline]
renewable_carriers: [solar, onwind, offwind-ac, offwind-dc]
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
atlite:
default_cutout: be-03-2013-era5
@ -62,8 +62,18 @@ renewable:
offwind-dc:
cutout: be-03-2013-era5
max_depth: false
offwind-float:
cutout: be-03-2013-era5
max_depth: false
min_depth: false
solar:
cutout: be-03-2013-era5
solar-hsat:
cutout: be-03-2013-era5
clustering:
temporal:
resolution_sector: 24h
industry:
St_primary_fraction:

View File

@ -7,7 +7,8 @@ tutorial: true
run:
name: "test-sector-overnight"
disable_progressbar: true
shared_resources: "test"
shared_resources:
policy: "test"
shared_cutouts: true
@ -17,7 +18,7 @@ scenario:
clusters:
- 5
sector_opts:
- CO2L0-24h-T-H-B-I-A-dist1
- ''
planning_horizons:
- 2030
@ -28,7 +29,6 @@ snapshots:
end: "2013-03-08"
electricity:
co2limit: 100.e+6
extendable_carriers:
Generator: [OCGT]
@ -36,7 +36,7 @@ electricity:
Store: [H2]
Link: [H2 pipeline]
renewable_carriers: [solar, onwind, offwind-ac, offwind-dc]
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
atlite:
default_cutout: be-03-2013-era5
@ -56,13 +56,28 @@ renewable:
offwind-dc:
cutout: be-03-2013-era5
max_depth: false
offwind-float:
cutout: be-03-2013-era5
max_depth: false
min_depth: false
solar:
cutout: be-03-2013-era5
solar-hsat:
cutout: be-03-2013-era5
clustering:
temporal:
resolution_sector: 24h
sector:
gas_network: true
H2_retrofit: true
industry:
HVC_environment_sequestration_fraction: 0.5
waste_to_energy: true
waste_to_energy_cc: true
solving:
solver:
name: glpk

View File

@ -7,7 +7,8 @@ tutorial: true
run:
name: "test-sector-perfect"
disable_progressbar: true
shared_resources: "test"
shared_resources:
policy: "test"
shared_cutouts: true
foresight: perfect
@ -18,7 +19,7 @@ scenario:
clusters:
- 5
sector_opts:
- 8760h-T-H-B-I-A-dist1
- ''
planning_horizons:
- 2030
- 2040
@ -31,7 +32,6 @@ snapshots:
end: "2013-03-08"
electricity:
co2limit: 100.e+6
extendable_carriers:
Generator: [OCGT]
@ -39,7 +39,7 @@ electricity:
Store: [H2]
Link: [H2 pipeline]
renewable_carriers: [solar, onwind, offwind-ac, offwind-dc]
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
sector:
min_part_load_fischer_tropsch: 0
@ -63,8 +63,18 @@ renewable:
offwind-dc:
cutout: be-03-2013-era5
max_depth: false
offwind-float:
cutout: be-03-2013-era5
max_depth: false
min_depth: false
solar:
cutout: be-03-2013-era5
solar-hsat:
cutout: be-03-2013-era5
clustering:
temporal:
resolution_sector: 8760h
industry:
St_primary_fraction:

View File

@ -12,14 +12,15 @@ run:
enable: true
file: "config/test/scenarios.yaml"
disable_progressbar: true
shared_resources: base
shared_resources:
policy: base
shared_cutouts: true
scenario:
clusters:
- 5
opts:
- Co2L-24H
- ''
countries: ['BE']

View File

@ -1,31 +1,33 @@
country,carrier,min,max
DE,onwind,0.1,
DE,offwind-ac,0.1,
DE,offwind-dc,0.1,
DE,solar,0.2,
LU,onwind,,
LU,solar,,
NL,onwind,,
NL,offwind-ac,,
NL,offwind-dc,,
NL,solar,,
GB,onwind,,
GB,offwind-ac,,
GB,offwind-dc,,
GB,solar,,
IE,onwind,,
IE,offwind-ac,,
IE,offwind-dc,,
IE,solar,,
FR,onwind,,
FR,offwind-ac,,
FR,offwind-dc,,
FR,solar,,
DK,onwind,,
DK,offwind-ac,,
DK,offwind-dc,,
DK,solar,,
BE,onwind,,
BE,offwind-ac,,
BE,offwind-dc,,
BE,solar,,
,,2030,2030,2040,2040,2050,2050
,,min,max,min,max,min,max
country,carrier,,,,,,
DE,onwind,0.1,,0.1,,0.1,
DE,offwind-ac,0.1,,0.1,,0.1,
DE,offwind-dc,0.1,,0.1,,0.1,
DE,solar,0.2,,0.2,,0.2,
LU,onwind,,,,,,
LU,solar,,,,,,
NL,onwind,,,,,,
NL,offwind-ac,,,,,,
NL,offwind-dc,,,,,,
NL,solar,,,,,,
GB,onwind,,,,,,
GB,offwind-ac,,,,,,
GB,offwind-dc,,,,,,
GB,solar,,,,,,
IE,onwind,,,,,,
IE,offwind-ac,,,,,,
IE,offwind-dc,,,,,,
IE,solar,,,,,,
FR,onwind,,,,,,
FR,offwind-ac,,,,,,
FR,offwind-dc,,,,,,
FR,solar,,,,,,
DK,onwind,,,,,,
DK,offwind-ac,,,,,,
DK,offwind-dc,,,,,,
DK,solar,,,,,,
BE,onwind,,,,,,
BE,offwind-ac,,,,,,
BE,offwind-dc,,,,,,
BE,solar,,,,,,

1 country carrier min 2030 max 2030 2040 2040 2050 2050
2 DE onwind 0.1 min max min max min max
3 DE country offwind-ac carrier 0.1
4 DE DE offwind-dc onwind 0.1 0.1 0.1 0.1
5 DE DE solar offwind-ac 0.2 0.1 0.1 0.1
6 LU DE onwind offwind-dc 0.1 0.1 0.1
7 LU DE solar solar 0.2 0.2 0.2
8 NL LU onwind onwind
9 NL LU offwind-ac solar
10 NL NL offwind-dc onwind
11 NL NL solar offwind-ac
12 GB NL onwind offwind-dc
13 GB NL offwind-ac solar
14 GB GB offwind-dc onwind
15 GB GB solar offwind-ac
16 IE GB onwind offwind-dc
17 IE GB offwind-ac solar
18 IE IE offwind-dc onwind
19 IE IE solar offwind-ac
20 FR IE onwind offwind-dc
21 FR IE offwind-ac solar
22 FR FR offwind-dc onwind
23 FR FR solar offwind-ac
24 DK FR onwind offwind-dc
25 DK FR offwind-ac solar
26 DK DK offwind-dc onwind
27 DK DK solar offwind-ac
28 BE DK onwind offwind-dc
29 BE DK offwind-ac solar
30 BE BE offwind-dc onwind
31 BE BE solar offwind-ac
32 BE offwind-dc
33 BE solar

27
data/ch_cantons.csv Normal file
View File

@ -0,0 +1,27 @@
Canton,HASC,NUTS
Aargau,CH.AG,CH033
Appenzell Inner Rhodes,CH.AI,CH054
Appenzell Outer Rhodes,CH.AR,CH053
Basel-Landschaft,CH.BL,CH032
Basel-Stadt,CH.BS,CH031
Bern,CH.BE,CH021
Fribourg,CH.FR,CH022
Geneva,CH.GE,CH013
Glarus,CH.GL,CH051
Graubünden,CH.GR,CH056
Jura,CH.JU,CH025
Lucerne,CH.LU,CH061
Neuchâtel,CH.NE,CH024
Nidwalden,CH.NW,CH065
Obwalden,CH.OW,CH064
Sankt Gallen,CH.SG,CH055
Schaffhausen,CH.SH,CH052
Schwyz,CH.SZ,CH063
Solothurn,CH.SO,CH023
Thurgau,CH.TG,CH057
Ticino,CH.TI,CH07
Uri,CH.UR,CH062
Valais,CH.VS,CH012
Vaud,CH.VD,CH011
Zug,CH.ZG,CH066
Zurich,CH.ZH,CH04
1 Canton HASC NUTS
2 Aargau CH.AG CH033
3 Appenzell Inner Rhodes CH.AI CH054
4 Appenzell Outer Rhodes CH.AR CH053
5 Basel-Landschaft CH.BL CH032
6 Basel-Stadt CH.BS CH031
7 Bern CH.BE CH021
8 Fribourg CH.FR CH022
9 Geneva CH.GE CH013
10 Glarus CH.GL CH051
11 Graubünden CH.GR CH056
12 Jura CH.JU CH025
13 Lucerne CH.LU CH061
14 Neuchâtel CH.NE CH024
15 Nidwalden CH.NW CH065
16 Obwalden CH.OW CH064
17 Sankt Gallen CH.SG CH055
18 Schaffhausen CH.SH CH052
19 Schwyz CH.SZ CH063
20 Solothurn CH.SO CH023
21 Thurgau CH.TG CH057
22 Ticino CH.TI CH07
23 Uri CH.UR CH062
24 Valais CH.VS CH012
25 Vaud CH.VD CH011
26 Zug CH.ZG CH066
27 Zurich CH.ZH CH04

View File

@ -1,34 +0,0 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,,,,,,,,,,,,,,,,,,,,,,
Austria,,,,,,,,,,,,,,,,,,,,,,,
Belgium,,,,,,,,,,31.5,196.5,196.5,381.0,707.7,707.7,712.0,712.2,877.2,1185.9,1555.5,2261.8,2261.8,2261.8
Bosnia Herzg,,,,,,,,,,,,,,,,,,,,,,,
Bulgaria,,,,,,,,,,,,,,,,,,,,,,,
Croatia,,,,,,,,,,,,,,,,,,,,,,,
Czechia,,,,,,,,,,,,,,,,,,,,,,,
Denmark,49.95,49.95,213.95,423.35,423.35,423.35,423.35,423.35,423.35,660.85,867.85,871.45,921.85,1271.05,1271.05,1271.05,1271.05,1263.8,1700.8,1700.8,1700.8,2305.6,2305.6
Estonia,,,,,,,,,,,,,,,,,,,,,,,
Finland,,,,,,,,,24.0,24.0,26.3,26.3,26.3,26.3,26.3,32.0,32.0,72.7,72.7,73.0,73.0,73.0,73.0
France,,,,,,,,,,,,,,,,,,2.0,2.0,2.0,2.0,2.0,482.0
Germany,,,,,,,,,,35.0,80.0,188.0,268.0,508.0,994.0,3283.0,4132.0,5406.0,6393.0,7555.0,7787.0,7787.0,8129.0
Greece,,,,,,,,,,,,,,,,,,,,,,,
Hungary,,,,,,,,,,,,,,,,,,,,,,,
Ireland,,,,,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2
Italy,,,,,,,,,,,,,,,,,,,,,,,30.0
Latvia,,,,,,,,,,,,,,,,,,,,,,,
Lithuania,,,,,,,,,,,,,,,,,,,,,,,
Luxembourg,,,,,,,,,,,,,,,,,,,,,,,
Montenegro,,,,,,,,,,,,,,,,,,,,,,,
Netherlands,,,,,,,108.0,108.0,228.0,228.0,228.0,228.0,228.0,228.0,228.0,357.0,957.0,957.0,957.0,957.0,2459.5,2459.5,2571.0
North Macedonia,,,,,,,,,,,,,,,,,,,,,,,
Norway,,,,,,,,,,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,6.3,66.3
Poland,,,,,,,,,,,,,,,,,,,,,,,
Portugal,,,,,,,,,,,,1.86,2.0,2.0,2.0,2.0,,,,,25.0,25.0,25.0
Romania,,,,,,,,,,,,,,,,,,,,,,,
Serbia,,,,,,,,,,,,,,,,,,,,,,,
Slovakia,,,,,,,,,,,,,,,,,,,,,,,
Slovenia,,,,,,,,,,,,,,,,,,,,,,,
Spain,,,,,,,,,,,,,,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0
Sweden,13.0,22.0,22.0,22.0,22.0,22.0,22.0,131.0,133.0,163.0,163.0,163.0,163.0,212.0,213.0,213.0,203.0,203.0,203.0,203.0,203.0,193.0,193.0
Switzerland,,,,,,,,,,,,,,,,,,,,,,,
UK,4.0,4.0,4.0,64.0,124.0,214.0,304.0,394.0,596.2,951.0,1341.0,1838.0,2995.0,3696.0,4501.0,5093.0,5293.0,6988.0,8181.0,9888.0,10383.0,11255.0,13928.0
1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania
3 Austria
4 Belgium 31.5 196.5 196.5 381.0 707.7 707.7 712.0 712.2 877.2 1185.9 1555.5 2261.8 2261.8 2261.8
5 Bosnia Herzg
6 Bulgaria
7 Croatia
8 Czechia
9 Denmark 49.95 49.95 213.95 423.35 423.35 423.35 423.35 423.35 423.35 660.85 867.85 871.45 921.85 1271.05 1271.05 1271.05 1271.05 1263.8 1700.8 1700.8 1700.8 2305.6 2305.6
10 Estonia
11 Finland 24.0 24.0 26.3 26.3 26.3 26.3 26.3 32.0 32.0 72.7 72.7 73.0 73.0 73.0 73.0
12 France 2.0 2.0 2.0 2.0 2.0 482.0
13 Germany 35.0 80.0 188.0 268.0 508.0 994.0 3283.0 4132.0 5406.0 6393.0 7555.0 7787.0 7787.0 8129.0
14 Greece
15 Hungary
16 Ireland 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2
17 Italy 30.0
18 Latvia
19 Lithuania
20 Luxembourg
21 Montenegro
22 Netherlands 108.0 108.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 357.0 957.0 957.0 957.0 957.0 2459.5 2459.5 2571.0
23 North Macedonia
24 Norway 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 6.3 66.3
25 Poland
26 Portugal 1.86 2.0 2.0 2.0 2.0 25.0 25.0 25.0
27 Romania
28 Serbia
29 Slovakia
30 Slovenia
31 Spain 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
32 Sweden 13.0 22.0 22.0 22.0 22.0 22.0 22.0 131.0 133.0 163.0 163.0 163.0 163.0 212.0 213.0 213.0 203.0 203.0 203.0 203.0 203.0 193.0 193.0
33 Switzerland
34 UK 4.0 4.0 4.0 64.0 124.0 214.0 304.0 394.0 596.2 951.0 1341.0 1838.0 2995.0 3696.0 4501.0 5093.0 5293.0 6988.0 8181.0 9888.0 10383.0 11255.0 13928.0

View File

@ -1,34 +0,0 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,,,,,,,,,,,,,,,,,,,,,,
Austria,50.0,67.0,109.0,322.0,581.0,825.22,968.27,991.16,991.97,1000.99,1015.83,1105.97,1337.15,1674.54,2110.28,2488.73,2730.0,2886.7,3132.71,3224.12,3225.98,3407.81,3735.81
Belgium,14.0,26.0,31.0,67.0,96.0,167.0,212.0,276.0,324.0,576.5,715.5,872.5,985.9,1061.3,1225.0,1469.3,1621.6,1902.2,2119.0,2308.0,2410.9,2686.6,2989.6
Bosnia Herzg,,,,,,,,,,,,0.3,0.3,0.3,0.3,0.3,0.3,0.3,51.0,87.0,87.0,135.0,135.0
Bulgaria,,,,,1.0,8.0,27.0,30.0,114.0,333.0,488.0,541.0,677.0,683.0,699.0,699.0,699.0,698.39,698.92,703.12,702.8,704.38,704.38
Croatia,,,,,6.0,6.0,17.0,17.0,17.0,70.0,79.0,130.0,180.0,254.0,339.0,418.0,483.0,576.1,586.3,646.3,801.3,986.9,1042.9
Czechia,2.0,,6.4,10.6,16.5,22.0,43.5,113.8,150.0,193.0,213.0,213.0,258.0,262.0,278.0,281.0,282.0,308.21,316.2,339.41,339.42,339.41,339.41
Denmark,2340.07,2447.2,2680.58,2696.57,2700.36,2704.49,2712.35,2700.86,2739.52,2821.24,2933.98,3080.53,3240.09,3547.87,3615.35,3805.92,3974.09,4225.15,4421.86,4409.74,4566.23,4715.24,4782.24
Estonia,,,1.0,3.0,7.0,31.0,31.0,50.0,77.0,104.0,108.0,180.0,266.0,248.0,275.0,300.0,310.0,311.8,310.0,316.0,317.0,315.0,315.0
Finland,38.0,39.0,43.0,52.0,82.0,82.0,86.0,110.0,119.0,123.0,170.7,172.7,230.7,420.7,600.7,973.0,1533.0,1971.3,1968.3,2211.0,2513.0,3184.0,5541.0
France,38.0,66.0,138.0,218.0,358.0,690.0,1412.0,2223.0,3403.0,4582.0,5912.0,6758.02,7607.5,8155.96,9201.42,10298.18,11566.56,13497.35,14898.14,16424.85,17512.0,18737.98,20637.98
Germany,6095.0,8754.0,12001.0,14381.0,16419.0,18248.0,20474.0,22116.0,22794.0,25697.0,26823.0,28524.0,30711.0,32969.0,37620.0,41297.0,45303.0,50174.0,52328.0,53187.0,54414.0,56046.0,58165.0
Greece,226.0,270.0,287.0,371.0,470.0,491.0,749.0,846.0,1022.0,1171.0,1298.0,1640.0,1753.0,1809.0,1978.0,2091.0,2370.0,2624.0,2877.5,3589.0,4119.25,4649.13,4879.13
Hungary,,1.0,1.0,3.0,3.0,17.0,33.0,61.0,134.0,203.0,293.0,331.0,325.0,329.0,329.0,329.0,329.0,329.0,329.0,323.0,323.0,324.0,324.0
Ireland,116.5,122.9,134.8,210.3,311.2,468.1,651.3,715.3,917.1,1226.1,1365.2,1559.4,1679.15,1898.1,2258.05,2425.95,2776.45,3293.95,3648.65,4101.25,4281.5,4313.84,4593.84
Italy,363.0,664.0,780.0,874.0,1127.0,1635.0,1902.0,2702.0,3525.0,4879.0,5794.0,6918.0,8102.0,8542.0,8683.0,9137.0,9384.0,9736.58,10230.25,10679.46,10870.62,11253.73,11749.73
Latvia,2.0,2.0,22.0,26.0,26.0,26.0,26.0,26.0,28.0,29.0,30.0,36.0,59.0,65.89,68.92,68.17,69.91,77.11,78.17,78.07,78.07,77.13,136.13
Lithuania,,,,,1.0,1.0,31.0,47.0,54.0,98.0,133.0,202.0,275.0,279.0,288.0,436.0,509.0,518.0,533.0,534.0,540.0,671.0,814.0
Luxembourg,14.0,13.9,13.9,20.5,34.9,34.9,34.9,34.9,42.92,42.93,43.73,44.53,58.33,58.33,58.34,63.79,119.69,119.69,122.89,135.79,152.74,136.44,165.44
Montenegro,,,,,,,,,,,,,,,,,,72.0,72.0,118.0,118.0,118.0,118.0
Netherlands,447.0,486.0,672.0,905.0,1075.0,1224.0,1453.0,1641.0,1921.0,1994.0,2009.0,2088.0,2205.0,2485.0,2637.0,3033.84,3300.12,3245.0,3436.11,3527.16,4188.38,5309.87,6176.0
North Macedonia,,,,,,,,,,,,,,,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0
Norway,13.0,13.0,97.0,97.0,152.0,265.0,284.0,348.0,395.0,420.7,422.7,509.7,702.7,815.7,856.7,864.7,880.7,1204.7,1707.7,2911.7,4027.7,5042.7,5067.7
Poland,4.0,19.0,32.0,35.0,40.0,121.0,172.0,306.0,526.0,709.0,1108.0,1800.0,2564.0,3429.0,3836.0,4886.0,5747.0,5759.36,5766.08,5837.76,6298.25,6967.34,7987.34
Portugal,83.0,125.0,190.0,268.0,553.0,1064.0,1681.0,2201.0,2857.0,3326.0,3796.0,4254.35,4409.55,4607.95,4854.56,4934.84,5124.1,5124.1,5172.36,5222.75,5097.26,5402.33,5430.33
Romania,,,,,,1.0,1.0,3.0,5.0,15.0,389.0,988.0,1822.0,2773.0,3244.0,3130.0,3025.0,3029.8,3032.26,3037.52,3012.53,3014.96,3014.96
Serbia,,,,,,,,,,,,,0.5,0.5,0.5,10.4,17.0,25.0,227.0,398.0,398.0,398.0,398.0
Slovakia,,,,3.0,3.0,5.0,5.0,5.0,5.0,3.0,3.0,3.0,3.0,5.0,3.0,3.0,3.0,4.0,3.0,4.0,4.0,4.0,4.0
Slovenia,,,,,,,,,,,,,2.0,2.0,3.0,3.0,3.0,3.3,3.3,3.3,3.3,3.33,3.33
Spain,2206.0,3397.0,4891.0,5945.0,8317.0,9918.0,11722.0,14820.0,16555.0,19176.0,20693.0,21529.0,22789.0,22953.0,22920.0,22938.0,22985.0,23119.48,23400.06,25585.08,26814.19,27902.65,29302.84
Sweden,196.0,273.0,335.0,395.0,453.0,500.0,563.0,692.0,956.0,1312.0,1854.0,2601.0,3443.0,3982.0,4875.0,5606.0,6232.0,6408.0,7097.0,8478.0,9773.0,11923.0,14364.0
Switzerland,3.0,5.0,5.0,5.0,9.0,12.0,12.0,12.0,14.0,18.0,42.0,46.0,49.0,60.0,60.0,60.0,75.0,75.0,75.0,75.0,87.0,87.0,87.0
UK,431.0,490.0,531.0,678.0,809.0,1351.0,1651.0,2083.0,2849.8,3468.0,4080.0,4758.0,6035.0,7586.0,8573.0,9212.0,10833.0,12597.0,13425.0,13999.0,14075.0,14492.0,14832.0
1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania
3 Austria 50.0 67.0 109.0 322.0 581.0 825.22 968.27 991.16 991.97 1000.99 1015.83 1105.97 1337.15 1674.54 2110.28 2488.73 2730.0 2886.7 3132.71 3224.12 3225.98 3407.81 3735.81
4 Belgium 14.0 26.0 31.0 67.0 96.0 167.0 212.0 276.0 324.0 576.5 715.5 872.5 985.9 1061.3 1225.0 1469.3 1621.6 1902.2 2119.0 2308.0 2410.9 2686.6 2989.6
5 Bosnia Herzg 0.3 0.3 0.3 0.3 0.3 0.3 0.3 51.0 87.0 87.0 135.0 135.0
6 Bulgaria 1.0 8.0 27.0 30.0 114.0 333.0 488.0 541.0 677.0 683.0 699.0 699.0 699.0 698.39 698.92 703.12 702.8 704.38 704.38
7 Croatia 6.0 6.0 17.0 17.0 17.0 70.0 79.0 130.0 180.0 254.0 339.0 418.0 483.0 576.1 586.3 646.3 801.3 986.9 1042.9
8 Czechia 2.0 6.4 10.6 16.5 22.0 43.5 113.8 150.0 193.0 213.0 213.0 258.0 262.0 278.0 281.0 282.0 308.21 316.2 339.41 339.42 339.41 339.41
9 Denmark 2340.07 2447.2 2680.58 2696.57 2700.36 2704.49 2712.35 2700.86 2739.52 2821.24 2933.98 3080.53 3240.09 3547.87 3615.35 3805.92 3974.09 4225.15 4421.86 4409.74 4566.23 4715.24 4782.24
10 Estonia 1.0 3.0 7.0 31.0 31.0 50.0 77.0 104.0 108.0 180.0 266.0 248.0 275.0 300.0 310.0 311.8 310.0 316.0 317.0 315.0 315.0
11 Finland 38.0 39.0 43.0 52.0 82.0 82.0 86.0 110.0 119.0 123.0 170.7 172.7 230.7 420.7 600.7 973.0 1533.0 1971.3 1968.3 2211.0 2513.0 3184.0 5541.0
12 France 38.0 66.0 138.0 218.0 358.0 690.0 1412.0 2223.0 3403.0 4582.0 5912.0 6758.02 7607.5 8155.96 9201.42 10298.18 11566.56 13497.35 14898.14 16424.85 17512.0 18737.98 20637.98
13 Germany 6095.0 8754.0 12001.0 14381.0 16419.0 18248.0 20474.0 22116.0 22794.0 25697.0 26823.0 28524.0 30711.0 32969.0 37620.0 41297.0 45303.0 50174.0 52328.0 53187.0 54414.0 56046.0 58165.0
14 Greece 226.0 270.0 287.0 371.0 470.0 491.0 749.0 846.0 1022.0 1171.0 1298.0 1640.0 1753.0 1809.0 1978.0 2091.0 2370.0 2624.0 2877.5 3589.0 4119.25 4649.13 4879.13
15 Hungary 1.0 1.0 3.0 3.0 17.0 33.0 61.0 134.0 203.0 293.0 331.0 325.0 329.0 329.0 329.0 329.0 329.0 329.0 323.0 323.0 324.0 324.0
16 Ireland 116.5 122.9 134.8 210.3 311.2 468.1 651.3 715.3 917.1 1226.1 1365.2 1559.4 1679.15 1898.1 2258.05 2425.95 2776.45 3293.95 3648.65 4101.25 4281.5 4313.84 4593.84
17 Italy 363.0 664.0 780.0 874.0 1127.0 1635.0 1902.0 2702.0 3525.0 4879.0 5794.0 6918.0 8102.0 8542.0 8683.0 9137.0 9384.0 9736.58 10230.25 10679.46 10870.62 11253.73 11749.73
18 Latvia 2.0 2.0 22.0 26.0 26.0 26.0 26.0 26.0 28.0 29.0 30.0 36.0 59.0 65.89 68.92 68.17 69.91 77.11 78.17 78.07 78.07 77.13 136.13
19 Lithuania 1.0 1.0 31.0 47.0 54.0 98.0 133.0 202.0 275.0 279.0 288.0 436.0 509.0 518.0 533.0 534.0 540.0 671.0 814.0
20 Luxembourg 14.0 13.9 13.9 20.5 34.9 34.9 34.9 34.9 42.92 42.93 43.73 44.53 58.33 58.33 58.34 63.79 119.69 119.69 122.89 135.79 152.74 136.44 165.44
21 Montenegro 72.0 72.0 118.0 118.0 118.0 118.0
22 Netherlands 447.0 486.0 672.0 905.0 1075.0 1224.0 1453.0 1641.0 1921.0 1994.0 2009.0 2088.0 2205.0 2485.0 2637.0 3033.84 3300.12 3245.0 3436.11 3527.16 4188.38 5309.87 6176.0
23 North Macedonia 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0
24 Norway 13.0 13.0 97.0 97.0 152.0 265.0 284.0 348.0 395.0 420.7 422.7 509.7 702.7 815.7 856.7 864.7 880.7 1204.7 1707.7 2911.7 4027.7 5042.7 5067.7
25 Poland 4.0 19.0 32.0 35.0 40.0 121.0 172.0 306.0 526.0 709.0 1108.0 1800.0 2564.0 3429.0 3836.0 4886.0 5747.0 5759.36 5766.08 5837.76 6298.25 6967.34 7987.34
26 Portugal 83.0 125.0 190.0 268.0 553.0 1064.0 1681.0 2201.0 2857.0 3326.0 3796.0 4254.35 4409.55 4607.95 4854.56 4934.84 5124.1 5124.1 5172.36 5222.75 5097.26 5402.33 5430.33
27 Romania 1.0 1.0 3.0 5.0 15.0 389.0 988.0 1822.0 2773.0 3244.0 3130.0 3025.0 3029.8 3032.26 3037.52 3012.53 3014.96 3014.96
28 Serbia 0.5 0.5 0.5 10.4 17.0 25.0 227.0 398.0 398.0 398.0 398.0
29 Slovakia 3.0 3.0 5.0 5.0 5.0 5.0 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 4.0 3.0 4.0 4.0 4.0 4.0
30 Slovenia 2.0 2.0 3.0 3.0 3.0 3.3 3.3 3.3 3.3 3.33 3.33
31 Spain 2206.0 3397.0 4891.0 5945.0 8317.0 9918.0 11722.0 14820.0 16555.0 19176.0 20693.0 21529.0 22789.0 22953.0 22920.0 22938.0 22985.0 23119.48 23400.06 25585.08 26814.19 27902.65 29302.84
32 Sweden 196.0 273.0 335.0 395.0 453.0 500.0 563.0 692.0 956.0 1312.0 1854.0 2601.0 3443.0 3982.0 4875.0 5606.0 6232.0 6408.0 7097.0 8478.0 9773.0 11923.0 14364.0
33 Switzerland 3.0 5.0 5.0 5.0 9.0 12.0 12.0 12.0 14.0 18.0 42.0 46.0 49.0 60.0 60.0 60.0 75.0 75.0 75.0 75.0 87.0 87.0 87.0
34 UK 431.0 490.0 531.0 678.0 809.0 1351.0 1651.0 2083.0 2849.8 3468.0 4080.0 4758.0 6035.0 7586.0 8573.0 9212.0 10833.0 12597.0 13425.0 13999.0 14075.0 14492.0 14832.0

View File

@ -1,34 +0,0 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.4,0.56,0.68,0.76,0.87,1.05,1.0,1.0,1.0,14.0,21.0,23.0,28.6
Austria,5.0,7.0,9.0,23.0,27.0,18.49,19.61,21.42,27.0,45.56,85.27,169.88,333.09,620.78,779.76,931.56,1089.53,1262.01,1447.94,1694.4,2034.74,2773.91,3538.91
Belgium,,,1.0,1.0,1.0,2.0,2.0,20.0,62.0,386.0,1006.6,1978.6,2646.6,2901.6,3015.0,3131.6,3328.8,3620.6,4000.0,4636.6,5572.8,6012.4,6898.4
Bosnia Herzg,,,,0.1,0.2,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.35,1.34,7.17,8.17,14.12,16.0,18.15,22.35,34.89,56.51,107.47
Bulgaria,,,,,,,,0.03,0.1,2.0,25.0,154.0,921.99,1038.54,1028.92,1027.89,1029.89,1030.7,1033.06,1044.39,1100.21,1274.71,1948.36
Croatia,,,,,,,,,,0.3,0.3,0.3,4.0,19.0,33.0,47.8,55.8,60.0,67.7,84.8,108.5,138.3,182.3
Czechia,0.1,0.1,0.2,0.3,0.4,0.59,0.84,3.96,39.5,464.6,1727.0,1913.0,2022.0,2063.5,2067.4,2074.9,2067.9,2075.44,2081.05,2110.67,2171.96,2246.09,2627.09
Denmark,1.0,1.0,2.0,2.0,2.0,3.0,3.0,3.0,3.0,5.0,7.0,17.0,402.0,571.0,607.0,782.11,850.95,906.35,998.0,1080.0,1304.29,1704.04,3122.04
Estonia,,,,,,,,,,0.1,0.1,0.2,0.38,1.5,3.34,6.5,10.0,15.0,31.9,120.6,207.67,394.77,534.77
Finland,2.0,3.0,3.0,3.0,4.0,4.0,5.0,5.0,6.0,6.0,7.0,7.0,8.0,9.0,11.0,17.0,39.0,82.0,140.0,222.0,318.0,425.0,590.6
France,7.0,7.0,8.0,9.0,11.0,13.0,15.0,26.0,80.0,277.0,1044.0,3003.57,4358.75,5277.29,6034.42,7137.52,7702.08,8610.44,9638.88,10738.39,11812.2,14436.97,17036.97
Germany,114.0,195.0,260.0,435.0,1105.0,2056.0,2899.0,4170.0,6120.0,10564.0,18004.0,25914.0,34075.0,36708.0,37898.0,39222.0,40677.0,42291.0,45156.0,48912.0,53669.0,59371.0,66662.0
Greece,,1.0,1.0,1.0,1.0,1.0,5.0,9.0,12.0,46.0,202.0,612.0,1536.0,2579.0,2596.0,2604.0,2604.0,2605.53,2651.57,2833.79,3287.72,4277.42,5557.42
Hungary,,,,,,,,0.4,1.0,1.0,2.0,4.0,12.0,35.0,89.0,172.0,235.0,344.0,728.0,1400.0,2131.0,2968.0,2988.0
Ireland,,,,,,,,,,,,,,,,,,,,,,,
Italy,19.0,20.0,22.0,26.0,31.0,34.0,45.0,110.0,483.0,1264.0,3592.0,13131.0,16785.0,18185.0,18594.0,18901.0,19283.0,19682.29,20107.59,20865.28,21650.04,22594.26,25076.56
Latvia,,,,,,,,,,,,,,,,,0.69,0.69,1.96,3.3,5.1,7.16,56.16
Lithuania,,,,,,,,,0.1,0.1,0.1,0.3,7.0,68.0,69.0,69.0,70.0,70.08,72.0,73.0,80.0,84.0,397.0
Luxembourg,,0.16,1.59,14.17,23.56,23.58,23.7,23.93,24.56,26.36,29.45,40.67,74.65,95.02,109.93,116.27,121.9,128.1,130.62,159.74,186.64,277.16,319.16
Montenegro,,,,,,,,,,,,,,,,,,,,,2.57,2.57,22.2
Netherlands,13.0,21.0,26.0,46.0,50.0,51.0,53.0,54.0,59.0,69.0,90.0,149.0,287.0,650.0,1007.0,1526.26,2135.02,2910.89,4608.0,7226.0,11108.43,14910.69,18848.69
North Macedonia,,,,,,,,,,,,2.0,4.0,7.0,15.0,17.0,16.7,16.7,16.7,16.71,84.93,84.93,84.93
Norway,6.0,6.0,6.0,7.0,7.0,7.0,8.0,8.0,8.3,8.7,9.1,9.5,10.0,11.0,13.0,15.0,26.7,44.9,53.11,102.53,141.53,186.53,302.53
Poland,,,,,,,,,,,,1.11,1.3,2.39,27.15,107.78,187.25,287.09,561.98,1539.26,3954.96,7415.52,11166.52
Portugal,1.0,1.0,1.0,2.0,2.0,2.0,3.0,24.0,59.0,115.0,134.0,169.6,235.6,293.6,412.6,441.75,493.05,539.42,617.85,832.74,1010.07,1474.78,2364.78
Romania,,,,,,,,,0.1,0.1,0.1,1.0,41.0,761.0,1293.0,1326.0,1372.0,1374.13,1385.82,1397.71,1382.54,1393.92,1413.92
Serbia,,,,,,0.1,0.2,0.4,0.9,1.2,1.3,1.5,3.1,4.7,6.0,9.0,11.0,10.0,11.0,11.0,11.5,11.94,11.94
Slovakia,,,,,,,,,,,19.0,496.0,513.0,533.0,533.0,533.0,533.0,528.0,472.0,590.0,535.0,537.0,537.0
Slovenia,1.0,1.0,,,,0.05,0.19,0.59,1.0,4.0,12.0,57.0,142.0,187.0,223.0,238.0,233.0,246.8,246.8,277.88,369.78,461.16,632.16
Spain,1.0,3.0,6.0,10.0,19.0,37.0,113.0,476.0,3365.0,3403.0,3851.0,4260.0,4545.0,4665.0,4672.0,4677.0,4687.0,4696.0,4730.7,8772.02,10100.42,13678.4,18176.73
Sweden,3.0,3.0,3.0,4.0,4.0,4.0,5.0,6.0,8.0,9.0,11.0,12.0,24.0,43.0,60.0,104.0,153.0,231.0,411.0,698.0,1090.0,1587.0,2587.0
Switzerland,16.0,18.0,20.0,22.0,24.0,28.0,30.0,37.0,49.0,79.0,125.0,223.0,437.0,756.0,1061.0,1394.0,1664.0,1906.0,2173.0,2498.0,2973.0,3655.0,4339.92
UK,2.0,3.0,4.0,6.0,8.0,11.0,14.0,18.0,23.0,27.0,95.0,1000.0,1753.0,2937.0,5528.0,9601.0,11914.0,12760.0,13059.0,13345.0,13579.0,13965.0,14660.0
1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.56 0.68 0.76 0.87 1.05 1.0 1.0 1.0 14.0 21.0 23.0 28.6
3 Austria 5.0 7.0 9.0 23.0 27.0 18.49 19.61 21.42 27.0 45.56 85.27 169.88 333.09 620.78 779.76 931.56 1089.53 1262.01 1447.94 1694.4 2034.74 2773.91 3538.91
4 Belgium 1.0 1.0 1.0 2.0 2.0 20.0 62.0 386.0 1006.6 1978.6 2646.6 2901.6 3015.0 3131.6 3328.8 3620.6 4000.0 4636.6 5572.8 6012.4 6898.4
5 Bosnia Herzg 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 1.34 7.17 8.17 14.12 16.0 18.15 22.35 34.89 56.51 107.47
6 Bulgaria 0.03 0.1 2.0 25.0 154.0 921.99 1038.54 1028.92 1027.89 1029.89 1030.7 1033.06 1044.39 1100.21 1274.71 1948.36
7 Croatia 0.3 0.3 0.3 4.0 19.0 33.0 47.8 55.8 60.0 67.7 84.8 108.5 138.3 182.3
8 Czechia 0.1 0.1 0.2 0.3 0.4 0.59 0.84 3.96 39.5 464.6 1727.0 1913.0 2022.0 2063.5 2067.4 2074.9 2067.9 2075.44 2081.05 2110.67 2171.96 2246.09 2627.09
9 Denmark 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 5.0 7.0 17.0 402.0 571.0 607.0 782.11 850.95 906.35 998.0 1080.0 1304.29 1704.04 3122.04
10 Estonia 0.1 0.1 0.2 0.38 1.5 3.34 6.5 10.0 15.0 31.9 120.6 207.67 394.77 534.77
11 Finland 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 9.0 11.0 17.0 39.0 82.0 140.0 222.0 318.0 425.0 590.6
12 France 7.0 7.0 8.0 9.0 11.0 13.0 15.0 26.0 80.0 277.0 1044.0 3003.57 4358.75 5277.29 6034.42 7137.52 7702.08 8610.44 9638.88 10738.39 11812.2 14436.97 17036.97
13 Germany 114.0 195.0 260.0 435.0 1105.0 2056.0 2899.0 4170.0 6120.0 10564.0 18004.0 25914.0 34075.0 36708.0 37898.0 39222.0 40677.0 42291.0 45156.0 48912.0 53669.0 59371.0 66662.0
14 Greece 1.0 1.0 1.0 1.0 1.0 5.0 9.0 12.0 46.0 202.0 612.0 1536.0 2579.0 2596.0 2604.0 2604.0 2605.53 2651.57 2833.79 3287.72 4277.42 5557.42
15 Hungary 0.4 1.0 1.0 2.0 4.0 12.0 35.0 89.0 172.0 235.0 344.0 728.0 1400.0 2131.0 2968.0 2988.0
16 Ireland
17 Italy 19.0 20.0 22.0 26.0 31.0 34.0 45.0 110.0 483.0 1264.0 3592.0 13131.0 16785.0 18185.0 18594.0 18901.0 19283.0 19682.29 20107.59 20865.28 21650.04 22594.26 25076.56
18 Latvia 0.69 0.69 1.96 3.3 5.1 7.16 56.16
19 Lithuania 0.1 0.1 0.1 0.3 7.0 68.0 69.0 69.0 70.0 70.08 72.0 73.0 80.0 84.0 397.0
20 Luxembourg 0.16 1.59 14.17 23.56 23.58 23.7 23.93 24.56 26.36 29.45 40.67 74.65 95.02 109.93 116.27 121.9 128.1 130.62 159.74 186.64 277.16 319.16
21 Montenegro 2.57 2.57 22.2
22 Netherlands 13.0 21.0 26.0 46.0 50.0 51.0 53.0 54.0 59.0 69.0 90.0 149.0 287.0 650.0 1007.0 1526.26 2135.02 2910.89 4608.0 7226.0 11108.43 14910.69 18848.69
23 North Macedonia 2.0 4.0 7.0 15.0 17.0 16.7 16.7 16.7 16.71 84.93 84.93 84.93
24 Norway 6.0 6.0 6.0 7.0 7.0 7.0 8.0 8.0 8.3 8.7 9.1 9.5 10.0 11.0 13.0 15.0 26.7 44.9 53.11 102.53 141.53 186.53 302.53
25 Poland 1.11 1.3 2.39 27.15 107.78 187.25 287.09 561.98 1539.26 3954.96 7415.52 11166.52
26 Portugal 1.0 1.0 1.0 2.0 2.0 2.0 3.0 24.0 59.0 115.0 134.0 169.6 235.6 293.6 412.6 441.75 493.05 539.42 617.85 832.74 1010.07 1474.78 2364.78
27 Romania 0.1 0.1 0.1 1.0 41.0 761.0 1293.0 1326.0 1372.0 1374.13 1385.82 1397.71 1382.54 1393.92 1413.92
28 Serbia 0.1 0.2 0.4 0.9 1.2 1.3 1.5 3.1 4.7 6.0 9.0 11.0 10.0 11.0 11.0 11.5 11.94 11.94
29 Slovakia 19.0 496.0 513.0 533.0 533.0 533.0 533.0 528.0 472.0 590.0 535.0 537.0 537.0
30 Slovenia 1.0 1.0 0.05 0.19 0.59 1.0 4.0 12.0 57.0 142.0 187.0 223.0 238.0 233.0 246.8 246.8 277.88 369.78 461.16 632.16
31 Spain 1.0 3.0 6.0 10.0 19.0 37.0 113.0 476.0 3365.0 3403.0 3851.0 4260.0 4545.0 4665.0 4672.0 4677.0 4687.0 4696.0 4730.7 8772.02 10100.42 13678.4 18176.73
32 Sweden 3.0 3.0 3.0 4.0 4.0 4.0 5.0 6.0 8.0 9.0 11.0 12.0 24.0 43.0 60.0 104.0 153.0 231.0 411.0 698.0 1090.0 1587.0 2587.0
33 Switzerland 16.0 18.0 20.0 22.0 24.0 28.0 30.0 37.0 49.0 79.0 125.0 223.0 437.0 756.0 1061.0 1394.0 1664.0 1906.0 2173.0 2498.0 2973.0 3655.0 4339.92
34 UK 2.0 3.0 4.0 6.0 8.0 11.0 14.0 18.0 23.0 27.0 95.0 1000.0 1753.0 2937.0 5528.0 9601.0 11914.0 12760.0 13059.0 13345.0 13579.0 13965.0 14660.0

31
data/hydro_capacities.csv Normal file
View File

@ -0,0 +1,31 @@
Country,p_nom_discharge[GW],p_nom_store[GW],E_store[TWh],InflowHourlyAvg[GWh]
AT,13.08,3.8,3.2,4.02
BE,1.42,1.31,0,0.04
BA,2.05,0.62,2.5,0.71
BG,3.13,0.86,4,0.53
HR,2,0.61,2.8,0.57
CZ,2.21,0.68,1.5,0.24
DK,0.01,0,0,0
EE,0.01,0,0,0
FI,3.2,0,5.5,1.59
FR,25.37,6.99,9.8,7.82
DE,11.26,6.8,0.3,1.93
GB,4.43,2.74,0,0.46
GR,3.24,0.7,2.3,0.26
HU,0.06,0,0.1,0.02
IE,0.53,0.29,0,0.08
IT,21.88,7.55,7.9,5.19
LV,1.58,0,1.8,0.3
LT,0.88,0.76,0.2,0.05
LU,1.13,1.29,0,0
NL,0.04,0,0,0.01
NO,30.51,1.35,84.4,14
PL,2.35,1.4,1.6,0.23
PT,5.72,1.03,2.6,1.37
RO,6.55,0.09,12.1,1.95
RS,2.14,0.61,0,1.18
SK,2.52,0.92,2.2,0.49
SI,1.25,0.18,2.2,0.36
ES,18.55,2.75,18.4,2.61
SE,16.41,0.1,33.8,7.8
CH,13.3,4.03,8.4,4.29
1 Country p_nom_discharge[GW] p_nom_store[GW] E_store[TWh] InflowHourlyAvg[GWh]
2 AT 13.08 3.8 3.2 4.02
3 BE 1.42 1.31 0 0.04
4 BA 2.05 0.62 2.5 0.71
5 BG 3.13 0.86 4 0.53
6 HR 2 0.61 2.8 0.57
7 CZ 2.21 0.68 1.5 0.24
8 DK 0.01 0 0 0
9 EE 0.01 0 0 0
10 FI 3.2 0 5.5 1.59
11 FR 25.37 6.99 9.8 7.82
12 DE 11.26 6.8 0.3 1.93
13 GB 4.43 2.74 0 0.46
14 GR 3.24 0.7 2.3 0.26
15 HU 0.06 0 0.1 0.02
16 IE 0.53 0.29 0 0.08
17 IT 21.88 7.55 7.9 5.19
18 LV 1.58 0 1.8 0.3
19 LT 0.88 0.76 0.2 0.05
20 LU 1.13 1.29 0 0
21 NL 0.04 0 0 0.01
22 NO 30.51 1.35 84.4 14
23 PL 2.35 1.4 1.6 0.23
24 PT 5.72 1.03 2.6 1.37
25 RO 6.55 0.09 12.1 1.95
26 RS 2.14 0.61 0 1.18
27 SK 2.52 0.92 2.2 0.49
28 SI 1.25 0.18 2.2 0.36
29 ES 18.55 2.75 18.4 2.61
30 SE 16.41 0.1 33.8 7.8
31 CH 13.3 4.03 8.4 4.29

View File

@ -1,2 +1,2 @@
,Unit,Values,Description
co2_budget,--,Dictionary with planning horizons as keys.,CO2 budget as a fraction of 1990 emissions. Overwritten if ``CO2Lx`` or ``cb`` are set in ``{sector_opts}`` wildcard"doc/configtables/othertoplevel.csv
co2_budget,--,Dictionary with planning horizons as keys.,CO2 budget as a fraction of 1990 emissions. Overwritten if ``Co2Lx`` or ``cb`` are set in ``{sector_opts}`` wildcard"doc/configtables/othertoplevel.csv

Can't render this file because it contains an unexpected character in line 2 and column 174.

View File

@ -1,7 +1,6 @@
,Unit,Values,Description
year,--,YYYY; e.g. '2030',Year for which to retrieve cost assumptions of ``resources/costs.csv``.
version,--,vX.X.X or <user>/<repo>/vX.X.X; e.g. 'v0.5.0',Version of ``technology-data`` repository to use. If this string is of the form <user>/<repo>/<version> then costs are instead retrieved from ``github.com/<user>/<repo>`` at the <version> tag.
rooftop_share,--,float,Share of rooftop PV when calculating capital cost of solar (joint rooftop and utility-scale PV).
social_discountrate,p.u.,float,Social discount rate to compare costs in different investment periods. 0.02 corresponds to a social discount rate of 2%.
fill_values,--,float,Default values if not specified for a technology in ``resources/costs.csv``.
capital_cost,EUR/MW,Keys should be in the 'technology' column of ``resources/costs.csv``. Values can be any float.,"For the given technologies, assumptions about their capital investment costs are set to the corresponding value. Optional; overwrites cost assumptions from ``resources/costs.csv``."

1 Unit Values Description
2 year -- YYYY; e.g. '2030' Year for which to retrieve cost assumptions of ``resources/costs.csv``.
3 version -- vX.X.X or <user>/<repo>/vX.X.X; e.g. 'v0.5.0' Version of ``technology-data`` repository to use. If this string is of the form <user>/<repo>/<version> then costs are instead retrieved from ``github.com/<user>/<repo>`` at the <version> tag.
rooftop_share -- float Share of rooftop PV when calculating capital cost of solar (joint rooftop and utility-scale PV).
4 social_discountrate p.u. float Social discount rate to compare costs in different investment periods. 0.02 corresponds to a social discount rate of 2%.
5 fill_values -- float Default values if not specified for a technology in ``resources/costs.csv``.
6 capital_cost EUR/MW Keys should be in the 'technology' column of ``resources/costs.csv``. Values can be any float. For the given technologies, assumptions about their capital investment costs are set to the corresponding value. Optional; overwrites cost assumptions from ``resources/costs.csv``.

View File

@ -2,10 +2,9 @@
voltages,kV,"Any subset of {220., 300., 380.}",Voltage levels to consider
gaslimit_enable,bool,true or false,Add an overall absolute gas limit configured in ``electricity: gaslimit``.
gaslimit,MWhth,float or false,Global gas usage limit
co2limit_enable,bool,true or false,Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``.
co2limit_enable,bool,true or false,Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit`` in :mod:`prepare_network`. **Warning:** This option should currently only be used with electricity-only networks, not for sector-coupled networks..
co2limit,:math:`t_{CO_2-eq}/a`,float,Cap on total annual system carbon dioxide emissions
co2base,:math:`t_{CO_2-eq}/a`,float,Reference value of total annual system carbon dioxide emissions if relative emission reduction target is specified in ``{opts}`` wildcard.
agg_p_nom_limits,file,path,Reference to ``.csv`` file specifying per carrier generator nominal capacity constraints for individual countries if ``'CCL'`` is in ``{opts}`` wildcard. Defaults to ``data/agg_p_nom_minmax.csv``.
operational_reserve,,,Settings for reserve requirements following `GenX <https://genxproject.github.io/GenX/dev/core/#Reserves>`_
,,,
-- activate,bool,true or false,Whether to take operational reserve requirements into account during optimisation
@ -28,14 +27,14 @@ everywhere_powerplants,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignit
,,,
conventional_carriers,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass}","List of conventional power plants to include in the model from ``resources/powerplants.csv``. If an included carrier is also listed in ``extendable_carriers``, the capacity is taken as a lower bound."
,,,
renewable_carriers,--,"Any subset of {solar, onwind, offwind-ac, offwind-dc, hydro}",List of renewable generators to include in the model.
renewable_carriers,--,"Any subset of {solar, onwind, offwind-ac, offwind-dc, offwind-float, hydro}",List of renewable generators to include in the model.
estimate_renewable_capacities,,,
-- enable,,bool,Activate routine to estimate renewable capacities
-- from_opsd,--,bool,Add renewable capacities from `OPSD database <https://data.open-power-system-data.org/renewable_power_plants/2020-08-25>`_. The value is depreciated but still can be used.
-- year,--,bool,Renewable capacities are based on existing capacities reported by IRENA (IRENASTAT) for the specified year
-- expansion_limit,--,float or false,"Artificially limit maximum IRENA capacities to a factor. For example, an ``expansion_limit: 1.1`` means 110% of capacities . If false are chosen, the estimated renewable potentials determine by the workflow are used."
-- technology_mapping,,,Mapping between PyPSA-Eur and powerplantmatching technology names
-- -- Offshore,--,"Any subset of {offwind-ac, offwind-dc}","List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) onshore technology."
-- -- Offshore,--,"Any subset of {offwind-ac, offwind-dc, offwind-float}","List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) onshore technology."
-- -- Offshore,--,{onwind},"List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) offshore technology."
-- -- PV,--,{solar},"List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) PV technology."
autarky,,,

Can't render this file because it has a wrong number of fields in line 5.

View File

@ -2,12 +2,8 @@
enable,str or bool,"{auto, true, false}","Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection."
prepare_links_p_nom,bool,"{true, false}","Switch to retrieve current HVDC projects from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_"
retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder."
retrieve_sector_databundle,bool,"{true, false}","Switch to retrieve sector databundle from zenodo via the rule :mod:`retrieve_sector_databundle` or whether to keep a custom databundle located in the corresponding folder."
retrieve_cost_data,bool,"{true, false}","Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_."
build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`."
retrieve_irena,bool,"{true, false}",Switch to enable the retrieval of ``existing_capacities`` from IRENASTAT with :mod:`retrieve_irena`.
retrieve_cutout,bool,"{true, false}","Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`."
build_natura_raster,bool,"{true, false}","Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`."
retrieve_natura_raster,bool,"{true, false}","Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`."
custom_busmap,bool,"{true, false}","Switch to enable the use of custom busmaps in rule :mod:`cluster_network`. If activated the rule looks for provided busmaps at ``data/custom_busmap_elec_s{simpl}_{clusters}.csv`` which should have the same format as ``resources/busmap_elec_s{simpl}_{clusters}.csv``, i.e. the index should contain the buses of ``networks/elec_s{simpl}.nc``."
drop_leap_day,bool,"{true, false}","Switch to drop February 29 from all time-dependent data in leap years"

1 Unit Values Description
2 enable str or bool {auto, true, false} Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection.
3 prepare_links_p_nom bool {true, false} Switch to retrieve current HVDC projects from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_
4 retrieve_databundle bool {true, false} Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder.
retrieve_sector_databundle bool {true, false} Switch to retrieve sector databundle from zenodo via the rule :mod:`retrieve_sector_databundle` or whether to keep a custom databundle located in the corresponding folder.
5 retrieve_cost_data bool {true, false} Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_.
6 build_cutout bool {true, false} Switch to enable the building of cutouts via the rule :mod:`build_cutout`.
retrieve_irena bool {true, false} Switch to enable the retrieval of ``existing_capacities`` from IRENASTAT with :mod:`retrieve_irena`.
7 retrieve_cutout bool {true, false} Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`.
build_natura_raster bool {true, false} Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`.
retrieve_natura_raster bool {true, false} Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`.
8 custom_busmap bool {true, false} Switch to enable the use of custom busmaps in rule :mod:`cluster_network`. If activated the rule looks for provided busmaps at ``data/custom_busmap_elec_s{simpl}_{clusters}.csv`` which should have the same format as ``resources/busmap_elec_s{simpl}_{clusters}.csv``, i.e. the index should contain the buses of ``networks/elec_s{simpl}.nc``.
9 drop_leap_day bool {true, false} Switch to drop February 29 from all time-dependent data in leap years

View File

@ -16,6 +16,9 @@ petrochemical_process _emissions,MtCO2/a,float,The emission of petrochemical pro
HVC_primary_fraction,--,float,The fraction of high value chemicals (HVC) produced via primary route
HVC_mechanical_recycling _fraction,--,float,The fraction of high value chemicals (HVC) produced using mechanical recycling
HVC_chemical_recycling _fraction,--,float,The fraction of high value chemicals (HVC) produced using chemical recycling
HVC_environment_sequestration_fraction,--,float,The fraction of high value chemicals (HVC) put into landfill resulting in additional carbon sequestration. The default value is 0.
waste_to_energy,--,bool,Switch to enable expansion of waste to energy CHPs for conversion of plastics. Default is false.
waste_to_energy_cc,--,bool,Switch to enable expansion of waste to energy CHPs for conversion of plastics with carbon capture. Default is false.
,,,
sector_ratios_fraction_future,--,Dictionary with planning horizons as keys.,The fraction of total progress in fuel and process switching achieved in the industry sector.
basic_chemicals_without_NH3_production_today,Mt/a,float,"The amount of basic chemicals produced without ammonia (= 86 Mtethylene-equiv - 17 MtNH3)."
@ -29,5 +32,6 @@ MWh_H2_per_tCl,MWhH2/tCl,float,"The energy amount of hydrogen needed to produce
methanol_production _today,MtMeOH/a,float,"The amount of methanol produced. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 62"
MWh_elec_per_tMeOH,MWh/tMeOH,float,"The energy amount of electricity needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65"
MWh_CH4_per_tMeOH,MWhCH4/tMeOH,float,"The energy amount of methane needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65"
MWh_MeOH_per_tMeOH,LHV,float,"The energy amount per ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 74."
hotmaps_locate_missing,--,"{true,false}",Locate industrial sites without valid locations based on city and countries.
reference_year,year,YYYY,The year used as the baseline for industrial energy demand and production. Data extracted from `JRC-IDEES 2015 <https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001>`_

1 Unit Values Description
16 HVC_primary_fraction -- float The fraction of high value chemicals (HVC) produced via primary route
17 HVC_mechanical_recycling _fraction -- float The fraction of high value chemicals (HVC) produced using mechanical recycling
18 HVC_chemical_recycling _fraction -- float The fraction of high value chemicals (HVC) produced using chemical recycling
19 HVC_environment_sequestration_fraction -- float The fraction of high value chemicals (HVC) put into landfill resulting in additional carbon sequestration. The default value is 0.
20 waste_to_energy -- bool Switch to enable expansion of waste to energy CHPs for conversion of plastics. Default is false.
21 waste_to_energy_cc -- bool Switch to enable expansion of waste to energy CHPs for conversion of plastics with carbon capture. Default is false.
22
23 sector_ratios_fraction_future -- Dictionary with planning horizons as keys. The fraction of total progress in fuel and process switching achieved in the industry sector.
24 basic_chemicals_without_NH3_production_today Mt/a float The amount of basic chemicals produced without ammonia (= 86 Mtethylene-equiv - 17 MtNH3).
32 methanol_production _today MtMeOH/a float The amount of methanol produced. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 62
33 MWh_elec_per_tMeOH MWh/tMeOH float The energy amount of electricity needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65
34 MWh_CH4_per_tMeOH MWhCH4/tMeOH float The energy amount of methane needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65
35 MWh_MeOH_per_tMeOH LHV float The energy amount per ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 74.
36 hotmaps_locate_missing -- {true,false} Locate industrial sites without valid locations based on city and countries.
37 reference_year year YYYY The year used as the baseline for industrial energy demand and production. Data extracted from `JRC-IDEES 2015 <https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001>`_

View File

@ -5,10 +5,8 @@
"naturalearth/*",,,,,http://www.naturalearthdata.com/about/terms-of-use/
"NUTS_2013 _60M_SH/*","x","x",,"x",https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units
"cantons.csv","x",,"x",,https://en.wikipedia.org/wiki/Data_codes_for_Switzerland
"eia_hydro_annual_generation.csv","x",,,,https://www.eia.gov/about/copyrights_reuse.php
"GEBCO_2014_2D.nc","x",,,,https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf
"gebco/GEBCO_2014_2D.nc","x",,,,https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf
"hydro_capacities.csv","x",,,,
"je-e-21.03.02.xls","x","x",,,https://www.bfs.admin.ch/bfs/en/home/fso/swiss-federal-statistical-office/terms-of-use.html
"nama_10r_3 gdp.tsv.gz","x",,,"x",https://ec.europa.eu/eurostat/about/policies/copyright
"nama_10r_3 popgdp.tsv.gz","x",,,"x",https://ec.europa.eu/eurostat/about/policies/copyright
"time_series_60min _singleindex_filtered.csv","x",,,,https://data.open-power-system-data.org/time_series/2019-06-05/README.md

1 Files BY NC SA Mark Changes Detail
5 naturalearth/* http://www.naturalearthdata.com/about/terms-of-use/
6 NUTS_2013 _60M_SH/* x x x https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units
7 cantons.csv x x https://en.wikipedia.org/wiki/Data_codes_for_Switzerland
8 eia_hydro_annual_generation.csv gebco/GEBCO_2014_2D.nc x https://www.eia.gov/about/copyrights_reuse.php https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf
GEBCO_2014_2D.nc x https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf
9 hydro_capacities.csv x
10 je-e-21.03.02.xls x x https://www.bfs.admin.ch/bfs/en/home/fso/swiss-federal-statistical-office/terms-of-use.html
11 nama_10r_3 gdp.tsv.gz x x https://ec.europa.eu/eurostat/about/policies/copyright
12 nama_10r_3 popgdp.tsv.gz x x https://ec.europa.eu/eurostat/about/policies/copyright
time_series_60min _singleindex_filtered.csv x https://data.open-power-system-data.org/time_series/2019-06-05/README.md

View File

@ -4,4 +4,4 @@ time_shift_for_large_gaps,string,string,"Periods which are used for copying time
manual_adjustments,bool,"{true, false}","Whether to adjust the load data manually according to the function in :func:`manual_adjustment`."
scaling_factor,--,float,"Global correction factor for the load time series."
fixed_year,--,Year or False,"To specify a fixed year for the load time series that deviates from the snapshots' year"
supplement_synthetic,bool,"{true, false}","Whether to supplement missing data for selected time period should be supplemented by synthetic data from https://zenodo.org/record/10820928."
supplement_synthetic,bool,"{true, false}","Whether to supplement missing data for selected time period should be supplemented by synthetic data from https://zenodo.org/records/10820928."

1 Unit Values Description
4 manual_adjustments bool {true, false} Whether to adjust the load data manually according to the function in :func:`manual_adjustment`.
5 scaling_factor -- float Global correction factor for the load time series.
6 fixed_year -- Year or False To specify a fixed year for the load time series that deviates from the snapshots' year
7 supplement_synthetic bool {true, false} Whether to supplement missing data for selected time period should be supplemented by synthetic data from https://zenodo.org/record/10820928. Whether to supplement missing data for selected time period should be supplemented by synthetic data from https://zenodo.org/records/10820928.

View File

@ -5,5 +5,7 @@ scenarios,,,
-- enable,bool,"{true, false}","Switch to select whether workflow should generate scenarios based on ``file``."
-- file,str,,"Path to the scenario yaml file. The scenario file contains config overrides for each scenario. In order to be taken account, ``run: scenarios`` has to be set to ``true`` and ``run: name`` has to be a subset of top level keys given in the scenario file. In order to automatically create a `scenario.yaml` file based on a combination of settings, alter and use the ``config/create_scenarios.py`` script in the ``config`` directory."
disable_progressbar,bool,"{true, false}","Switch to select whether progressbar should be disabled."
shared_resources,bool/str,,"Switch to select whether resources should be shared across runs. If a string is passed, this is used as a subdirectory name for shared resources. If set to 'base', only resources before creating the elec.nc file are shared."
shared_resources,,,
-- policy,bool/str,,"Boolean switch to select whether resources should be shared across runs. If a string is passed, this is used as a subdirectory name for shared resources. If set to 'base', only resources before creating the elec.nc file are shared."
-- exclude,str,"For the case shared_resources=base, specify additional files that should not be shared across runs."
shared_cutouts,bool,"{true, false}","Switch to select whether cutouts should be shared across runs."

Can't render this file because it has a wrong number of fields in line 10.

View File

@ -1,6 +1,6 @@
Trigger, Description, Definition, Status
``nH``, i.e. ``2H``-``6H``, "Resample the time-resolution by averaging over every ``n`` snapshots, ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`__)", In active use
``Co2L``, Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``. If a float is appended an overall emission limit relative to the emission level given in ``electricity: co2base`` is added (e.g. ``Co2L0.05`` limits emissisions to 5% of what is given in ``electricity: co2base``), ``prepare_network``: `add_co2limit() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L19>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L154>`__, In active use
``nH``, i.e. ``2h``-``6h``, "Resample the time-resolution by averaging over every ``n`` snapshots, ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`__)", In active use
``Co2L`` + ``n``, Add an overall absolute carbon-dioxide emissions limit of ``n`` times of the 1990 base emissions (e.g. ``Co2L0.05`` limits emissisions to 5% of what is calculated in the rule :mod:``prepare_sector_network`` in the function ``co2_emissions_year()``),:mod:``prepare_sector_network`` in the function ``co2_emissions_year()`` , In active use
``carrier+{c|p|m}factor``,"Alter the capital cost (``c``), installable potential (``p``) or marginal costs (``m``) of a carrier by a factor. Example: ``solar+c0.5`` reduces the capital cost of solar to 50\% of original values.", ``prepare_network``, In active use
``T``,Add land transport sector,,In active use
``H``,Add heating sector,,In active use

1 Trigger Description Definition Status
2 ``nH`` i.e. ``2H``-``6H`` i.e. ``2h``-``6h`` Resample the time-resolution by averaging over every ``n`` snapshots, ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`__) In active use
3 ``Co2L`` ``Co2L`` + ``n`` Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``. If a float is appended an overall emission limit relative to the emission level given in ``electricity: co2base`` is added (e.g. ``Co2L0.05`` limits emissisions to 5% of what is given in ``electricity: co2base``) Add an overall absolute carbon-dioxide emissions limit of ``n`` times of the 1990 base emissions (e.g. ``Co2L0.05`` limits emissisions to 5% of what is calculated in the rule :mod:``prepare_sector_network`` in the function ``co2_emissions_year()``) ``prepare_network``: `add_co2limit() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L19>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L154>`__ :mod:``prepare_sector_network`` in the function ``co2_emissions_year()`` In active use
4 ``carrier+{c|p|m}factor`` Alter the capital cost (``c``), installable potential (``p``) or marginal costs (``m``) of a carrier by a factor. Example: ``solar+c0.5`` reduces the capital cost of solar to 50\% of original values. ``prepare_network`` In active use
5 ``T`` Add land transport sector In active use
6 ``H`` Add heating sector In active use

View File

@ -24,7 +24,6 @@ bev_dsm,--,"{true, false}",Add the option for battery electric vehicles (BEV) to
bev_availability,--,float,The share for battery electric vehicles (BEV) that are able to do demand side management (DSM)
bev_energy,--,float,The average size of battery electric vehicles (BEV) in MWh
bev_charge_efficiency,--,float,Battery electric vehicles (BEV) charge and discharge efficiency
bev_plug_to_wheel _efficiency,km/kWh,float,The distance battery electric vehicles (BEV) can travel in km per kWh of energy charge in battery. Base value comes from `Tesla Model S <https://www.fueleconomy.gov/feg/>`_
bev_charge_rate,MWh,float,The power consumption for one electric vehicle (EV) in MWh. Value derived from 3-phase charger with 11 kW.
bev_avail_max,--,float,The maximum share plugged-in availability for passenger electric vehicles.
bev_avail_mean,--,float,The average share plugged-in availability for passenger electric vehicles.
@ -32,14 +31,15 @@ v2g,--,"{true, false}",Allows feed-in to grid from EV battery
land_transport_fuel_cell _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses fuel cells in a given year
land_transport_electric _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses electric vehicles (EV) in a given year
land_transport_ice _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses internal combustion engines (ICE) in a given year. What is not EV or FCEV is oil-fuelled ICE.
transport_fuel_cell _efficiency,--,float,The H2 conversion efficiencies of fuel cells in transport
transport_internal _combustion_efficiency,--,float,The oil conversion efficiencies of internal combustion engine (ICE) in transport
transport_electric_efficiency,MWh/100km,float,The conversion efficiencies of electric vehicles in transport
transport_fuel_cell_efficiency,MWh/100km,float,The H2 conversion efficiencies of fuel cells in transport
transport_ice_efficiency,MWh/100km,float,The oil conversion efficiencies of internal combustion engine (ICE) in transport
agriculture_machinery _electric_share,--,float,The share for agricultural machinery that uses electricity
agriculture_machinery _oil_share,--,float,The share for agricultural machinery that uses oil
agriculture_machinery _fuel_efficiency,--,float,The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
agriculture_machinery _electric_efficiency,--,float,The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
Mwh_MeOH_per_MWh_H2,LHV,float,"The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66."
MWh_MeOH_per_MWh_e,LHV,float,"The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
shipping_hydrogen _liquefaction,--,"{true, false}",Whether to include liquefaction costs for hydrogen demand in shipping.
,,,

1 Unit Values Description
24 bev_availability -- float The share for battery electric vehicles (BEV) that are able to do demand side management (DSM)
25 bev_energy -- float The average size of battery electric vehicles (BEV) in MWh
26 bev_charge_efficiency -- float Battery electric vehicles (BEV) charge and discharge efficiency
bev_plug_to_wheel _efficiency km/kWh float The distance battery electric vehicles (BEV) can travel in km per kWh of energy charge in battery. Base value comes from `Tesla Model S <https://www.fueleconomy.gov/feg/>`_
27 bev_charge_rate MWh float The power consumption for one electric vehicle (EV) in MWh. Value derived from 3-phase charger with 11 kW.
28 bev_avail_max -- float The maximum share plugged-in availability for passenger electric vehicles.
29 bev_avail_mean -- float The average share plugged-in availability for passenger electric vehicles.
31 land_transport_fuel_cell _share -- Dictionary with planning horizons as keys. The share of vehicles that uses fuel cells in a given year
32 land_transport_electric _share -- Dictionary with planning horizons as keys. The share of vehicles that uses electric vehicles (EV) in a given year
33 land_transport_ice _share -- Dictionary with planning horizons as keys. The share of vehicles that uses internal combustion engines (ICE) in a given year. What is not EV or FCEV is oil-fuelled ICE.
34 transport_fuel_cell _efficiency transport_electric_efficiency -- MWh/100km float The H2 conversion efficiencies of fuel cells in transport The conversion efficiencies of electric vehicles in transport
35 transport_internal _combustion_efficiency transport_fuel_cell_efficiency -- MWh/100km float The oil conversion efficiencies of internal combustion engine (ICE) in transport The H2 conversion efficiencies of fuel cells in transport
36 transport_ice_efficiency MWh/100km float The oil conversion efficiencies of internal combustion engine (ICE) in transport
37 agriculture_machinery _electric_share -- float The share for agricultural machinery that uses electricity
38 agriculture_machinery _oil_share -- float The share for agricultural machinery that uses oil
39 agriculture_machinery _fuel_efficiency -- float The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
40 agriculture_machinery _electric_efficiency -- float The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
41 Mwh_MeOH_per_MWh_H2 LHV float The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64.
42 MWh_MeOH_per_tCO2 LHV float The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64. The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66.
43 MWh_MeOH_per_MWh_e LHV float The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64.
44 shipping_hydrogen _liquefaction -- {true, false} Whether to include liquefaction costs for hydrogen demand in shipping.
45

View File

@ -4,7 +4,7 @@ options,,,
-- load_shedding,bool/float,"{'true','false', float}","Add generators with very high marginal cost to simulate load shedding and avoid problem infeasibilities. If load shedding is a float, it denotes the marginal cost in EUR/kWh."
-- noisy_costs,bool,"{'true','false'}","Add random noise to marginal cost of generators by :math:`\mathcal{U}(0.009,0,011)` and capital cost of lines and links by :math:`\mathcal{U}(0.09,0,11)`."
-- skip_iterations,bool,"{'true','false'}","Skip iterating, do not update impedances of branches. Defaults to true."
-- rolling_horizon,bool,"{'true','false'}","Whether to optimize the network in a rolling horizon manner, where the snapshot range is split into slices of size `horizon` which are solved consecutively."
-- rolling_horizon,bool,"{'true','false'}","Switch for rule :mod:`solve_operations_network` whether to optimize the network in a rolling horizon manner, where the snapshot range is split into slices of size `horizon` which are solved consecutively. This setting has currently no effect on sector-coupled networks."
-- seed,--,int,Random seed for increased deterministic behaviour.
-- custom_extra_functionality,--,str,Path to a Python file with custom extra functionality code to be injected into the solving rules of the workflow relative to ``rules`` directory.
-- io_api,string,"{'lp','mps','direct'}",Passed to linopy and determines the API used to communicate with the solver. With the ``'lp'`` and ``'mps'`` options linopy passes a file to the solver; with the ``'direct'`` option (only supported for HIGHS and Gurobi) linopy uses an in-memory python API resulting in better performance.
@ -14,6 +14,18 @@ options,,,
-- transmission_losses,int,[0-9],"Add piecewise linear approximation of transmission losses based on n tangents. Defaults to 0, which means losses are ignored."
-- linearized_unit_commitment,bool,"{'true','false'}",Whether to optimise using the linearized unit commitment formulation.
-- horizon,--,int,Number of snapshots to consider in each iteration. Defaults to 100.
-- post_discretization,,,
-- -- enable,bool,"{'true','false'}",Switch to enable post-discretization of the network. Disabled by default.
-- -- line_unit_size,MW,float,Discrete unit size of lines in MW.
-- -- line_threshold,,float,The threshold relative to the discrete line unit size beyond which to round up to the next unit.
-- -- link_unit_size,MW,float,Discrete unit size of links in MW by carrier (given in dictionary style).
-- -- -- {carrier},,,
-- -- link_threshold,,float,The threshold relative to the discrete link unit size beyond which to round up to the next unit by carrier (given in dictionary style).
-- -- -- {carrier},,,
agg_p_nom_limits,,,Configure per carrier generator nominal capacity constraints for individual countries if ``'CCL'`` is in ``{opts}`` wildcard.
-- agg_offwind,bool,"{'true','false'}",Aggregate together all the types of offwind when writing the constraint. Default is false.
-- include_existing,bool,"{'true','false'}",Take existing capacities into account when writing the constraint. Default is false.
-- file,file,path,Reference to ``.csv`` file specifying per carrier generator nominal capacity constraints for individual countries and planning horizons. Defaults to ``data/agg_p_nom_minmax.csv``.
constraints ,,,
-- CCL,bool,"{'true','false'}",Add minimum and maximum levels of generator nominal capacity per carrier for individual countries. These can be specified in the file linked at ``electricity: agg_p_nom_limits`` in the configuration. File defaults to ``data/agg_p_nom_minmax.csv``.
-- EQ,bool/string,"{'false',`n(c| )``; i.e. ``0.5``-``0.7c``}",Require each country or node to on average produce a minimal share of its total consumption itself. Example: ``EQ0.5c`` demands each country to produce on average at least 50% of its consumption; ``EQ0.5`` demands each node to produce on average at least 50% of its consumption.

1 Unit Values Description
4 -- load_shedding bool/float {'true','false', float} Add generators with very high marginal cost to simulate load shedding and avoid problem infeasibilities. If load shedding is a float, it denotes the marginal cost in EUR/kWh.
5 -- noisy_costs bool {'true','false'} Add random noise to marginal cost of generators by :math:`\mathcal{U}(0.009,0,011)` and capital cost of lines and links by :math:`\mathcal{U}(0.09,0,11)`.
6 -- skip_iterations bool {'true','false'} Skip iterating, do not update impedances of branches. Defaults to true.
7 -- rolling_horizon bool {'true','false'} Whether to optimize the network in a rolling horizon manner, where the snapshot range is split into slices of size `horizon` which are solved consecutively. Switch for rule :mod:`solve_operations_network` whether to optimize the network in a rolling horizon manner, where the snapshot range is split into slices of size `horizon` which are solved consecutively. This setting has currently no effect on sector-coupled networks.
8 -- seed -- int Random seed for increased deterministic behaviour.
9 -- custom_extra_functionality -- str Path to a Python file with custom extra functionality code to be injected into the solving rules of the workflow relative to ``rules`` directory.
10 -- io_api string {'lp','mps','direct'} Passed to linopy and determines the API used to communicate with the solver. With the ``'lp'`` and ``'mps'`` options linopy passes a file to the solver; with the ``'direct'`` option (only supported for HIGHS and Gurobi) linopy uses an in-memory python API resulting in better performance.
14 -- transmission_losses int [0-9] Add piecewise linear approximation of transmission losses based on n tangents. Defaults to 0, which means losses are ignored.
15 -- linearized_unit_commitment bool {'true','false'} Whether to optimise using the linearized unit commitment formulation.
16 -- horizon -- int Number of snapshots to consider in each iteration. Defaults to 100.
17 -- post_discretization
18 -- -- enable bool {'true','false'} Switch to enable post-discretization of the network. Disabled by default.
19 -- -- line_unit_size MW float Discrete unit size of lines in MW.
20 -- -- line_threshold float The threshold relative to the discrete line unit size beyond which to round up to the next unit.
21 -- -- link_unit_size MW float Discrete unit size of links in MW by carrier (given in dictionary style).
22 -- -- -- {carrier}
23 -- -- link_threshold float The threshold relative to the discrete link unit size beyond which to round up to the next unit by carrier (given in dictionary style).
24 -- -- -- {carrier}
25 agg_p_nom_limits Configure per carrier generator nominal capacity constraints for individual countries if ``'CCL'`` is in ``{opts}`` wildcard.
26 -- agg_offwind bool {'true','false'} Aggregate together all the types of offwind when writing the constraint. Default is false.
27 -- include_existing bool {'true','false'} Take existing capacities into account when writing the constraint. Default is false.
28 -- file file path Reference to ``.csv`` file specifying per carrier generator nominal capacity constraints for individual countries and planning horizons. Defaults to ``data/agg_p_nom_minmax.csv``.
29 constraints
30 -- CCL bool {'true','false'} Add minimum and maximum levels of generator nominal capacity per carrier for individual countries. These can be specified in the file linked at ``electricity: agg_p_nom_limits`` in the configuration. File defaults to ``data/agg_p_nom_minmax.csv``.
31 -- EQ bool/string {'false',`n(c| )``; i.e. ``0.5``-``0.7c``} Require each country or node to on average produce a minimal share of its total consumption itself. Example: ``EQ0.5c`` demands each country to produce on average at least 50% of its consumption; ``EQ0.5`` demands each node to produce on average at least 50% of its consumption.

View File

@ -31,7 +31,7 @@ Top-level configuration
.. _run_cf:
``run``
=======
=============
It is common conduct to analyse energy system optimisation models for **multiple scenarios** for a variety of reasons,
e.g. assessing their sensitivity towards changing the temporal and/or geographical resolution or investigating how
@ -174,7 +174,7 @@ Switches for some rules and optional features.
:file: configtables/co2_budget.csv
.. note::
this parameter is over-ridden if ``CO2Lx`` or ``cb`` is set in
this parameter is over-ridden if ``Co2Lx`` or ``cb`` is set in
sector_opts.
.. _electricity_cf:
@ -265,7 +265,7 @@ Define and specify the ``atlite.Cutout`` used for calculating renewable potentia
.. literalinclude:: ../config/config.default.yaml
:language: yaml
:start-at: offwind-dc:
:end-before: solar:
:end-before: offwind-float:
.. csv-table::
:header-rows: 1
@ -273,9 +273,25 @@ Define and specify the ``atlite.Cutout`` used for calculating renewable potentia
:file: configtables/offwind-dc.csv
.. note::
both ``offwind-ac`` and ``offwind-dc`` have the same assumption on
Both ``offwind-ac`` and ``offwind-dc`` have the same assumption on
``capacity_per_sqkm`` and ``correction_factor``.
``offwind-float``
---------------
.. literalinclude:: ../config/config.default.yaml
:language: yaml
:start-at: offwind-float:
:end-before: solar:
.. csv-table::
:header-rows: 1
:widths: 22,7,22,33
:file: configtables/offwind-float.csv
.. note::
``offwind-ac``, ``offwind-dc`` , ``offwind-float`` have the same assumption on
``capacity_per_sqkm`` and ``correction_factor``.
``solar``
---------------
@ -534,9 +550,6 @@ The list of available biomass is given by the category in `ENSPRESO_BIOMASS <htt
:widths: 22,7,22,33
:file: configtables/costs.csv
.. note::
``rooftop_share:`` are based on the potentials, assuming
(0.1 kW/m2 and 10 m2/person)
.. _clustering_cf:

View File

Before

Width:  |  Height:  |  Size: 98 KiB

After

Width:  |  Height:  |  Size: 98 KiB

View File

Before

Width:  |  Height:  |  Size: 74 KiB

After

Width:  |  Height:  |  Size: 74 KiB

View File

Before

Width:  |  Height:  |  Size: 533 KiB

After

Width:  |  Height:  |  Size: 533 KiB

View File

Before

Width:  |  Height:  |  Size: 269 KiB

After

Width:  |  Height:  |  Size: 269 KiB

View File

Before

Width:  |  Height:  |  Size: 2.3 MiB

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 227 KiB

After

Width:  |  Height:  |  Size: 208 KiB

View File

Before

Width:  |  Height:  |  Size: 290 KiB

After

Width:  |  Height:  |  Size: 290 KiB

View File

Before

Width:  |  Height:  |  Size: 110 KiB

After

Width:  |  Height:  |  Size: 110 KiB

View File

Before

Width:  |  Height:  |  Size: 523 KiB

After

Width:  |  Height:  |  Size: 523 KiB

View File

Before

Width:  |  Height:  |  Size: 99 KiB

After

Width:  |  Height:  |  Size: 99 KiB

View File

Before

Width:  |  Height:  |  Size: 801 KiB

After

Width:  |  Height:  |  Size: 801 KiB

BIN
doc/img/workflow.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 710 KiB

View File

@ -74,7 +74,7 @@ greenhouse gas emitters except waste management, agriculture, forestry and land
use. The diagram below gives an overview of the sectors and the links between
them:
.. image:: ../graphics/multisector_figure.png
.. image:: img/multisector_figure.png
:width: 70%
:align: center
@ -135,7 +135,7 @@ as part of the `Stromnetze Research Initiative
Workflow
========
.. image:: ../graphics/workflow.png
.. image:: img/workflow.png
:class: full-width
:align: center

View File

@ -35,7 +35,7 @@ For instance, an invocation to
.. code:: bash
.../pypsa-eur % snakemake -call results/networks/elec_s_128_ec_lvopt_Co2L-3H.nc
.../pypsa-eur % snakemake -call results/networks/elec_s_128_ec_lvopt_.nc
follows this dependency graph
@ -50,7 +50,7 @@ preceding rules which another rule takes as input data.
.. note::
The dependency graph was generated using
``snakemake --dag results/networks/elec_s_128_ec_lvopt_Co2L-3H.nc -F | sed -n "/digraph/,/}/p" | dot -Tpng -o doc/img/intro-workflow.png``
``snakemake --dag results/networks/elec_s_128_ec_lvopt_.nc -F | sed -n "/digraph/,/}/p" | dot -Tpng -o doc/img/intro-workflow.png``
For the use of ``snakemake``, it makes sense to familiarize yourself quickly
with the `basic tutorial

View File

@ -28,16 +28,13 @@ Electricity Systems Databundle
More details are included in `the description of the
data bundles on zenodo <https://zenodo.org/record/3517935#.XbGeXvzRZGo>`__.
.. csv-table::
:header-rows: 1
:file: configtables/licenses.csv
* BY: Attribute Source
* NC: Non-Commercial Use Only
* SA: Share Alike
Sector-Coupled Systems Databundle
=================================
.. csv-table::
:header-rows: 1
:file: configtables/licenses.csv
.. csv-table::
:header-rows: 1

View File

@ -21,13 +21,11 @@ Having downloaded the necessary data,
With these and the externally extracted ENTSO-E online map topology
(``data/entsoegridkit``), it can build a base PyPSA network with the following rules:
- :mod:`base_network` builds and stores the base network with all buses, HVAC lines and HVDC links, while
- :mod:`build_bus_regions` determines `Voronoi cells <https://en.wikipedia.org/wiki/Voronoi_diagram>`__ for all substations.
- :mod:`base_network` builds and stores the base network with all buses, HVAC lines and HVDC links, and determines `Voronoi cells <https://en.wikipedia.org/wiki/Voronoi_diagram>`__ for all substations.
Then the process continues by calculating conventional power plant capacities, potentials, and per-unit availability time series for variable renewable energy carriers and hydro power plants with the following rules:
- :mod:`build_powerplants` for today's thermal power plant capacities using `powerplantmatching <https://github.com/FRESNA/powerplantmatching>`__ allocating these to the closest substation for each powerplant,
- :mod:`build_natura_raster` for rasterising NATURA2000 natural protection areas,
- :mod:`build_ship_raster` for building shipping traffic density,
- :mod:`build_renewable_profiles` for the hourly capacity factors and installation potentials constrained by land-use in each substation's Voronoi cell for PV, onshore and offshore wind, and
- :mod:`build_hydro_profile` for the hourly per-unit hydro power availability time series.
@ -35,13 +33,6 @@ Then the process continues by calculating conventional power plant capacities, p
The central rule :mod:`add_electricity` then ties all the different data inputs
together into a detailed PyPSA network stored in ``networks/elec.nc``.
.. _busregions:
Rule ``build_bus_regions``
=============================
.. automodule:: build_bus_regions
.. _cutout:
Rule ``build_cutout``
@ -55,14 +46,6 @@ Rule ``prepare_links_p_nom``
.. automodule:: prepare_links_p_nom
.. _natura:
Rule ``build_natura_raster``
===============================
.. automodule:: build_natura_raster
.. _base:
Rule ``base_network``

View File

@ -9,14 +9,102 @@ Release Notes
Upcoming Release
================
* Bugfix: Make sure that gas-fired power plants are correctly added as OCGT or
CCGT in :mod:`add_electricity`. Previously they were always added as OCGT.
* Added default values for power distribution losses, assuming uniform losses of
3% on distribution grid links (cf. ``sector: transmission_efficiency:
electricity distribution grid: efficiency_static: 0.97``). Since distribution
losses are included in national load reports (cf. `this report
<https://nbviewer.org/github/Open-Power-System-Data/datapackage_timeseries/blob/2020-10-06/main.ipynb>`_),
these are deducted from the national load time series to avoid double counting
of losses. Further extensions to country-specific loss factors and
developments by planning horizon are planned.
* Doubled solar rooftop potentials to roughly 1 TW for Europe based on `recent
European Commission reports
<https://www.epj-pv.org/articles/epjpv/full_html/2024/01/pv230071/pv230071.html>`_.
* Remove exogenously set share of rooftop PV (``costs: rooftop_share:``).
Rooftop and utility-scale PV are now largely handled as separate technologies
with endogenous shares.
* New technology, solar PV with single-axis horizontal tracking (on a N-S axis),
with a carrier called ``solar-hsat`` to the networks. The default option for adding
this technology is set to ``true`` in the ``config.yaml``.
* The technology-data version was updated to v0.9.0.
* Bugfix to avoid duplicated offshore regions.
* Added option ``industry: HVC_environment_sequestration_fraction:`` to specify
the fraction of carbon contained plastics that is permanently sequestered in
landfill. The default assumption is that all carbon contained in plastics is
eventually released to the atmosphere.
* Added option for building waste-to-energy plants with and without carbon
capture to consume non-recycled and non-sequestered plastics. The config
settings are ``industry: waste_to_energy:`` and ``industry:
waste_to_energy_cc``. This does not include municipal solid waste.
* Bump minimum ``powerplantmatching`` version to v0.5.15.
* Add floating wind technology for water depths below 60m
* Add config ``run: shared_resources: exclude:`` to specify additional files
that should be excluded from shared resources with the setting ``run:
shared_resources: base``. The function ``_helpers/get_run_path()`` now takes
an additional keyword argument ``exclude_from_shared`` with a list of files
that should not be shared. This keyword argument accepts a list of strings
where the string only needs to match the start of a filename (e.g.
``"transport_data"`` would exclude both ``transport_data.csv`` and
``transport_data_{simpl}_{clusters}.csv`` from being shared across scenarios.
* Move switch ``run: shared_resources:`` to ``run: shared_resources: policy:``.
* Add config land_transport_demand_factor to model growth in land transport demand for different time horizons.
* Allow dictionary for the config aviation_demand_factor.
* Add option to post-discretize line and link capacities based on unit sizes and
rounding thresholds specified in the configuration under ``solving: options:
post_discretization:`` when iterative solving is enables (``solving: optiosn:
skip_iterations: false``). This option is disabled by default.
* Group existing capacities to the earlier grouping_year for consistency with optimized capacities.
* Update data bundle:
- Merge electricity-only and sector-coupled data bundles into `one bundle
<https://zenodo.org/records/10973944>`_. This means that the rule
``retrieve_sector_databundle`` was removed.
- Include rasterised ``natura.tiff`` in data bundle and remove rule
``retrieve_natura_raster``.
- Remove rule ``build_natura_raster`` as this rule is rarely run and increases
the data bundle size considerably.
- Remove outdated files from data bundle (e.g., Eurostat energy balances)
- Reduce spatial scope of GEBCO bathymetry data to Europe to save space.
- Remove the use of a separate data bundle for tutorials.
- Directly download `Hotmaps Industrial Database
<https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database/-/blob/master/data/Industrial_Database.csv>`__
from source and remove ``Industrial_Database.csv`` from data bundle.
* bugfix: installed heating capacities were 5% lower than existing heating capacities
* Include gas and oil fields and saline aquifers in estimation of CO2 sequestration potential.
* bugfix: convert Strings to pathlib.Path objects as input to ConfigSettings
* bugfix: fix distinction of temperature-dependent correction factors for the
energy demand of electric vehicles, ICES fuel cell cars.
* Allow the use of more solvers in clustering (Xpress, COPT, Gurobi, CPLEX, SCIP, MOSEK).
* Enhanced support for choosing different weather years
@ -172,6 +260,10 @@ Upcoming Release
* Bugfix: allow modelling sector-coupled landlocked regions. (Fixed handling of offshore wind.)
* Bugfix: approximation of hydro power generation if Portugal or Spain are not included works now.
* Bugfix: copy_timeslice does not copy anymore, if country not present in load data.
* Adapt the disabling of transmission expansion in myopic foresight optimisations when limit is already reached to also handle cost limits.
* Fix duplicated years and grouping years reference in `add_land_use_constraint_m`.
@ -184,12 +276,43 @@ Upcoming Release
* Fix custom busmap read in `cluster_network`.
* Added shapes to .nc file for different stages of the network object in `base_network`, `build_bus_regions`, and `cluster_network`.
* Add `nodal_supply_energy` to `make_summary`.
* Data on existing renewable capacities is now consistently taken from powerplantmatching (instead of being retrieved separately); the dataset has also been updated to include 2023 values.
* Added shapes to .nc file for different stages of the network object in `base_network`, `simplify_network`, and `cluster_network`; the `build_bus_regions` rule is now integrated into the `base_network` rule.
* Improved the behaviour of `agg_p_nom_limits`:
- Moved the associated configuration to `solving`. This allows *Snakemake* to correctly decide which rules to run when the configuration changes.
- Added the ability to enable aggregation of all *offwind* types (*offwind-ac* and *offwind-dc*) when writing the constraint.
- Added the possibility to take existing capacities into account when writing the constraint.
- Added the possibility to have a different file for each planning horizon.
* Fix p_nom_min of renewables generators for myopic approach and add check of existing capacities in `add_land_use_constraint_m`.
* Add documentation section for how to contribute documentation
* Clarify suffix usage in `add_existing_baseyear`.
* The ``{sector_opts}`` wildcard is now not used by default. All scenario definitions are now done in the ``config.yaml`` file.
* Fix gas network retrofitting in `add_brownfield`.
* Time aggregation for sector-coupled networks have been split into its own rule. When using time step segmentation, time aggregation is constant over planning horizons of the same network.
* Clarify that the rolling-horizon setting ``solving: rolling_horizon:`` only works for the rule :mod:`solve_operations_network` and not for networks with sector-coupling or investment variables.
* Fix non steel related coal demand during transition (using `sector_ratios_fraction_future`).
* Fix fill missing data in `build_industry_sector_ratios_intermediate`.
* Add methanol consumption in industry as reported in `DECHEMA report
<https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`__
directly as methanol demand rather than with fixed methane and electricity
demands from today's industry sector ratios.
PyPSA-Eur 0.10.0 (19th February 2024)
=====================================
@ -1512,7 +1635,7 @@ This release is known to work with `PyPSA-Eur
**Gas Transmission Network**
* New rule ``retrieve_gas_infrastructure_data`` that downloads and extracts the
SciGRID_gas `IGGIELGN <https://zenodo.org/record/4767098>`__ dataset from
SciGRID_gas `IGGIELGN <https://zenodo.org/records/4767098>`__ dataset from
zenodo. It includes data on the transmission routes, pipe diameters,
capacities, pressure, and whether the pipeline is bidirectional and carries
H-Gas or L-Gas.
@ -1672,7 +1795,7 @@ This release is known to work with `PyPSA-Eur
PyPSA network.
* Updated `data bundle
<https://zenodo.org/record/5824485/files/pypsa-eur-sec-data-bundle.tar.gz>`__
<https://zenodo.org/records/5824485/files/pypsa-eur-sec-data-bundle.tar.gz>`__
that includes the hydrogan salt cavern storage potentials.
* Updated and extended documentation in
@ -2032,7 +2155,7 @@ PyPSA-Eur-Sec codebase in Version 0.2.0 above.
This model has `its own github repository
<https://github.com/martavp/pypsa-eur-sec-30-path>`__ and is `archived
on Zenodo <https://zenodo.org/record/4014807>`__.
on Zenodo <https://zenodo.org/records/4014807>`__.
@ -2048,7 +2171,7 @@ European countries with one node per country. It includes demand and
supply for electricity, space and water heating in buildings, and land
transport.
It is `archived on Zenodo <https://zenodo.org/record/1146666>`__.
It is `archived on Zenodo <https://zenodo.org/records/1146666>`__.
Release Process

View File

@ -53,32 +53,6 @@ The :ref:`tutorial` uses a smaller cutout than required for the full model (30 M
For details see :mod:`build_cutout` and read the `atlite documentation <https://atlite.readthedocs.io>`__.
Rule ``retrieve_natura_raster``
================================
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4706686.svg
:target: https://doi.org/10.5281/zenodo.4706686
This rule, as a substitute for :mod:`build_natura_raster`, downloads an already rasterized version (`natura.tiff <https://zenodo.org/record/4706686/files/natura.tiff>`__) of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`__ natural protection areas to reduce computation times. The file is placed into the ``resources`` sub-directory.
**Relevant Settings**
.. code:: yaml
enable:
build_natura_raster:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`toplevel_cf`
**Outputs**
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`__ natural protection areas to reduce computation times.
.. seealso::
For details see :mod:`build_natura_raster`.
Rule ``retrieve_electricity_demand``
====================================
@ -118,11 +92,6 @@ This rule downloads techno-economic assumptions from the `technology-data reposi
- ``resources/costs.csv``
Rule ``retrieve_irena``
================================
.. automodule:: retrieve_irena
Rule ``retrieve_ship_raster``
================================
@ -135,14 +104,3 @@ None.
**Outputs**
- ``data/shipdensity_global.zip``
Rule ``retrieve_sector_databundle``
====================================
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5546516.svg
:target: https://doi.org/10.5281/zenodo.5546516
In addition to the databundle required for electricity-only studies,
another databundle is required for modelling sector-coupled systems.
The size of this data bundle is around 640 MB.

View File

@ -183,6 +183,11 @@ Rule ``cluster_gas_network``
.. automodule:: cluster_gas_network
Rule ``time_aggregation``
==============================================================================
.. automodule:: time_aggregation
Rule ``prepare_sector_network``
==============================================================================

View File

@ -15,11 +15,11 @@ The total number of nodes for Europe is set in the ``config/config.yaml`` file u
Exemplary unsolved network clustered to 512 nodes:
.. image:: ../graphics/elec_s_512.png
.. image:: img/elec_s_512.png
Exemplary unsolved network clustered to 37 nodes:
.. image:: ../graphics/elec_s_37.png
.. image:: img/elec_s_37.png
The total number of nodes for Europe is set in the ``config/config.yaml`` file under `clusters <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L20>`__. The number of nodes can vary between 37, the number of independent countries/synchronous areas, and several hundred. With 200-300 nodes, the model needs 100-150 GB RAM to solve with a commercial solver like Gurobi.
Not all of the sectors are at the full nodal resolution, and some demand for some sectors is distributed to nodes using heuristics that need to be corrected. Some networks are copper-plated to reduce computational times.

View File

@ -18,7 +18,7 @@ management, carbon capture and usage/sequestration, and gas networks.
The basic supply (left column) and demand (right column) options in the model are described in this figure:
.. image:: ../graphics/multisector_figure.png
.. image:: img/multisector_figure.png
.. _Electricity supply and demand:
@ -72,11 +72,11 @@ For every country, heat demand is split between low and high population density
Cooling is electrified and is included in the electricity demand. Cooling demand is assumed to remain at current levels. An example of regional distribution of the total heat demand for network 181 regions is depicted below.
.. image:: ../graphics/demand-map-heat.png
.. image:: img/demand-map-heat.png
As below figure shows, the current total heat demand in Europe is similar to the total electricity demand but features much more pronounced seasonal variations. The current total building heating demand in Europe adds up to 3084 TWh/a of which 78% occurs in urban areas.
.. image:: ../graphics/Heat_and_el_demand_timeseries.png
.. image:: img/Heat_and_el_demand_timeseries.png
In practice, in PyPSA-Eur-Sec, there are heat demand buses to which the corresponding heat demands are added.
@ -269,7 +269,7 @@ The existing European gas transmission network is represented based on the SciGR
The following figure shows the unclustered European gas transmission network based on the SciGRID Gas IGGIELGN dataset. Pipelines are color-coded by estimated capacities. Markers indicate entry-points, sites of fossil resource extraction, and LNG terminals.
.. image:: ../graphics/gas_pipeline_figure.png
.. image:: img/gas_pipeline_figure.png
.. _Biomass supply:
@ -374,7 +374,7 @@ Where process heat is required, our approach depends on the necessary temperatur
The following figure shows the final consumption of energy and non-energy feedstocks in industry today in comparison to the scenario in 2050 assumed in `Neumann et al <https://arxiv.org/abs/2207.05816>`__.
.. image:: ../graphics/fec_industry_today_tomorrow.png
.. image:: img/fec_industry_today_tomorrow.png
The following figure shows the process emissions in industry today (top bar) and in 2050 without
@ -383,12 +383,12 @@ carbon capture (bottom bar) assumed in `Neumann et al <https://arxiv.org/abs/220
.. image:: ../graphics/process-emissions.png
.. image:: img/process-emissions.png
Inside each country the industrial demand is then distributed using the `Hotmaps Industrial Database <https://zenodo.org/record/4687147#.YvOaxhxBy5c>`__, which is illustrated in the figure below. This open database includes georeferenced industrial sites of energy-intensive industry sectors in EU28, including cement, basic chemicals, glass, iron and steel, non-ferrous metals, non-metallic minerals, paper, and refineries subsectors. The use of this spatial dataset enables the calculation of regional and process-specific energy demands. This approach assumes that there will be no significant migration of energy-intensive industries.
Inside each country the industrial demand is then distributed using the `Hotmaps Industrial Database <https://zenodo.org/records/4687147#.YvOaxhxBy5c>`__, which is illustrated in the figure below. This open database includes georeferenced industrial sites of energy-intensive industry sectors in EU28, including cement, basic chemicals, glass, iron and steel, non-ferrous metals, non-metallic minerals, paper, and refineries subsectors. The use of this spatial dataset enables the calculation of regional and process-specific energy demands. This approach assumes that there will be no significant migration of energy-intensive industries.
.. image:: ../graphics/hotmaps.png
.. image:: img/hotmaps.png
.. _Iron and Steel:
@ -459,8 +459,7 @@ Statistics for the production of ammonia, which is commonly used as a fertilizer
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( 6.5 MWh :math:`_{H_2}` / t :math:`_{NH_3}` ) and electricity ( 1.17 MWh :math:`_{el}` /t :math:`_{NH_3}` ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`__). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`__. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh :math:`_{el}`/t of chlorine and yield hydrogen at 0.937 MWh :math:`_{H_2}`/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a, requiring electricity at 0.167 MWh :math:`_{el}`/t of methanol and methane at 10.25 MWh :math:`_{CH_4}`/t of methanol.
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`__. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh :math:`_{el}`/t of chlorine and yield hydrogen at 0.937 MWh :math:`_{H_2}`/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a. Low-carbon methanol production (or methanolisation) by hydrogenation of :math:`CO_2` requires hydrogen at 6.299 MWh :math:`_{H_2}`/t of methanol, carbon dioxide at 1.373 t :math:`_{CO_2}`/t of methanol and electricity at 1.5 MWh :math:`_{el}`/t of methanol. The energy content of methanol is 5.528 MWh :math:`_{MeOH}`/t of methanol. These values are set exogenously in the config file.
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWh :math:`_{naphtha}`/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`__), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWh :math:`_{CH_4}` /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`__); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWh :math:`_{el}`/t of HVC).
@ -573,7 +572,7 @@ The `demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c99
**Shipping**
Shipping energy demand is covered by a combination of oil and hydrogen. Other fuel options, like methanol or ammonia, are currently not included in PyPSA-Eur-Sec. The share of shipping that is assumed to be supplied by hydrogen can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L198>`__.
Shipping energy demand is covered by a combination of oil, hydrogen and methanol. Other fuel options, like ammonia, are currently not included in PyPSA-Eur-Sec. The share of shipping that is assumed to be supplied by hydrogen or methanol can be selected in the `config file <https://github.com/PyPSA/pypsa-eur/blob/master/config/config.default.yaml#L475>`__.
To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`__, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`__.
@ -581,6 +580,8 @@ The consumed hydrogen comes from the general hydrogen bus where it can be produc
The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`__. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`__.
The consumed methanol comes from the general methanol bus where it is produced through methanolisation (see :ref:`Chemicals Industry`).
.. _Carbon dioxide capture, usage and sequestration (CCU/S):
Carbon dioxide capture, usage and sequestration (CCU/S)

View File

@ -32,10 +32,9 @@ configuration, execute
.. code:: bash
:class: full-width
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_Co2L-24H.nc --configfile config/test/config.electricity.yaml
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_.nc --configfile config/test/config.electricity.yaml
This configuration is set to download a reduced data set via the rules :mod:`retrieve_databundle`,
:mod:`retrieve_natura_raster`, :mod:`retrieve_cutout`.
This configuration is set to download a reduced cutout via the rule :mod:`retrieve_cutout`.
For more information on the data dependencies of PyPSA-Eur, continue reading :ref:`data`.
How to configure runs?
@ -115,9 +114,9 @@ clustered down to 6 buses and every 24 hours aggregated to one snapshot. The com
.. code:: bash
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_Co2L-24H.nc --configfile config/test/config.electricity.yaml
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_.nc --configfile config/test/config.electricity.yaml
orders ``snakemake`` to run the rule :mod:`solve_network` that produces the solved network and stores it in ``results/networks`` with the name ``elec_s_6_ec_lcopt_Co2L-24H.nc``:
orders ``snakemake`` to run the rule :mod:`solve_network` that produces the solved network and stores it in ``results/networks`` with the name ``elec_s_6_ec_lcopt_.nc``:
.. literalinclude:: ../rules/solve_electricity.smk
:start-at: rule solve_network:
@ -133,89 +132,75 @@ This triggers a workflow of multiple preceding jobs that depend on each rule's i
graph[bgcolor=white, margin=0];
node[shape=box, style=rounded, fontname=sans, fontsize=10, penwidth=2];
edge[penwidth=2, color=grey];
0[label = "solve_network", color = "0.39 0.6 0.85", style="rounded"];
1[label = "prepare_network\nll: copt\nopts: Co2L-24H", color = "0.29 0.6 0.85", style="rounded"];
2[label = "add_extra_components", color = "0.28 0.6 0.85", style="rounded"];
3[label = "cluster_network\nclusters: 6", color = "0.19 0.6 0.85", style="rounded"];
4[label = "simplify_network\nsimpl: ", color = "0.01 0.6 0.85", style="rounded"];
5[label = "add_electricity", color = "0.49 0.6 0.85", style="rounded"];
6[label = "build_renewable_profiles\ntechnology: solar", color = "0.21 0.6 0.85", style="rounded"];
7[label = "base_network", color = "0.27 0.6 0.85", style="rounded"];
8[label = "build_shapes", color = "0.26 0.6 0.85", style="rounded"];
9[label = "retrieve_databundle", color = "0.59 0.6 0.85", style="rounded"];
10[label = "retrieve_natura_raster", color = "0.47 0.6 0.85", style="rounded"];
11[label = "build_bus_regions", color = "0.13 0.6 0.85", style="rounded"];
12[label = "retrieve_cutout\ncutout: be-03-2013-era5", color = "0.36 0.6 0.85", style="rounded,dashed"];
13[label = "build_renewable_profiles\ntechnology: onwind", color = "0.21 0.6 0.85", style="rounded"];
14[label = "build_renewable_profiles\ntechnology: offwind-ac", color = "0.21 0.6 0.85", style="rounded"];
15[label = "build_ship_raster", color = "0.00 0.6 0.85", style="rounded"];
16[label = "retrieve_ship_raster", color = "0.51 0.6 0.85", style="rounded,dashed"];
17[label = "build_renewable_profiles\ntechnology: offwind-dc", color = "0.21 0.6 0.85", style="rounded"];
18[label = "build_line_rating", color = "0.05 0.6 0.85", style="rounded"];
19[label = "retrieve_cost_data\nyear: 2030", color = "0.15 0.6 0.85", style="rounded"];
20[label = "build_powerplants", color = "0.54 0.6 0.85", style="rounded"];
21[label = "build_electricity_demand", color = "0.52 0.6 0.85", style="rounded"];
22[label = "retrieve_electricity_demand", color = "0.22 0.6 0.85", style="rounded"];
23[label = "copy_config", color = "0.44 0.6 0.85", style="rounded"];
0[label = "solve_network", color = "0.38 0.6 0.85", style="rounded"];
1[label = "prepare_network\nll: copt", color = "0.53 0.6 0.85", style="rounded"];
2[label = "add_extra_components", color = "0.01 0.6 0.85", style="rounded"];
3[label = "cluster_network\nclusters: 6", color = "0.03 0.6 0.85", style="rounded"];
4[label = "simplify_network\nsimpl: ", color = "0.42 0.6 0.85", style="rounded"];
5[label = "add_electricity", color = "0.10 0.6 0.85", style="rounded"];
6[label = "build_renewable_profiles\ntechnology: solar", color = "0.50 0.6 0.85", style="rounded"];
7[label = "base_network", color = "0.22 0.6 0.85", style="rounded"];
8[label = "build_shapes", color = "0.44 0.6 0.85", style="rounded"];
9[label = "retrieve_databundle", color = "0.29 0.6 0.85", style="rounded"];
10[label = "retrieve_cutout\ncutout: be-03-2013-era5", color = "0.49 0.6 0.85", style="rounded"];
11[label = "build_renewable_profiles\ntechnology: onwind", color = "0.50 0.6 0.85", style="rounded"];
12[label = "build_renewable_profiles\ntechnology: offwind-ac", color = "0.50 0.6 0.85", style="rounded"];
13[label = "build_ship_raster", color = "0.19 0.6 0.85", style="rounded"];
14[label = "retrieve_ship_raster", color = "0.35 0.6 0.85", style="rounded"];
15[label = "build_renewable_profiles\ntechnology: offwind-dc", color = "0.50 0.6 0.85", style="rounded"];
16[label = "build_line_rating", color = "0.60 0.6 0.85", style="rounded"];
17[label = "retrieve_cost_data\nyear: 2030", color = "0.59 0.6 0.85", style="rounded"];
18[label = "build_powerplants", color = "0.06 0.6 0.85", style="rounded"];
19[label = "build_electricity_demand", color = "0.13 0.6 0.85", style="rounded"];
20[label = "retrieve_electricity_demand", color = "0.49 0.6 0.85", style="rounded"];
21[label = "retrieve_synthetic_electricity_demand", color = "0.41 0.6 0.85", style="rounded"];
1 -> 0
23 -> 0
2 -> 1
19 -> 1
17 -> 1
3 -> 2
19 -> 2
17 -> 2
4 -> 3
19 -> 3
17 -> 3
5 -> 4
19 -> 4
11 -> 4
17 -> 4
7 -> 4
6 -> 5
13 -> 5
14 -> 5
17 -> 5
11 -> 5
12 -> 5
15 -> 5
7 -> 5
16 -> 5
17 -> 5
18 -> 5
19 -> 5
11 -> 5
20 -> 5
9 -> 5
21 -> 5
8 -> 5
7 -> 6
9 -> 6
10 -> 6
8 -> 6
11 -> 6
12 -> 6
10 -> 6
8 -> 7
9 -> 8
8 -> 11
7 -> 11
7 -> 13
9 -> 13
9 -> 11
8 -> 11
10 -> 11
7 -> 12
9 -> 12
13 -> 12
8 -> 12
10 -> 12
14 -> 13
10 -> 13
8 -> 13
11 -> 13
12 -> 13
7 -> 14
9 -> 14
10 -> 14
15 -> 14
8 -> 14
11 -> 14
12 -> 14
16 -> 15
12 -> 15
7 -> 17
9 -> 17
10 -> 17
15 -> 17
8 -> 17
11 -> 17
12 -> 17
7 -> 15
9 -> 15
13 -> 15
8 -> 15
10 -> 15
7 -> 16
10 -> 16
7 -> 18
12 -> 18
7 -> 20
22 -> 21
20 -> 19
21 -> 19
}
|
@ -227,11 +212,10 @@ In the terminal, this will show up as a list of jobs to be run:
Building DAG of jobs...
Job stats:
job count
--------------------------- -------
------------------------------------- -------
add_electricity 1
add_extra_components 1
base_network 1
build_bus_regions 1
build_electricity_demand 1
build_line_rating 1
build_powerplants 1
@ -239,12 +223,13 @@ In the terminal, this will show up as a list of jobs to be run:
build_shapes 1
build_ship_raster 1
cluster_network 1
copy_config 1
prepare_network 1
retrieve_cost_data 1
retrieve_cutout 1
retrieve_databundle 1
retrieve_electricity_demand 1
retrieve_natura_raster 1
retrieve_ship_raster 1
retrieve_synthetic_electricity_demand 1
simplify_network 1
solve_network 1
total 22
@ -283,7 +268,7 @@ For example, you can explore the evolution of the PyPSA networks by running
#. ``snakemake resources/networks/elec.nc -call --configfile config/test/config.electricity.yaml``
#. ``snakemake resources/networks/elec_s.nc -call --configfile config/test/config.electricity.yaml``
#. ``snakemake resources/networks/elec_s_6.nc -call --configfile config/test/config.electricity.yaml``
#. ``snakemake resources/networks/elec_s_6_ec_lcopt_Co2L-24H.nc -call --configfile config/test/config.electricity.yaml``
#. ``snakemake resources/networks/elec_s_6_ec_lcopt_.nc -call --configfile config/test/config.electricity.yaml``
To run all combinations of wildcard values provided in the ``config/config.yaml`` under ``scenario:``,
you can use the collection rule ``solve_elec_networks``.
@ -321,6 +306,6 @@ Jupyter Notebooks).
import pypsa
n = pypsa.Network("results/networks/elec_s_6_ec_lcopt_Co2L-24H.nc")
n = pypsa.Network("results/networks/elec_s_6_ec_lcopt_.nc")
For inspiration, read the `examples section in the PyPSA documentation <https://pypsa.readthedocs.io/en/latest/examples-basic.html>`__.

File diff suppressed because it is too large Load Diff

View File

@ -29,11 +29,11 @@ Results
By the time of writing the comparison with the historical data shows partially accurate, partially improvable results. The following figures show the comparison of the dispatch of the different carriers.
.. image:: ../graphics/validation_seasonal_operation_area_elec_s_37_ec_lv1.0_Ept.png
.. image:: img/validation_seasonal_operation_area_elec_s_37_ec_lv1.0_Ept.png
:width: 100%
:align: center
.. image:: ../graphics/validation_production_bar_elec_s_37_ec_lv1.0_Ept.png
.. image:: img/validation_production_bar_elec_s_37_ec_lv1.0_Ept.png
:width: 100%
:align: center

View File

@ -35,8 +35,8 @@ The ``{technology}`` wildcard
The ``{technology}`` wildcard specifies for which renewable energy technology to produce availability time
series and potentials using the rule :mod:`build_renewable_profiles`.
It can take the values ``onwind``, ``offwind-ac``, ``offwind-dc``, and ``solar`` but **not** ``hydro``
(since hydroelectric plant profiles are created by a different rule).
It can take the values ``onwind``, ``offwind-ac``, ``offwind-dc``, ``offwind-float``, and ``solar`` but **not** ``hydro``
(since hydroelectric plant profiles are created by a different rule)``
.. _simpl:
@ -101,7 +101,7 @@ The ``{opts}`` wildcard
The ``{opts}`` wildcard is used for electricity-only studies. It triggers
optional constraints, which are activated in either :mod:`prepare_network` or
the :mod:`solve_network` step. It may hold multiple triggers separated by ``-``,
i.e. ``Co2L-3H`` contains the ``Co2L`` trigger and the ``3H`` switch. There are
i.e. ``Co2L-3h`` contains the ``Co2L`` trigger and the ``3h`` switch. There are
currently:
@ -121,7 +121,7 @@ The ``{sector_opts}`` wildcard
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
# xH is the temporal resolution; 3h is 3-hourly, i.e. one snapshot every 3 hours
# single letters are sectors: T for land transport, H for building heating,
# B for biomass supply, I for industry, shipping and aviation,
# A for agriculture, forestry and fishing

View File

@ -7,440 +7,466 @@ channels:
- bioconda
- http://conda.anaconda.org/gurobi
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1
- _openmp_mutex=4.5
- affine=2.4.0
- alsa-lib=1.2.10
- ampl-mp=3.1.0
- amply=0.1.6
- appdirs=1.4.4
- asttokens=2.4.1
- atk-1.0=2.38.0
- atlite=0.2.12
- attr=2.5.1
- attrs=23.2.0
- aws-c-auth=0.7.15
- aws-c-cal=0.6.9
- aws-c-common=0.9.12
- aws-c-compression=0.2.17
- aws-c-event-stream=0.4.1
- aws-c-http=0.8.0
- aws-c-io=0.14.3
- aws-c-mqtt=0.10.1
- aws-c-s3=0.5.0
- aws-c-sdkutils=0.1.14
- aws-checksums=0.1.17
- aws-crt-cpp=0.26.1
- aws-sdk-cpp=1.11.242
- azure-core-cpp=1.10.3
- azure-storage-blobs-cpp=12.10.0
- azure-storage-common-cpp=12.5.0
- beautifulsoup4=4.12.3
- blosc=1.21.5
- bokeh=3.3.4
- bottleneck=1.3.7
- branca=0.7.1
- brotli=1.1.0
- brotli-bin=1.1.0
- brotli-python=1.1.0
- bzip2=1.0.8
- c-ares=1.26.0
- c-blosc2=2.13.2
- ca-certificates=2024.2.2
- cairo=1.18.0
- cartopy=0.22.0
- cdsapi=0.6.1
- certifi=2024.2.2
- cffi=1.16.0
- cfgv=3.3.1
- cfitsio=4.3.1
- cftime=1.6.3
- charset-normalizer=3.3.2
- click=8.1.7
- click-plugins=1.1.1
- cligj=0.7.2
- cloudpickle=3.0.0
- coin-or-cbc=2.10.10
- coin-or-cgl=0.60.7
- coin-or-clp=1.17.8
- coin-or-osi=0.108.8
- coin-or-utils=2.11.9
- coincbc=2.10.10
- colorama=0.4.6
- configargparse=1.7
- connection_pool=0.0.3
- contourpy=1.2.0
- country_converter=1.2
- cppad=20240000.2
- cycler=0.12.1
- cytoolz=0.12.3
- dask=2024.2.0
- dask-core=2024.2.0
- datrie=0.8.2
- dbus=1.13.6
- decorator=5.1.1
- deprecation=2.1.0
- descartes=1.1.0
- distlib=0.3.8
- distributed=2024.2.0
- distro=1.9.0
- docutils=0.20.1
- dpath=2.1.6
- entsoe-py=0.6.6
- et_xmlfile=1.1.0
- exceptiongroup=1.2.0
- executing=2.0.1
- expat=2.5.0
- filelock=3.13.1
- fiona=1.9.5
- folium=0.15.1
- font-ttf-dejavu-sans-mono=2.37
- font-ttf-inconsolata=3.000
- font-ttf-source-code-pro=2.038
- font-ttf-ubuntu=0.83
- fontconfig=2.14.2
- fonts-conda-ecosystem=1
- fonts-conda-forge=1
- fonttools=4.49.0
- freetype=2.12.1
- freexl=2.0.0
- fribidi=1.0.10
- fsspec=2024.2.0
- gdal=3.8.4
- gdk-pixbuf=2.42.10
- geographiclib=1.52
- geojson-rewind=1.1.0
- geopandas=0.14.3
- geopandas-base=0.14.3
- geopy=2.4.1
- geos=3.12.1
- geotiff=1.7.1
- gettext=0.21.1
- gflags=2.2.2
- giflib=5.2.1
- gitdb=4.0.11
- gitpython=3.1.42
- glib=2.78.4
- glib-tools=2.78.4
- glog=0.6.0
- glpk=5.0
- gmp=6.3.0
- graphite2=1.3.13
- graphviz=9.0.0
- gst-plugins-base=1.22.9
- gstreamer=1.22.9
- gtk2=2.24.33
- gts=0.7.6
- harfbuzz=8.3.0
- hdf4=4.2.15
- hdf5=1.14.3
- humanfriendly=10.0
- icu=73.2
- identify=2.5.35
- idna=3.6
- importlib-metadata=7.0.1
- importlib_metadata=7.0.1
- importlib_resources=6.1.1
- iniconfig=2.0.0
- ipopt=3.14.14
- ipython=8.21.0
- jedi=0.19.1
- jinja2=3.1.3
- joblib=1.3.2
- json-c=0.17
- jsonschema=4.21.1
- jsonschema-specifications=2023.12.1
- jupyter_core=5.7.1
- kealib=1.5.3
- keyutils=1.6.1
- kiwisolver=1.4.5
- krb5=1.21.2
- lame=3.100
- lcms2=2.16
- ld_impl_linux-64=2.40
- lerc=4.0.0
- libabseil=20230802.1
- libaec=1.1.2
- libarchive=3.7.2
- libarrow=15.0.0
- libarrow-acero=15.0.0
- libarrow-dataset=15.0.0
- libarrow-flight=15.0.0
- libarrow-flight-sql=15.0.0
- libarrow-gandiva=15.0.0
- libarrow-substrait=15.0.0
- libblas=3.9.0
- libboost-headers=1.84.0
- libbrotlicommon=1.1.0
- libbrotlidec=1.1.0
- libbrotlienc=1.1.0
- libcap=2.69
- libcblas=3.9.0
- libclang=15.0.7
- libclang13=15.0.7
- libcrc32c=1.1.2
- libcups=2.3.3
- libcurl=8.5.0
- libdeflate=1.19
- libedit=3.1.20191231
- libev=4.33
- libevent=2.1.12
- libexpat=2.5.0
- libffi=3.4.2
- libflac=1.4.3
- libgcc-ng=13.2.0
- libgcrypt=1.10.3
- libgd=2.3.3
- libgdal=3.8.4
- libgfortran-ng=13.2.0
- libgfortran5=13.2.0
- libglib=2.78.4
- libgomp=13.2.0
- libgoogle-cloud=2.12.0
- libgpg-error=1.47
- libgrpc=1.60.1
- libhwloc=2.9.3
- libiconv=1.17
- libjpeg-turbo=3.0.0
- libkml=1.3.0
- liblapack=3.9.0
- liblapacke=3.9.0
- libllvm15=15.0.7
- libnetcdf=4.9.2
- libnghttp2=1.58.0
- libnl=3.9.0
- libnsl=2.0.1
- libnuma=2.0.16
- libogg=1.3.4
- libopenblas=0.3.26
- libopus=1.3.1
- libparquet=15.0.0
- libpng=1.6.42
- libpq=16.2
- libprotobuf=4.25.1
- libre2-11=2023.06.02
- librsvg=2.56.3
- librttopo=1.1.0
- libscotch=7.0.4
- libsndfile=1.2.2
- libspatialindex=1.9.3
- libspatialite=5.1.0
- libspral=2023.09.07
- libsqlite=3.45.1
- libssh2=1.11.0
- libstdcxx-ng=13.2.0
- libsystemd0=255
- libthrift=0.19.0
- libtiff=4.6.0
- libutf8proc=2.8.0
- libuuid=2.38.1
- libvorbis=1.3.7
- libwebp=1.3.2
- libwebp-base=1.3.2
- libxcb=1.15
- libxcrypt=4.4.36
- libxkbcommon=1.6.0
- libxml2=2.12.5
- libxslt=1.1.39
- libzip=1.10.1
- libzlib=1.2.13
- linopy=0.3.4
- locket=1.0.0
- lxml=5.1.0
- lz4=4.3.3
- lz4-c=1.9.4
- lzo=2.10
- mapclassify=2.6.1
- markupsafe=2.1.5
- matplotlib=3.8.3
- matplotlib-base=3.8.3
- matplotlib-inline=0.1.6
- memory_profiler=0.61.0
- metis=5.1.0
- minizip=4.0.4
- mpg123=1.32.4
- msgpack-python=1.0.7
- mumps-include=5.6.2
- mumps-seq=5.6.2
- munkres=1.1.4
- mysql-common=8.0.33
- mysql-libs=8.0.33
- nbformat=5.9.2
- ncurses=6.4
- netcdf4=1.6.5
- networkx=3.2.1
- nodeenv=1.8.0
- nomkl=1.0
- nspr=4.35
- nss=3.98
- numexpr=2.9.0
- numpy=1.26.4
- openjdk=21.0.2
- openjpeg=2.5.0
- openpyxl=3.1.2
- openssl=3.2.1
- orc=1.9.2
- packaging=23.2
- pandas=2.2.0
- pango=1.50.14
- parso=0.8.3
- partd=1.4.1
- patsy=0.5.6
- pcre2=10.42
- pexpect=4.9.0
- pickleshare=0.7.5
- pillow=10.2.0
- pip=24.0
- pixman=0.43.2
- pkgutil-resolve-name=1.3.10
- plac=1.4.2
- platformdirs=4.2.0
- pluggy=1.4.0
- ply=3.11
- poppler=24.02.0
- poppler-data=0.4.12
- postgresql=16.2
- powerplantmatching=0.5.11
- pre-commit=3.6.2
- progressbar2=4.3.2
- proj=9.3.1
- prompt-toolkit=3.0.42
- psutil=5.9.8
- pthread-stubs=0.4
- ptyprocess=0.7.0
- pulp=2.7.0
- pulseaudio-client=16.1
- pure_eval=0.2.2
- py-cpuinfo=9.0.0
- pyarrow=15.0.0
- pyarrow-hotfix=0.6
- pycountry=22.3.5
- pycparser=2.21
- pygments=2.17.2
- pyomo=6.6.1
- pyparsing=3.1.1
- pyproj=3.6.1
- pypsa=0.27.0
- pyqt=5.15.9
- pyqt5-sip=12.12.2
- pyscipopt=4.4.0
- pyshp=2.3.1
- pysocks=1.7.1
- pytables=3.9.2
- pytest=8.0.0
- python=3.11.8
- python-dateutil=2.8.2
- python-fastjsonschema=2.19.1
- python-tzdata=2024.1
- python-utils=3.8.2
- python_abi=3.11
- pytz=2024.1
- pyxlsb=1.0.10
- pyyaml=6.0.1
- qt-main=5.15.8
- rasterio=1.3.9
- rdma-core=50.0
- re2=2023.06.02
- readline=8.2
- referencing=0.33.0
- requests=2.31.0
- reretry=0.11.8
- rioxarray=0.15.1
- rpds-py=0.18.0
- rtree=1.2.0
- s2n=1.4.3
- scikit-learn=1.4.1.post1
- scip=8.1.0
- scipy=1.12.0
- scotch=7.0.4
- seaborn=0.13.2
- seaborn-base=0.13.2
- setuptools=69.1.0
- setuptools-scm=8.0.4
- setuptools_scm=8.0.4
- shapely=2.0.2
- sip=6.7.12
- six=1.16.0
- smart_open=6.4.0
- smmap=5.0.0
- snakemake-minimal=7.32.4
- snappy=1.1.10
- snuggs=1.4.7
- sortedcontainers=2.4.0
- soupsieve=2.5
- sqlite=3.45.1
- stack_data=0.6.2
- statsmodels=0.14.1
- stopit=1.1.2
- tabula-py=2.7.0
- tabulate=0.9.0
- tbb=2021.11.0
- tblib=3.0.0
- threadpoolctl=3.3.0
- throttler=1.2.2
- tiledb=2.20.0
- tk=8.6.13
- toml=0.10.2
- tomli=2.0.1
- toolz=0.12.1
- toposort=1.10
- tornado=6.3.3
- tqdm=4.66.2
- traitlets=5.14.1
- typing-extensions=4.9.0
- typing_extensions=4.9.0
- tzcode=2024a
- tzdata=2024a
- ucx=1.15.0
- ukkonen=1.0.1
- unidecode=1.3.8
- unixodbc=2.3.12
- uriparser=0.9.7
- urllib3=2.2.1
- validators=0.22.0
- virtualenv=20.25.0
- wcwidth=0.2.13
- wheel=0.42.0
- wrapt=1.16.0
- xarray=2024.2.0
- xcb-util=0.4.0
- xcb-util-image=0.4.0
- xcb-util-keysyms=0.4.0
- xcb-util-renderutil=0.3.9
- xcb-util-wm=0.4.1
- xerces-c=3.2.5
- xkeyboard-config=2.41
- xlrd=2.0.1
- xorg-fixesproto=5.0
- xorg-inputproto=2.3.2
- xorg-kbproto=1.0.7
- xorg-libice=1.1.1
- xorg-libsm=1.2.4
- xorg-libx11=1.8.7
- xorg-libxau=1.0.11
- xorg-libxdmcp=1.1.3
- xorg-libxext=1.3.4
- xorg-libxfixes=5.0.3
- xorg-libxi=1.7.10
- xorg-libxrender=0.9.11
- xorg-libxt=1.3.0
- xorg-libxtst=1.2.3
- xorg-recordproto=1.14.2
- xorg-renderproto=0.11.1
- xorg-xextproto=7.3.0
- xorg-xf86vidmodeproto=2.3.1
- xorg-xproto=7.0.31
- xyzservices=2023.10.1
- xz=5.2.6
- yaml=0.2.5
- yte=1.5.4
- zict=3.0.0
- zipp=3.17.0
- zlib=1.2.13
- zlib-ng=2.0.7
- zstd=1.5.5
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- affine=2.4.0=pyhd8ed1ab_0
- alsa-lib=1.2.11=hd590300_1
- ampl-mp=3.1.0=h2cc385e_1006
- amply=0.1.6=pyhd8ed1ab_0
- appdirs=1.4.4=pyh9f0ad1d_0
- argparse-dataclass=2.0.0=pyhd8ed1ab_0
- asttokens=2.4.1=pyhd8ed1ab_0
- atk-1.0=2.38.0=h04ea711_2
- atlite=0.2.12=pyhd8ed1ab_0
- attr=2.5.1=h166bdaf_1
- attrs=23.2.0=pyh71513ae_0
- aws-c-auth=0.7.18=he0b1f16_0
- aws-c-cal=0.6.11=heb1d5e4_0
- aws-c-common=0.9.15=hd590300_0
- aws-c-compression=0.2.18=hce8ee76_3
- aws-c-event-stream=0.4.2=h01f5eca_8
- aws-c-http=0.8.1=hdb68c23_10
- aws-c-io=0.14.7=hbfbeace_6
- aws-c-mqtt=0.10.4=h50844eb_0
- aws-c-s3=0.5.7=h6be9164_2
- aws-c-sdkutils=0.1.15=hce8ee76_3
- aws-checksums=0.1.18=hce8ee76_3
- aws-crt-cpp=0.26.8=h2150271_2
- aws-sdk-cpp=1.11.267=hddb5a97_7
- azure-core-cpp=1.11.1=h91d86a7_1
- azure-identity-cpp=1.6.0=hf1915f5_1
- azure-storage-blobs-cpp=12.10.0=h00ab1b0_1
- azure-storage-common-cpp=12.5.0=h94269e2_4
- beautifulsoup4=4.12.3=pyha770c72_0
- blosc=1.21.5=hc2324a3_1
- bokeh=3.4.1=pyhd8ed1ab_0
- bottleneck=1.3.8=py311h1f0f07a_0
- branca=0.7.2=pyhd8ed1ab_0
- brotli=1.1.0=hd590300_1
- brotli-bin=1.1.0=hd590300_1
- brotli-python=1.1.0=py311hb755f60_1
- bzip2=1.0.8=hd590300_5
- c-ares=1.28.1=hd590300_0
- c-blosc2=2.14.4=hb4ffafa_1
- ca-certificates=2024.2.2=hbcca054_0
- cads-api-client=1.0.0=pyhd8ed1ab_0
- cairo=1.18.0=h3faef2a_0
- cartopy=0.23.0=py311h320fe9a_0
- cdsapi=0.7.0=pyhd8ed1ab_0
- certifi=2024.2.2=pyhd8ed1ab_0
- cffi=1.16.0=py311hb3a22ac_0
- cfgv=3.3.1=pyhd8ed1ab_0
- cfitsio=4.4.0=hbdc6101_1
- cftime=1.6.3=py311h1f0f07a_0
- charset-normalizer=3.3.2=pyhd8ed1ab_0
- click=8.1.7=unix_pyh707e725_0
- click-plugins=1.1.1=py_0
- cligj=0.7.2=pyhd8ed1ab_1
- cloudpickle=3.0.0=pyhd8ed1ab_0
- coin-or-cbc=2.10.10=h9002f0b_0
- coin-or-cgl=0.60.7=h516709c_0
- coin-or-clp=1.17.8=h1ee7a9c_0
- coin-or-osi=0.108.10=haf5fa05_0
- coin-or-utils=2.11.11=hee58242_0
- coincbc=2.10.10=0_metapackage
- colorama=0.4.6=pyhd8ed1ab_0
- conda-inject=1.3.1=pyhd8ed1ab_0
- configargparse=1.7=pyhd8ed1ab_0
- connection_pool=0.0.3=pyhd3deb0d_0
- contourpy=1.2.1=py311h9547e67_0
- country_converter=1.2=pyhd8ed1ab_0
- cppad=20240000.4=h59595ed_0
- cycler=0.12.1=pyhd8ed1ab_0
- cytoolz=0.12.3=py311h459d7ec_0
- dask=2024.4.2=pyhd8ed1ab_0
- dask-core=2024.4.2=pyhd8ed1ab_0
- dask-expr=1.0.14=pyhd8ed1ab_0
- datrie=0.8.2=py311h459d7ec_7
- dbus=1.13.6=h5008d03_3
- decorator=5.1.1=pyhd8ed1ab_0
- deprecation=2.1.0=pyh9f0ad1d_0
- descartes=1.1.0=py_4
- distlib=0.3.8=pyhd8ed1ab_0
- distributed=2024.4.2=pyhd8ed1ab_0
- distro=1.9.0=pyhd8ed1ab_0
- docutils=0.21.2=pyhd8ed1ab_0
- dpath=2.1.6=pyha770c72_0
- entsoe-py=0.6.7=pyhd8ed1ab_0
- et_xmlfile=1.1.0=pyhd8ed1ab_0
- exceptiongroup=1.2.0=pyhd8ed1ab_2
- executing=2.0.1=pyhd8ed1ab_0
- expat=2.6.2=h59595ed_0
- filelock=3.14.0=pyhd8ed1ab_0
- fiona=1.9.6=py311hf8e0aa6_0
- fmt=10.2.1=h00ab1b0_0
- folium=0.16.0=pyhd8ed1ab_0
- font-ttf-dejavu-sans-mono=2.37=hab24e00_0
- font-ttf-inconsolata=3.000=h77eed37_0
- font-ttf-source-code-pro=2.038=h77eed37_0
- font-ttf-ubuntu=0.83=h77eed37_2
- fontconfig=2.14.2=h14ed4e7_0
- fonts-conda-ecosystem=1=0
- fonts-conda-forge=1=0
- fonttools=4.51.0=py311h459d7ec_0
- freetype=2.12.1=h267a509_2
- freexl=2.0.0=h743c826_0
- fribidi=1.0.10=h36c2ea0_0
- fsspec=2024.3.1=pyhca7485f_0
- gdal=3.8.5=py311hd032c08_2
- gdk-pixbuf=2.42.11=hb9ae30d_0
- geographiclib=2.0=pyhd8ed1ab_0
- geojson-rewind=1.1.0=pyhd8ed1ab_0
- geopandas=0.14.4=pyhd8ed1ab_0
- geopandas-base=0.14.4=pyha770c72_0
- geopy=2.4.1=pyhd8ed1ab_1
- geos=3.12.1=h59595ed_0
- geotiff=1.7.1=h6cf1f90_16
- gettext=0.22.5=h59595ed_2
- gettext-tools=0.22.5=h59595ed_2
- gflags=2.2.2=he1b5a44_1004
- giflib=5.2.2=hd590300_0
- gitdb=4.0.11=pyhd8ed1ab_0
- gitpython=3.1.43=pyhd8ed1ab_0
- glib=2.80.0=hf2295e7_6
- glib-tools=2.80.0=hde27a5a_6
- glog=0.7.0=hed5481d_0
- glpk=5.0=h445213a_0
- gmp=6.3.0=h59595ed_1
- graphite2=1.3.13=h59595ed_1003
- graphviz=9.0.0=h78e8752_1
- gst-plugins-base=1.24.1=hfa15dee_2
- gstreamer=1.24.1=h98fc4e7_2
- gtk2=2.24.33=h280cfa0_4
- gts=0.7.6=h977cf35_4
- harfbuzz=8.4.0=h3d44ed6_0
- hdf4=4.2.15=h2a13503_7
- hdf5=1.14.3=nompi_h4f84152_101
- humanfriendly=10.0=pyhd8ed1ab_6
- icu=73.2=h59595ed_0
- identify=2.5.36=pyhd8ed1ab_0
- idna=3.7=pyhd8ed1ab_0
- immutables=0.20=py311h459d7ec_1
- importlib-metadata=7.1.0=pyha770c72_0
- importlib_metadata=7.1.0=hd8ed1ab_0
- importlib_resources=6.4.0=pyhd8ed1ab_0
- iniconfig=2.0.0=pyhd8ed1ab_0
- ipopt=3.14.16=hf967516_0
- ipython=8.22.2=pyh707e725_0
- jedi=0.19.1=pyhd8ed1ab_0
- jinja2=3.1.3=pyhd8ed1ab_0
- joblib=1.4.2=pyhd8ed1ab_0
- json-c=0.17=h7ab15ed_0
- jsonschema=4.22.0=pyhd8ed1ab_0
- jsonschema-specifications=2023.12.1=pyhd8ed1ab_0
- jupyter_core=5.7.2=py311h38be061_0
- kealib=1.5.3=h2f55d51_0
- keyutils=1.6.1=h166bdaf_0
- kiwisolver=1.4.5=py311h9547e67_1
- krb5=1.21.2=h659d440_0
- lame=3.100=h166bdaf_1003
- lcms2=2.16=hb7c19ff_0
- ld_impl_linux-64=2.40=h55db66e_0
- lerc=4.0.0=h27087fc_0
- libabseil=20240116.2=cxx17_h59595ed_0
- libaec=1.1.3=h59595ed_0
- libarchive=3.7.2=h2aa1ff5_1
- libarrow=15.0.2=hefa796f_6_cpu
- libarrow-acero=15.0.2=hbabe93e_6_cpu
- libarrow-dataset=15.0.2=hbabe93e_6_cpu
- libarrow-flight=15.0.2=hc4f8a93_6_cpu
- libarrow-flight-sql=15.0.2=he4f5ca8_6_cpu
- libarrow-gandiva=15.0.2=hc1954e9_6_cpu
- libarrow-substrait=15.0.2=he4f5ca8_6_cpu
- libasprintf=0.22.5=h661eb56_2
- libasprintf-devel=0.22.5=h661eb56_2
- libblas=3.9.0=22_linux64_openblas
- libboost-headers=1.84.0=ha770c72_2
- libbrotlicommon=1.1.0=hd590300_1
- libbrotlidec=1.1.0=hd590300_1
- libbrotlienc=1.1.0=hd590300_1
- libcap=2.69=h0f662aa_0
- libcblas=3.9.0=22_linux64_openblas
- libclang-cpp15=15.0.7=default_h127d8a8_5
- libclang13=18.1.4=default_h5d6823c_0
- libcrc32c=1.1.2=h9c3ff4c_0
- libcups=2.3.3=h4637d8d_4
- libcurl=8.7.1=hca28451_0
- libdeflate=1.20=hd590300_0
- libedit=3.1.20191231=he28a2e2_2
- libev=4.33=hd590300_2
- libevent=2.1.12=hf998b51_1
- libexpat=2.6.2=h59595ed_0
- libffi=3.4.2=h7f98852_5
- libflac=1.4.3=h59595ed_0
- libgcc-ng=13.2.0=h77fa898_6
- libgcrypt=1.10.3=hd590300_0
- libgd=2.3.3=h119a65a_9
- libgdal=3.8.5=hf9625ee_2
- libgettextpo=0.22.5=h59595ed_2
- libgettextpo-devel=0.22.5=h59595ed_2
- libgfortran-ng=13.2.0=h69a702a_6
- libgfortran5=13.2.0=h43f5ff8_6
- libglib=2.80.0=hf2295e7_6
- libgomp=13.2.0=h77fa898_6
- libgoogle-cloud=2.23.0=h9be4e54_1
- libgoogle-cloud-storage=2.23.0=hc7a4891_1
- libgpg-error=1.49=h4f305b6_0
- libgrpc=1.62.2=h15f2491_0
- libhwloc=2.9.3=default_h554bfaf_1009
- libiconv=1.17=hd590300_2
- libjpeg-turbo=3.0.0=hd590300_1
- libkml=1.3.0=h01aab08_1018
- liblapack=3.9.0=22_linux64_openblas
- liblapacke=3.9.0=22_linux64_openblas
- libllvm15=15.0.7=hb3ce162_4
- libllvm16=16.0.6=hb3ce162_3
- libllvm18=18.1.4=h2448989_0
- libnetcdf=4.9.2=nompi_h9612171_113
- libnghttp2=1.58.0=h47da74e_1
- libnl=3.9.0=hd590300_0
- libnsl=2.0.1=hd590300_0
- libogg=1.3.4=h7f98852_1
- libopenblas=0.3.27=pthreads_h413a1c8_0
- libopus=1.3.1=h7f98852_1
- libparquet=15.0.2=hacf5a1f_6_cpu
- libpng=1.6.43=h2797004_0
- libpq=16.2=h33b98f1_1
- libprotobuf=4.25.3=h08a7969_0
- libre2-11=2023.09.01=h5a48ba9_2
- librsvg=2.58.0=hadf69e7_1
- librttopo=1.1.0=h8917695_15
- libscotch=7.0.4=h91e35bf_1
- libsndfile=1.2.2=hc60ed4a_1
- libspatialindex=1.9.3=h9c3ff4c_4
- libspatialite=5.1.0=h6f065fc_5
- libspral=2024.01.18=h6aa6db2_0
- libsqlite=3.45.3=h2797004_0
- libssh2=1.11.0=h0841786_0
- libstdcxx-ng=13.2.0=hc0a3c3a_6
- libsystemd0=255=h3516f8a_1
- libthrift=0.19.0=hb90f79a_1
- libtiff=4.6.0=h1dd3fc0_3
- libutf8proc=2.8.0=h166bdaf_0
- libuuid=2.38.1=h0b41bf4_0
- libvorbis=1.3.7=h9c3ff4c_0
- libwebp=1.4.0=h2c329e2_0
- libwebp-base=1.4.0=hd590300_0
- libxcb=1.15=h0b41bf4_0
- libxcrypt=4.4.36=hd590300_1
- libxkbcommon=1.7.0=h662e7e4_0
- libxml2=2.12.6=h232c23b_2
- libxslt=1.1.39=h76b75d6_0
- libzip=1.10.1=h2629f0a_3
- libzlib=1.2.13=hd590300_5
- linopy=0.3.8=pyhd8ed1ab_0
- locket=1.0.0=pyhd8ed1ab_0
- lxml=5.2.1=py311hc0a218f_0
- lz4=4.3.3=py311h38e4bf4_0
- lz4-c=1.9.4=hcb278e6_0
- lzo=2.10=hd590300_1001
- mapclassify=2.6.1=pyhd8ed1ab_0
- markupsafe=2.1.5=py311h459d7ec_0
- matplotlib=3.8.4=py311h38be061_0
- matplotlib-base=3.8.4=py311h54ef318_0
- matplotlib-inline=0.1.7=pyhd8ed1ab_0
- memory_profiler=0.61.0=pyhd8ed1ab_0
- metis=5.1.0=h59595ed_1007
- minizip=4.0.5=h0ab5242_0
- mpfr=4.2.1=h9458935_1
- mpg123=1.32.6=h59595ed_0
- msgpack-python=1.0.7=py311h9547e67_0
- multiurl=0.3.1=pyhd8ed1ab_0
- mumps-include=5.6.2=ha770c72_4
- mumps-seq=5.6.2=hfef103a_4
- munkres=1.1.4=pyh9f0ad1d_0
- mysql-common=8.3.0=hf1915f5_4
- mysql-libs=8.3.0=hca2cd23_4
- nbformat=5.10.4=pyhd8ed1ab_0
- ncurses=6.4.20240210=h59595ed_0
- netcdf4=1.6.5=nompi_py311he8ad708_100
- networkx=3.3=pyhd8ed1ab_1
- nodeenv=1.8.0=pyhd8ed1ab_0
- nomkl=1.0=h5ca1d4c_0
- nspr=4.35=h27087fc_0
- nss=3.98=h1d7d5a4_0
- numexpr=2.9.0=py311h039bad6_100
- numpy=1.26.4=py311h64a7726_0
- openjdk=22.0.1=hb622114_0
- openjpeg=2.5.2=h488ebb8_0
- openpyxl=3.1.2=py311h459d7ec_1
- openssl=3.3.0=hd590300_0
- orc=2.0.0=h17fec99_1
- packaging=24.0=pyhd8ed1ab_0
- pandas=2.2.2=py311h320fe9a_0
- pango=1.52.2=ha41ecd1_0
- parso=0.8.4=pyhd8ed1ab_0
- partd=1.4.1=pyhd8ed1ab_0
- patsy=0.5.6=pyhd8ed1ab_0
- pcre2=10.43=hcad00b1_0
- pexpect=4.9.0=pyhd8ed1ab_0
- pickleshare=0.7.5=py_1003
- pillow=10.3.0=py311h18e6fac_0
- pip=24.0=pyhd8ed1ab_0
- pixman=0.43.2=h59595ed_0
- pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1
- plac=1.4.3=pyhd8ed1ab_0
- platformdirs=4.2.1=pyhd8ed1ab_0
- pluggy=1.5.0=pyhd8ed1ab_0
- ply=3.11=pyhd8ed1ab_2
- poppler=24.04.0=hb6cd0d7_0
- poppler-data=0.4.12=hd8ed1ab_0
- postgresql=16.2=h82ecc9d_1
- powerplantmatching=0.5.14=pyhd8ed1ab_0
- pre-commit=3.7.0=pyha770c72_0
- progressbar2=4.4.2=pyhd8ed1ab_0
- proj=9.4.0=h1d62c97_1
- prompt-toolkit=3.0.42=pyha770c72_0
- psutil=5.9.8=py311h459d7ec_0
- pthread-stubs=0.4=h36c2ea0_1001
- ptyprocess=0.7.0=pyhd3deb0d_0
- pulp=2.8.0=py311h38be061_0
- pulseaudio-client=17.0=hb77b528_0
- pure_eval=0.2.2=pyhd8ed1ab_0
- py-cpuinfo=9.0.0=pyhd8ed1ab_0
- pyarrow=15.0.2=py311hd5e4297_6_cpu
- pyarrow-hotfix=0.6=pyhd8ed1ab_0
- pycountry=22.3.5=pyhd8ed1ab_0
- pycparser=2.22=pyhd8ed1ab_0
- pygments=2.17.2=pyhd8ed1ab_0
- pyomo=6.6.1=py311hb755f60_0
- pyparsing=3.1.2=pyhd8ed1ab_0
- pyproj=3.6.1=py311hb3a3e68_6
- pypsa=0.27.1=pyhd8ed1ab_0
- pyqt=5.15.9=py311hf0fb5b6_5
- pyqt5-sip=12.12.2=py311hb755f60_5
- pyscipopt=5.0.1=py311hb755f60_0
- pyshp=2.3.1=pyhd8ed1ab_0
- pysocks=1.7.1=pyha2e5f31_6
- pytables=3.9.2=py311h3e8b7c9_2
- pytest=8.2.0=pyhd8ed1ab_0
- python=3.11.9=hb806964_0_cpython
- python-dateutil=2.9.0=pyhd8ed1ab_0
- python-fastjsonschema=2.19.1=pyhd8ed1ab_0
- python-tzdata=2024.1=pyhd8ed1ab_0
- python-utils=3.8.2=pyhd8ed1ab_0
- python_abi=3.11=4_cp311
- pytz=2024.1=pyhd8ed1ab_0
- pyxlsb=1.0.10=pyhd8ed1ab_0
- pyyaml=6.0.1=py311h459d7ec_1
- qt-main=5.15.8=hc9dc06e_21
- rasterio=1.3.10=py311h375a7ea_0
- rdma-core=51.0=hd3aeb46_0
- re2=2023.09.01=h7f4b329_2
- readline=8.2=h8228510_1
- referencing=0.35.1=pyhd8ed1ab_0
- requests=2.31.0=pyhd8ed1ab_0
- reretry=0.11.8=pyhd8ed1ab_0
- rioxarray=0.15.5=pyhd8ed1ab_0
- rpds-py=0.18.0=py311h46250e7_0
- rtree=1.2.0=py311h3bb2b0f_0
- s2n=1.4.12=h06160fa_0
- scikit-learn=1.4.2=py311hc009520_0
- scip=9.0.0=hded5f35_4
- scipy=1.13.0=py311h64a7726_0
- scotch=7.0.4=h23d43cc_1
- seaborn=0.13.2=hd8ed1ab_2
- seaborn-base=0.13.2=pyhd8ed1ab_2
- setuptools=69.5.1=pyhd8ed1ab_0
- setuptools-scm=8.0.4=pyhd8ed1ab_1
- setuptools_scm=8.0.4=hd8ed1ab_1
- shapely=2.0.4=py311h2032efe_0
- sip=6.7.12=py311hb755f60_0
- six=1.16.0=pyh6c4a22f_0
- smart_open=7.0.4=pyhd8ed1ab_0
- smmap=5.0.0=pyhd8ed1ab_0
- snakemake-interface-common=1.17.2=pyhdfd78af_0
- snakemake-interface-executor-plugins=9.1.1=pyhdfd78af_0
- snakemake-interface-report-plugins=1.0.0=pyhdfd78af_0
- snakemake-interface-storage-plugins=3.2.2=pyhdfd78af_0
- snakemake-minimal=8.11.1=pyhdfd78af_0
- snappy=1.2.0=hdb0a2a9_1
- snuggs=1.4.7=py_0
- sortedcontainers=2.4.0=pyhd8ed1ab_0
- soupsieve=2.5=pyhd8ed1ab_1
- spdlog=1.13.0=hd2e6256_0
- sqlite=3.45.3=h2c6b66d_0
- stack_data=0.6.2=pyhd8ed1ab_0
- statsmodels=0.14.1=py311h1f0f07a_0
- stopit=1.1.2=py_0
- tabula-py=2.7.0=py311h38be061_1
- tabulate=0.9.0=pyhd8ed1ab_1
- tbb=2021.11.0=h00ab1b0_1
- tblib=3.0.0=pyhd8ed1ab_0
- threadpoolctl=3.5.0=pyhc1e730c_0
- throttler=1.2.2=pyhd8ed1ab_0
- tiledb=2.22.0=h27f064a_3
- tk=8.6.13=noxft_h4845f30_101
- toml=0.10.2=pyhd8ed1ab_0
- tomli=2.0.1=pyhd8ed1ab_0
- toolz=0.12.1=pyhd8ed1ab_0
- toposort=1.10=pyhd8ed1ab_0
- tornado=6.4=py311h459d7ec_0
- tqdm=4.66.2=pyhd8ed1ab_0
- traitlets=5.14.3=pyhd8ed1ab_0
- typing-extensions=4.11.0=hd8ed1ab_0
- typing_extensions=4.11.0=pyha770c72_0
- tzcode=2024a=h3f72095_0
- tzdata=2024a=h0c530f3_0
- ucx=1.15.0=ha691c75_8
- ukkonen=1.0.1=py311h9547e67_4
- unidecode=1.3.8=pyhd8ed1ab_0
- unixodbc=2.3.12=h661eb56_0
- uriparser=0.9.7=h59595ed_1
- urllib3=2.2.1=pyhd8ed1ab_0
- validators=0.28.1=pyhd8ed1ab_0
- virtualenv=20.26.1=pyhd8ed1ab_0
- wcwidth=0.2.13=pyhd8ed1ab_0
- wheel=0.43.0=pyhd8ed1ab_1
- wrapt=1.16.0=py311h459d7ec_0
- xarray=2024.3.0=pyhd8ed1ab_0
- xcb-util=0.4.0=hd590300_1
- xcb-util-image=0.4.0=h8ee46fc_1
- xcb-util-keysyms=0.4.0=h8ee46fc_1
- xcb-util-renderutil=0.3.9=hd590300_1
- xcb-util-wm=0.4.1=h8ee46fc_1
- xerces-c=3.2.5=hac6953d_0
- xkeyboard-config=2.41=hd590300_0
- xlrd=2.0.1=pyhd8ed1ab_3
- xorg-fixesproto=5.0=h7f98852_1002
- xorg-inputproto=2.3.2=h7f98852_1002
- xorg-kbproto=1.0.7=h7f98852_1002
- xorg-libice=1.1.1=hd590300_0
- xorg-libsm=1.2.4=h7391055_0
- xorg-libx11=1.8.9=h8ee46fc_0
- xorg-libxau=1.0.11=hd590300_0
- xorg-libxdmcp=1.1.3=h7f98852_0
- xorg-libxext=1.3.4=h0b41bf4_2
- xorg-libxfixes=5.0.3=h7f98852_1004
- xorg-libxi=1.7.10=h7f98852_0
- xorg-libxrender=0.9.11=hd590300_0
- xorg-libxt=1.3.0=hd590300_1
- xorg-libxtst=1.2.3=h7f98852_1002
- xorg-recordproto=1.14.2=h7f98852_1002
- xorg-renderproto=0.11.1=h7f98852_1002
- xorg-xextproto=7.3.0=h0b41bf4_1003
- xorg-xf86vidmodeproto=2.3.1=h7f98852_1002
- xorg-xproto=7.0.31=h7f98852_1007
- xyzservices=2024.4.0=pyhd8ed1ab_0
- xz=5.2.6=h166bdaf_0
- yaml=0.2.5=h7f98852_2
- yte=1.5.4=pyha770c72_0
- zict=3.0.0=pyhd8ed1ab_0
- zipp=3.17.0=pyhd8ed1ab_0
- zlib=1.2.13=hd590300_5
- zlib-ng=2.0.7=h0b41bf4_0
- zstd=1.5.5=hfc55251_0
- pip:
- highspy==1.5.3
- oauthlib==3.2.2
- requests-oauthlib==1.3.1
- snakemake-executor-plugin-cluster-generic==1.0.9
- snakemake-executor-plugin-slurm==0.4.5
- snakemake-executor-plugin-slurm-jobstep==0.2.1
- snakemake-storage-plugin-http==0.2.3
- tsam==2.3.1

View File

@ -11,7 +11,7 @@ dependencies:
- pip
- atlite>=0.2.9
- pypsa>=0.26.1
- pypsa>=0.28
- linopy
- dask
@ -20,12 +20,12 @@ dependencies:
- openpyxl!=3.1.1
- pycountry
- seaborn
- snakemake-minimal>=8.5
- snakemake-minimal>=8.11
- memory_profiler
- yaml
- pytables
- lxml
- powerplantmatching>=0.5.5,!=0.5.9
- powerplantmatching>=0.5.15
- numpy
- pandas>=2.1
- geopandas>=0.11.0

Binary file not shown.

Before

Width:  |  Height:  |  Size: 543 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 975 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 664 KiB

View File

@ -86,7 +86,9 @@ rule base_network:
offshore_shapes=resources("offshore_shapes.geojson"),
europe_shape=resources("europe_shape.geojson"),
output:
resources("networks/base.nc"),
base_network=resources("networks/base.nc"),
regions_onshore=resources("regions_onshore.geojson"),
regions_offshore=resources("regions_offshore.geojson"),
log:
logs("base_network.log"),
benchmark:
@ -109,7 +111,7 @@ rule build_shapes:
nuts3=ancient("data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp"),
nuts3pop=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
nuts3gdp=ancient("data/bundle/nama_10r_3gdp.tsv.gz"),
ch_cantons=ancient("data/bundle/ch_cantons.csv"),
ch_cantons=ancient("data/ch_cantons.csv"),
ch_popgdp=ancient("data/bundle/je-e-21.03.02.xls"),
output:
country_shapes=resources("country_shapes.geojson"),
@ -127,27 +129,6 @@ rule build_shapes:
"../scripts/build_shapes.py"
rule build_bus_regions:
params:
countries=config_provider("countries"),
input:
country_shapes=resources("country_shapes.geojson"),
offshore_shapes=resources("offshore_shapes.geojson"),
base_network=resources("networks/base.nc"),
output:
regions_onshore=resources("regions_onshore.geojson"),
regions_offshore=resources("regions_offshore.geojson"),
log:
logs("build_bus_regions.log"),
threads: 1
resources:
mem_mb=1000,
conda:
"../envs/environment.yaml"
script:
"../scripts/build_bus_regions.py"
if config["enable"].get("build_cutout", False):
rule build_cutout:
@ -172,27 +153,6 @@ if config["enable"].get("build_cutout", False):
"../scripts/build_cutout.py"
if config["enable"].get("build_natura_raster", False):
rule build_natura_raster:
input:
natura=ancient("data/bundle/natura/Natura2000_end2015.shp"),
cutout=lambda w: "cutouts/"
+ CDIR
+ config_provider("atlite", "default_cutout")(w)
+ ".nc",
output:
resources("natura.tiff"),
resources:
mem_mb=5000,
log:
logs("build_natura_raster.log"),
conda:
"../envs/environment.yaml"
script:
"../scripts/build_natura_raster.py"
rule build_ship_raster:
input:
ship_density="data/shipdensity_global.zip",
@ -220,7 +180,7 @@ rule determine_availability_matrix_MD_UA:
wdpa="data/WDPA.gpkg",
wdpa_marine="data/WDPA_WDOECM_marine.gpkg",
gebco=lambda w: (
"data/bundle/GEBCO_2014_2D.nc"
"data/bundle/gebco/GEBCO_2014_2D.nc"
if config_provider("renewable", w.technology)(w).get("max_depth")
else []
),
@ -233,7 +193,7 @@ rule determine_availability_matrix_MD_UA:
offshore_shapes=resources("offshore_shapes.geojson"),
regions=lambda w: (
resources("regions_onshore.geojson")
if w.technology in ("onwind", "solar")
if w.technology in ("onwind", "solar", "solar-hsat")
else resources("regions_offshore.geojson")
),
cutout=lambda w: "cutouts/"
@ -276,7 +236,7 @@ rule build_renewable_profiles:
base_network=resources("networks/base.nc"),
corine=ancient("data/bundle/corine/g250_clc06_V18_5.tif"),
natura=lambda w: (
resources("natura.tiff")
"data/bundle/natura/natura.tiff"
if config_provider("renewable", w.technology, "natura")(w)
else []
),
@ -287,8 +247,11 @@ rule build_renewable_profiles:
),
gebco=ancient(
lambda w: (
"data/bundle/GEBCO_2014_2D.nc"
if config_provider("renewable", w.technology)(w).get("max_depth")
"data/bundle/gebco/GEBCO_2014_2D.nc"
if (
config_provider("renewable", w.technology)(w).get("max_depth")
or config_provider("renewable", w.technology)(w).get("min_depth")
)
else []
)
),
@ -301,7 +264,7 @@ rule build_renewable_profiles:
offshore_shapes=resources("offshore_shapes.geojson"),
regions=lambda w: (
resources("regions_onshore.geojson")
if w.technology in ("onwind", "solar")
if w.technology in ("onwind", "solar", "solar-hsat")
else resources("regions_offshore.geojson")
),
cutout=lambda w: "cutouts/"
@ -433,11 +396,11 @@ rule add_electricity:
else resources("networks/base.nc")
),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
f"costs_{config_provider('costs', 'year')(w)}.csv"
),
regions=resources("regions_onshore.geojson"),
powerplants=resources("powerplants.csv"),
hydro_capacities=ancient("data/bundle/hydro_capacities.csv"),
hydro_capacities=ancient("data/hydro_capacities.csv"),
geth_hydro_capacities="data/geth2015_hydro_capacities.csv",
unit_commitment="data/unit_commitment.csv",
fuel_price=lambda w: (
@ -478,7 +441,7 @@ rule simplify_network:
input:
network=resources("networks/elec.nc"),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
f"costs_{config_provider('costs', 'year')(w)}.csv"
),
regions_onshore=resources("regions_onshore.geojson"),
regions_offshore=resources("regions_offshore.geojson"),
@ -526,7 +489,7 @@ rule cluster_network:
else []
),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
f"costs_{config_provider('costs', 'year')(w)}.csv"
),
output:
network=resources("networks/elec_s{simpl}_{clusters}.nc"),
@ -555,7 +518,7 @@ rule add_extra_components:
input:
network=resources("networks/elec_s{simpl}_{clusters}.nc"),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
f"costs_{config_provider('costs', 'year')(w)}.csv"
),
output:
resources("networks/elec_s{simpl}_{clusters}_ec.nc"),
@ -590,7 +553,7 @@ rule prepare_network:
input:
resources("networks/elec_s{simpl}_{clusters}_ec.nc"),
tech_costs=lambda w: resources(
f"costs_{config_provider('costs', 'year') (w)}.csv"
f"costs_{config_provider('costs', 'year')(w)}.csv"
),
co2_price=lambda w: resources("co2_price.csv") if "Ept" in w.opts else [],
output:

View File

@ -287,10 +287,10 @@ rule build_energy_totals:
energy=config_provider("energy"),
input:
nuts3_shapes=resources("nuts3_shapes.geojson"),
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
co2="data/bundle/eea/UNFCCC_v23.csv",
swiss="data/switzerland-new_format-all_years.csv",
swiss_transport="data/gr-e-11.03.02.01.01-cc.csv",
idees="data/bundle-sector/jrc-idees-2015",
idees="data/bundle/jrc-idees-2015",
district_heat_share="data/district_heat_share.csv",
eurostat="data/eurostat/eurostat-energy_balances-april_2023_edition",
output:
@ -338,10 +338,10 @@ rule build_biomass_potentials:
"https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx",
keep_local=True,
),
nuts2="data/bundle-sector/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
nuts2="data/bundle/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
nuts3_population=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
swiss_cantons=ancient("data/bundle/ch_cantons.csv"),
swiss_cantons=ancient("data/ch_cantons.csv"),
swiss_population=ancient("data/bundle/je-e-21.03.02.xls"),
country_shapes=resources("country_shapes.geojson"),
output:
@ -416,7 +416,7 @@ rule build_sequestration_potentials:
rule build_salt_cavern_potentials:
input:
salt_caverns="data/bundle-sector/h2_salt_caverns_GWh_per_sqkm.geojson",
salt_caverns="data/bundle/h2_salt_caverns_GWh_per_sqkm.geojson",
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
regions_offshore=resources("regions_offshore_elec_s{simpl}_{clusters}.geojson"),
output:
@ -436,7 +436,7 @@ rule build_salt_cavern_potentials:
rule build_ammonia_production:
input:
usgs="data/bundle-sector/myb1-2017-nitro.xls",
usgs="data/bundle/myb1-2017-nitro.xls",
output:
ammonia_production=resources("ammonia_production.csv"),
threads: 1
@ -458,7 +458,7 @@ rule build_industry_sector_ratios:
ammonia=config_provider("sector", "ammonia", default=False),
input:
ammonia_production=resources("ammonia_production.csv"),
idees="data/bundle-sector/jrc-idees-2015",
idees="data/bundle/jrc-idees-2015",
output:
industry_sector_ratios=resources("industry_sector_ratios.csv"),
threads: 1
@ -508,7 +508,7 @@ rule build_industrial_production_per_country:
countries=config_provider("countries"),
input:
ammonia_production=resources("ammonia_production.csv"),
jrc="data/bundle-sector/jrc-idees-2015",
jrc="data/bundle/jrc-idees-2015",
eurostat="data/eurostat/eurostat-energy_balances-april_2023_edition",
output:
industrial_production_per_country=resources(
@ -564,7 +564,10 @@ rule build_industrial_distribution_key:
input:
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
clustered_pop_layout=resources("pop_layout_elec_s{simpl}_{clusters}.csv"),
hotmaps_industrial_database="data/bundle-sector/Industrial_Database.csv",
hotmaps_industrial_database=storage(
"https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database/-/raw/master/data/Industrial_Database.csv",
keep_local=True,
),
output:
industrial_distribution_key=resources(
"industrial_distribution_key_elec_s{simpl}_{clusters}.csv"
@ -652,7 +655,7 @@ rule build_industrial_energy_demand_per_country_today:
countries=config_provider("countries"),
industry=config_provider("industry"),
input:
jrc="data/bundle-sector/jrc-idees-2015",
jrc="data/bundle/jrc-idees-2015",
industrial_production_per_country=resources(
"industrial_production_per_country.csv"
),
@ -704,7 +707,7 @@ rule build_retro_cost:
countries=config_provider("countries"),
input:
building_stock="data/retro/data_building_stock.csv",
data_tabula="data/bundle-sector/retro/tabula-calculator-calcsetbuilding.csv",
data_tabula="data/bundle/retro/tabula-calculator-calcsetbuilding.csv",
air_temperature=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
u_values_PL="data/retro/u_values_poland.csv",
tax_w="data/retro/electricity_taxes_eu.csv",
@ -780,8 +783,8 @@ rule build_transport_demand:
"pop_weighted_energy_totals_s{simpl}_{clusters}.csv"
),
transport_data=resources("transport_data.csv"),
traffic_data_KFZ="data/bundle-sector/emobility/KFZ__count",
traffic_data_Pkw="data/bundle-sector/emobility/Pkw__count",
traffic_data_KFZ="data/bundle/emobility/KFZ__count",
traffic_data_Pkw="data/bundle/emobility/Pkw__count",
temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
output:
transport_demand=resources("transport_demand_s{simpl}_{clusters}.csv"),
@ -856,10 +859,44 @@ rule build_existing_heating_distribution:
"../scripts/build_existing_heating_distribution.py"
rule time_aggregation:
params:
time_resolution=config_provider("clustering", "temporal", "resolution_sector"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
solver_name=config_provider("solving", "solver", "name"),
input:
network=resources("networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc"),
hourly_heat_demand_total=lambda w: (
resources("hourly_heat_demand_total_elec_s{simpl}_{clusters}.nc")
if config_provider("sector", "heating")(w)
else None
),
solar_thermal_total=lambda w: (
resources("solar_thermal_total_elec_s{simpl}_{clusters}.nc")
if config_provider("sector", "solar_thermal")(w)
else None
),
output:
snapshot_weightings=resources(
"snapshot_weightings_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.csv"
),
threads: 1
resources:
mem_mb=5000,
log:
logs("time_aggregation_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.log"),
benchmark:
benchmarks("time_aggregation_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}")
conda:
"../envs/environment.yaml"
script:
"../scripts/time_aggregation.py"
def input_profile_offwind(w):
return {
f"profile_{tech}": resources(f"profile_{tech}.nc")
for tech in ["offwind-ac", "offwind-dc"]
for tech in ["offwind-ac", "offwind-dc", "offwind-float"]
if (tech in config_provider("electricity", "renewable_carriers")(w))
}
@ -867,7 +904,6 @@ def input_profile_offwind(w):
rule prepare_sector_network:
params:
time_resolution=config_provider("clustering", "temporal", "resolution_sector"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
co2_budget=config_provider("co2_budget"),
conventional_carriers=config_provider(
"existing_capacities", "conventional_carriers"
@ -888,6 +924,9 @@ rule prepare_sector_network:
unpack(input_profile_offwind),
**rules.cluster_gas_network.output,
**rules.build_gas_input_locations.output,
snapshot_weightings=resources(
"snapshot_weightings_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.csv"
),
retro_cost=lambda w: (
resources("retro_cost_elec_s{simpl}_{clusters}.csv")
if config_provider("sector", "retrofitting", "retro_endogen")(w)
@ -925,7 +964,7 @@ rule prepare_sector_network:
avail_profile=resources("avail_profile_s{simpl}_{clusters}.csv"),
dsm_profile=resources("dsm_profile_s{simpl}_{clusters}.csv"),
co2_totals_name=resources("co2_totals.csv"),
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
co2="data/bundle/eea/UNFCCC_v23.csv",
biomass_potentials=lambda w: (
resources(
"biomass_potentials_s{simpl}_{clusters}_"

View File

@ -199,6 +199,7 @@ rule make_summary:
energy=RESULTS + "csvs/energy.csv",
supply=RESULTS + "csvs/supply.csv",
supply_energy=RESULTS + "csvs/supply_energy.csv",
nodal_supply_energy=RESULTS + "csvs/nodal_supply_energy.csv",
prices=RESULTS + "csvs/prices.csv",
weighted_prices=RESULTS + "csvs/weighted_prices.csv",
market_values=RESULTS + "csvs/market_values.csv",
@ -230,7 +231,7 @@ rule plot_summary:
energy=RESULTS + "csvs/energy.csv",
balances=RESULTS + "csvs/supply_energy.csv",
eurostat="data/eurostat/eurostat-energy_balances-april_2023_edition",
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
co2="data/bundle/eea/UNFCCC_v23.csv",
output:
costs=RESULTS + "graphs/costs.pdf",
energy=RESULTS + "graphs/energy.pdf",

View File

@ -14,23 +14,27 @@ if config["enable"]["retrieve"] is False:
if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle", True):
datafiles = [
"ch_cantons.csv",
"je-e-21.03.02.xls",
"eez/World_EEZ_v8_2014.shp",
"hydro_capacities.csv",
"naturalearth/ne_10m_admin_0_countries.shp",
"NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp",
"nama_10r_3popgdp.tsv.gz",
"nama_10r_3gdp.tsv.gz",
"corine/g250_clc06_V18_5.tif",
"eea/UNFCCC_v23.csv",
"nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
"myb1-2017-nitro.xls",
"emobility/KFZ__count",
"emobility/Pkw__count",
"h2_salt_caverns_GWh_per_sqkm.geojson",
"natura/natura.tiff",
"gebco/GEBCO_2014_2D.nc",
]
if not config.get("tutorial", False):
datafiles.extend(["natura/Natura2000_end2015.shp", "GEBCO_2014_2D.nc"])
rule retrieve_databundle:
output:
protected(expand("data/bundle/{file}", file=datafiles)),
protected(directory("data/bundle/jrc-idees-2015")),
log:
"logs/retrieve_databundle.log",
resources:
@ -41,23 +45,14 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
script:
"../scripts/retrieve_databundle.py"
if config["enable"].get("retrieve_irena"):
rule retrieve_irena:
rule retrieve_eurostat_data:
output:
offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
directory("data/eurostat/eurostat-energy_balances-april_2023_edition"),
log:
"logs/retrieve_irena.log",
resources:
mem_mb=1000,
"logs/retrieve_eurostat_data.log",
retries: 2
conda:
"../envs/retrieve.yaml"
script:
"../scripts/retrieve_irena.py"
"../scripts/retrieve_eurostat_data.py"
if config["enable"]["retrieve"] and config["enable"].get("retrieve_cutout", True):
@ -65,7 +60,7 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_cutout", True
rule retrieve_cutout:
input:
storage(
"https://zenodo.org/record/6382570/files/{cutout}.nc",
"https://zenodo.org/records/6382570/files/{cutout}.nc",
),
output:
protected("cutouts/" + CDIR + "{cutout}.nc"),
@ -97,64 +92,6 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", T
"../scripts/retrieve_cost_data.py"
if config["enable"]["retrieve"] and config["enable"].get(
"retrieve_natura_raster", True
):
rule retrieve_natura_raster:
input:
storage(
"https://zenodo.org/record/4706686/files/natura.tiff",
keep_local=True,
),
output:
resources("natura.tiff"),
log:
logs("retrieve_natura_raster.log"),
resources:
mem_mb=5000,
retries: 2
run:
copyfile(input[0], output[0])
validate_checksum(output[0], input[0])
if config["enable"]["retrieve"] and config["enable"].get(
"retrieve_sector_databundle", True
):
datafiles = [
"eea/UNFCCC_v23.csv",
"switzerland-sfoe/switzerland-new_format.csv",
"nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
"myb1-2017-nitro.xls",
"Industrial_Database.csv",
"emobility/KFZ__count",
"emobility/Pkw__count",
"h2_salt_caverns_GWh_per_sqkm.geojson",
]
rule retrieve_sector_databundle:
output:
protected(expand("data/bundle-sector/{files}", files=datafiles)),
protected(directory("data/bundle-sector/jrc-idees-2015")),
log:
"logs/retrieve_sector_databundle.log",
retries: 2
conda:
"../envs/retrieve.yaml"
script:
"../scripts/retrieve_sector_databundle.py"
rule retrieve_eurostat_data:
output:
directory("data/eurostat/eurostat-energy_balances-april_2023_edition"),
log:
"logs/retrieve_eurostat_data.log",
retries: 2
script:
"../scripts/retrieve_eurostat_data.py"
if config["enable"]["retrieve"]:
datafiles = [
"IGGIELGN_LNGs.geojson",
@ -217,7 +154,7 @@ if config["enable"]["retrieve"]:
rule retrieve_ship_raster:
input:
storage(
"https://zenodo.org/record/6953563/files/shipdensity_global.zip",
"https://zenodo.org/records/10973944/files/shipdensity_global.zip",
keep_local=True,
),
output:
@ -239,7 +176,7 @@ if config["enable"]["retrieve"]:
rule download_copernicus_land_cover:
input:
storage(
"https://zenodo.org/record/3939050/files/PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif",
"https://zenodo.org/records/3939050/files/PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif",
),
output:
"data/Copernicus_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif",
@ -312,7 +249,7 @@ if config["enable"]["retrieve"]:
layer_path = (
f"/vsizip/{params.folder}/WDPA_{bYYYY}_Public_shp_{i}.zip"
)
print(f"Adding layer {i + 1} of 3 to combined output file.")
print(f"Adding layer {i+1} of 3 to combined output file.")
shell("ogr2ogr -f gpkg -update -append {output.gpkg} {layer_path}")
rule download_wdpa_marine:
@ -335,7 +272,7 @@ if config["enable"]["retrieve"]:
for i in range(3):
# vsizip is special driver for directly working with zipped shapefiles in ogr2ogr
layer_path = f"/vsizip/{params.folder}/WDPA_WDOECM_{bYYYY}_Public_marine_shp_{i}.zip"
print(f"Adding layer {i + 1} of 3 to combined output file.")
print(f"Adding layer {i+1} of 3 to combined output file.")
shell("ogr2ogr -f gpkg -update -append {output.gpkg} {layer_path}")

View File

@ -26,9 +26,6 @@ rule add_existing_baseyear:
existing_heating_distribution=resources(
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
),
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
output:
RESULTS
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",

View File

@ -25,9 +25,6 @@ rule add_existing_baseyear:
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
),
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
output:
RESULTS
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",

View File

@ -67,7 +67,7 @@ def get_rdir(run):
return RDIR
def get_run_path(fn, dir, rdir, shared_resources):
def get_run_path(fn, dir, rdir, shared_resources, exclude_from_shared):
"""
Dynamically provide paths based on shared resources and filename.
@ -87,6 +87,8 @@ def get_run_path(fn, dir, rdir, shared_resources):
- If string is "base", special handling for shared "base" resources (see notes).
- If random string other than "base", this folder is used instead of the `rdir` keyword.
- If boolean, directly specifies if the resource is shared.
exclude_from_shared: list
List of filenames to exclude from shared resources. Only relevant if shared_resources is "base".
Returns
-------
@ -104,10 +106,12 @@ def get_run_path(fn, dir, rdir, shared_resources):
existing_wildcards = set(re.findall(pattern, fn))
irrelevant_wildcards = {"technology", "year", "scope", "kind"}
no_relevant_wildcards = not existing_wildcards - irrelevant_wildcards
no_elec_rule = not fn.startswith("networks/elec") and not fn.startswith(
"add_electricity"
not_shared_rule = (
not fn.startswith("networks/elec")
and not fn.startswith("add_electricity")
and not any(fn.startswith(ex) for ex in exclude_from_shared)
)
is_shared = no_relevant_wildcards and no_elec_rule
is_shared = no_relevant_wildcards and not_shared_rule
rdir = "" if is_shared else rdir
elif isinstance(shared_resources, str):
rdir = shared_resources + "/"
@ -121,7 +125,7 @@ def get_run_path(fn, dir, rdir, shared_resources):
return f"{dir}{rdir}{fn}"
def path_provider(dir, rdir, shared_resources):
def path_provider(dir, rdir, shared_resources, exclude_from_shared):
"""
Returns a partial function that dynamically provides paths based on shared
resources and the filename.
@ -132,7 +136,13 @@ def path_provider(dir, rdir, shared_resources):
A partial function that takes a filename as input and
returns the path to the file based on the shared_resources parameter.
"""
return partial(get_run_path, dir=dir, rdir=rdir, shared_resources=shared_resources)
return partial(
get_run_path,
dir=dir,
rdir=rdir,
shared_resources=shared_resources,
exclude_from_shared=exclude_from_shared,
)
def get_opt(opts, expr, flags=None):
@ -707,7 +717,7 @@ def update_config_from_wildcards(config, w, inplace=True):
def get_checksum_from_zenodo(file_url):
parts = file_url.split("/")
record_id = parts[parts.index("record") + 1]
record_id = parts[parts.index("records") + 1]
filename = parts[-1]
response = requests.get(f"https://zenodo.org/api/records/{record_id}", timeout=30)
@ -746,7 +756,7 @@ def validate_checksum(file_path, zenodo_url=None, checksum=None):
>>> validate_checksum("/path/to/file", checksum="md5:abc123...")
>>> validate_checksum(
... "/path/to/file",
... zenodo_url="https://zenodo.org/record/12345/files/example.txt",
... zenodo_url="https://zenodo.org/records/12345/files/example.txt",
... )
If the checksum is invalid, an AssertionError will be raised.

View File

@ -107,20 +107,16 @@ def add_brownfield(n, n_p, year):
# already retrofitted capacity from gas -> H2
already_retrofitted = (
n.links.loc[h2_retrofitted_fixed_i, "p_nom"]
.rename(lambda x: x.split("-2")[0].replace(fr, to))
.rename(lambda x: x.split("-2")[0].replace(fr, to) + f"-{year}")
.groupby(level=0)
.sum()
)
remaining_capacity = (
pipe_capacity
- CH4_per_H2
* already_retrofitted.reindex(index=pipe_capacity.index).fillna(0)
)
remaining_capacity = pipe_capacity - CH4_per_H2 * already_retrofitted.reindex(
index=pipe_capacity.index
).fillna(0)
n.links.loc[gas_pipes_i, "p_nom"] = remaining_capacity
else:
new_pipes = n.links.carrier.isin(pipe_carrier) & (
n.links.build_year == year
)
new_pipes = n.links.carrier.isin(pipe_carrier) & (n.links.build_year == year)
n.links.loc[new_pipes, "p_nom"] = 0.0
n.links.loc[new_pipes, "p_nom_min"] = 0.0
@ -201,6 +197,7 @@ def adjust_renewable_profiles(n, input_profiles, params, year):
for carrier in params["carriers"]:
if carrier == "hydro":
continue
with xr.open_dataset(getattr(input_profiles, "profile_" + carrier)) as ds:
if ds.indexes["bus"].empty or "year" not in ds.indexes:
continue

View File

@ -46,7 +46,7 @@ Inputs
------
- ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity.
- ``data/bundle/hydro_capacities.csv``: Hydropower plant store/discharge power capacities, energy storage capacity, and average hourly inflow by country.
- ``data/hydro_capacities.csv``: Hydropower plant store/discharge power capacities, energy storage capacity, and average hourly inflow by country.
.. image:: img/hydrocapacities.png
:scale: 34 %
@ -230,10 +230,9 @@ def load_costs(tech_costs, config, max_hours, Nyears=1.0):
costs.at["OCGT", "co2_emissions"] = costs.at["gas", "co2_emissions"]
costs.at["CCGT", "co2_emissions"] = costs.at["gas", "co2_emissions"]
costs.at["solar", "capital_cost"] = (
config["rooftop_share"] * costs.at["solar-rooftop", "capital_cost"]
+ (1 - config["rooftop_share"]) * costs.at["solar-utility", "capital_cost"]
)
costs.at["solar", "capital_cost"] = costs.at["solar-utility", "capital_cost"]
costs = costs.rename({"solar-utility single-axis tracking": "solar-hsat"})
def costs_for_storage(store, link1, link2=None, max_hours=1.0):
capital_cost = link1["capital_cost"] + max_hours * store["capital_cost"]
@ -271,7 +270,6 @@ def load_powerplants(ppl_fn):
"bioenergy": "biomass",
"ccgt, thermal": "CCGT",
"hard coal": "coal",
"natural gas": "OCGT",
}
return (
pd.read_csv(ppl_fn, index_col=0, dtype={"bus": "str"})

View File

@ -13,6 +13,7 @@ from types import SimpleNamespace
import country_converter as coco
import numpy as np
import pandas as pd
import powerplantmatching as pm
import pypsa
import xarray as xr
from _helpers import (
@ -60,14 +61,22 @@ def add_existing_renewables(df_agg, costs):
Append existing renewables to the df_agg pd.DataFrame with the conventional
power plants.
"""
carriers = {"solar": "solar", "onwind": "onwind", "offwind": "offwind-ac"}
tech_map = {"solar": "PV", "onwind": "Onshore", "offwind": "Offshore"}
for tech in ["solar", "onwind", "offwind"]:
carrier = carriers[tech]
countries = snakemake.config["countries"]
irena = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2()
irena = irena.query("Country in @countries")
irena = irena.groupby(["Technology", "Country", "Year"]).Capacity.sum()
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.0)
irena = irena.unstack().reset_index()
for carrier, tech in tech_map.items():
df = (
irena[irena.Technology.str.contains(tech)]
.drop(columns=["Technology"])
.set_index("Country")
)
df.columns = df.columns.astype(int)
df.index = cc.convert(df.index, to="iso2")
# calculate yearly differences
df.insert(loc=0, value=0.0, column="1999")
@ -97,14 +106,16 @@ def add_existing_renewables(df_agg, costs):
for year in nodal_df.columns:
for node in nodal_df.index:
name = f"{node}-{tech}-{year}"
name = f"{node}-{carrier}-{year}"
capacity = nodal_df.loc[node, year]
if capacity > 0.0:
df_agg.at[name, "Fueltype"] = tech
df_agg.at[name, "Fueltype"] = carrier
df_agg.at[name, "Capacity"] = capacity
df_agg.at[name, "DateIn"] = year
df_agg.at[name, "lifetime"] = costs.at[tech, "lifetime"]
df_agg.at[name, "DateOut"] = year + costs.at[tech, "lifetime"] - 1
df_agg.at[name, "lifetime"] = costs.at[carrier, "lifetime"]
df_agg.at[name, "DateOut"] = (
year + costs.at[carrier, "lifetime"] - 1
)
df_agg.at[name, "cluster_bus"] = node
@ -152,7 +163,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
technology_to_drop = ["Pv", "Storage Technologies"]
# drop unused fueltyps and technologies
# drop unused fueltypes and technologies
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True)
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True)
df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel)
@ -241,6 +252,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
]
suffix = "-ac" if generator == "offwind" else ""
name_suffix = f" {generator}{suffix}-{grouping_year}"
name_suffix_by = f" {generator}{suffix}-{baseyear}"
asset_i = capacity.index + name_suffix
if generator in ["solar", "onwind", "offwind"]:
# to consider electricity grid connection costs or a split between
@ -270,21 +282,13 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
# for offshore the splitting only includes coastal regions
inv_ind = [
i
for i in inv_ind
if (i + name_suffix)
in n.generators.index.str.replace(
str(baseyear), str(grouping_year)
)
i for i in inv_ind if (i + name_suffix_by) in n.generators.index
]
p_max_pu = n.generators_t.p_max_pu[
[i + name_suffix for i in inv_ind]
]
p_max_pu.columns = [
i + name_suffix.replace(str(grouping_year), str(baseyear))
for i in inv_ind
[i + name_suffix_by for i in inv_ind]
]
p_max_pu.columns = [i + name_suffix for i in inv_ind]
n.madd(
"Generator",
@ -302,9 +306,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
)
else:
p_max_pu = n.generators_t.p_max_pu[
capacity.index + f" {generator}{suffix}-{baseyear}"
]
p_max_pu = n.generators_t.p_max_pu[capacity.index + name_suffix_by]
if not new_build.empty:
n.madd(
@ -430,7 +432,7 @@ def add_heating_capacities_installed_before_baseyear(
linear decommissioning of heating capacities from 2020 to 2045 is
currently assumed heating capacities split between residential and
services proportional to heating load in both 50% capacities
in rural busess 50% in urban buses
in rural buses 50% in urban buses
"""
logger.debug(f"Adding heating capacities installed before {baseyear}")

View File

@ -246,6 +246,7 @@ if __name__ == "__main__":
attach_hydrogen_pipelines(n, costs, extendable_carriers)
sanitize_carriers(n, snakemake.config)
if "location" in n.buses:
sanitize_locations(n)
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))

View File

@ -5,10 +5,7 @@
# coding: utf-8
"""
Creates the network topology from a `ENTSO-E map extract.
<https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA
network.
Creates the network topology from an `ENTSO-E map extract <https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA network.
Relevant Settings
-----------------
@ -59,8 +56,19 @@ Outputs
.. image:: img/base.png
:scale: 33 %
- ``resources/regions_onshore.geojson``:
.. image:: img/regions_onshore.png
:scale: 33 %
- ``resources/regions_offshore.geojson``:
.. image:: img/regions_offshore.png
:scale: 33 %
Description
-----------
Creates the network topology from an ENTSO-E map extract, and create Voronoi shapes for each bus representing both onshore and offshore regions.
"""
import logging
@ -75,11 +83,11 @@ import shapely
import shapely.prepared
import shapely.wkt
import yaml
from _helpers import configure_logging, get_snapshots, set_scenario_config
from _helpers import REGION_COLS, configure_logging, get_snapshots, set_scenario_config
from packaging.version import Version, parse
from scipy import spatial
from scipy.sparse import csgraph
from shapely.geometry import LineString, Point
from shapely.geometry import LineString, Point, Polygon
PD_GE_2_2 = parse(pd.__version__) >= Version("2.2")
@ -264,14 +272,15 @@ def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape):
if links_tyndp.empty:
return buses, links
tree = spatial.KDTree(buses[["x", "y"]])
tree_buses = buses.query("carrier=='AC'")
tree = spatial.KDTree(tree_buses[["x", "y"]])
_, ind0 = tree.query(links_tyndp[["x1", "y1"]])
ind0_b = ind0 < len(buses)
links_tyndp.loc[ind0_b, "bus0"] = buses.index[ind0[ind0_b]]
ind0_b = ind0 < len(tree_buses)
links_tyndp.loc[ind0_b, "bus0"] = tree_buses.index[ind0[ind0_b]]
_, ind1 = tree.query(links_tyndp[["x2", "y2"]])
ind1_b = ind1 < len(buses)
links_tyndp.loc[ind1_b, "bus1"] = buses.index[ind1[ind1_b]]
ind1_b = ind1 < len(tree_buses)
links_tyndp.loc[ind1_b, "bus1"] = tree_buses.index[ind1[ind1_b]]
links_tyndp_located_b = (
links_tyndp["bus0"].notnull() & links_tyndp["bus1"].notnull()
@ -561,7 +570,7 @@ def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
buses["substation_lv"] = (
lv_b & onshore_b & (~buses["under_construction"]) & has_connections_b
)
buses["substation_off"] = (offshore_b | (hv_b & onshore_b)) & (
buses["substation_off"] = ((hv_b & offshore_b) | (hv_b & onshore_b)) & (
~buses["under_construction"]
)
@ -779,9 +788,147 @@ def base_network(
return n
def voronoi_partition_pts(points, outline):
"""
Compute the polygons of a voronoi partition of `points` within the polygon
`outline`. Taken from
https://github.com/FRESNA/vresutils/blob/master/vresutils/graph.py.
Attributes
----------
points : Nx2 - ndarray[dtype=float]
outline : Polygon
Returns
-------
polygons : N - ndarray[dtype=Polygon|MultiPolygon]
"""
points = np.asarray(points)
if len(points) == 1:
polygons = [outline]
else:
xmin, ymin = np.amin(points, axis=0)
xmax, ymax = np.amax(points, axis=0)
xspan = xmax - xmin
yspan = ymax - ymin
# to avoid any network positions outside all Voronoi cells, append
# the corners of a rectangle framing these points
vor = spatial.Voronoi(
np.vstack(
(
points,
[
[xmin - 3.0 * xspan, ymin - 3.0 * yspan],
[xmin - 3.0 * xspan, ymax + 3.0 * yspan],
[xmax + 3.0 * xspan, ymin - 3.0 * yspan],
[xmax + 3.0 * xspan, ymax + 3.0 * yspan],
],
)
)
)
polygons = []
for i in range(len(points)):
poly = Polygon(vor.vertices[vor.regions[vor.point_region[i]]])
if not poly.is_valid:
poly = poly.buffer(0)
with np.errstate(invalid="ignore"):
poly = poly.intersection(outline)
polygons.append(poly)
return polygons
def build_bus_shapes(n, country_shapes, offshore_shapes, countries):
country_shapes = gpd.read_file(country_shapes).set_index("name")["geometry"]
offshore_shapes = gpd.read_file(offshore_shapes)
offshore_shapes = offshore_shapes.reindex(columns=REGION_COLS).set_index("name")[
"geometry"
]
onshore_regions = []
offshore_regions = []
for country in countries:
c_b = n.buses.country == country
onshore_shape = country_shapes[country]
onshore_locs = (
n.buses.loc[c_b & n.buses.onshore_bus]
.sort_values(
by="substation_lv", ascending=False
) # preference for substations
.drop_duplicates(subset=["x", "y"], keep="first")[["x", "y"]]
)
onshore_regions.append(
gpd.GeoDataFrame(
{
"name": onshore_locs.index,
"x": onshore_locs["x"],
"y": onshore_locs["y"],
"geometry": voronoi_partition_pts(
onshore_locs.values, onshore_shape
),
"country": country,
}
)
)
if country not in offshore_shapes.index:
continue
offshore_shape = offshore_shapes[country]
offshore_locs = n.buses.loc[c_b & n.buses.substation_off, ["x", "y"]]
offshore_regions_c = gpd.GeoDataFrame(
{
"name": offshore_locs.index,
"x": offshore_locs["x"],
"y": offshore_locs["y"],
"geometry": voronoi_partition_pts(offshore_locs.values, offshore_shape),
"country": country,
}
)
offshore_regions_c = offshore_regions_c.loc[offshore_regions_c.area > 1e-2]
offshore_regions.append(offshore_regions_c)
shapes = pd.concat(onshore_regions, ignore_index=True)
return onshore_regions, offshore_regions, shapes
def append_bus_shapes(n, shapes, type):
"""
Append shapes to the network. If shapes with the same component and type
already exist, they will be removed.
Parameters:
n (pypsa.Network): The network to which the shapes will be appended.
shapes (geopandas.GeoDataFrame): The shapes to be appended.
**kwargs: Additional keyword arguments used in `n.madd`.
Returns:
None
"""
remove = n.shapes.query("component == 'Bus' and type == @type").index
n.mremove("Shape", remove)
offset = n.shapes.index.astype(int).max() + 1 if not n.shapes.empty else 0
shapes = shapes.rename(lambda x: int(x) + offset)
n.madd(
"Shape",
shapes.index,
geometry=shapes.geometry,
idx=shapes.name,
component="Bus",
type=type,
)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("base_network")
@ -803,5 +950,22 @@ if __name__ == "__main__":
snakemake.config,
)
onshore_regions, offshore_regions, shapes = build_bus_shapes(
n,
snakemake.input.country_shapes,
snakemake.input.offshore_shapes,
snakemake.params.countries,
)
shapes.to_file(snakemake.output.regions_onshore)
append_bus_shapes(n, shapes, "onshore")
if offshore_regions:
shapes = pd.concat(offshore_regions, ignore_index=True)
shapes.to_file(snakemake.output.regions_offshore)
append_bus_shapes(n, shapes, "offshore")
else:
offshore_shapes.to_frame().to_file(snakemake.output.regions_offshore)
n.meta = snakemake.config
n.export_to_netcdf(snakemake.output[0])
n.export_to_netcdf(snakemake.output.base_network)

View File

@ -1,218 +0,0 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Creates Voronoi shapes for each bus representing both onshore and offshore
regions.
Relevant Settings
-----------------
.. code:: yaml
countries:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`toplevel_cf`
Inputs
------
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``networks/base.nc``: confer :ref:`base`
Outputs
-------
- ``resources/regions_onshore.geojson``:
.. image:: img/regions_onshore.png
:scale: 33 %
- ``resources/regions_offshore.geojson``:
.. image:: img/regions_offshore.png
:scale: 33 %
Description
-----------
"""
import logging
import geopandas as gpd
import numpy as np
import pandas as pd
import pypsa
from _helpers import REGION_COLS, configure_logging, set_scenario_config
from scipy.spatial import Voronoi
from shapely.geometry import Polygon
logger = logging.getLogger(__name__)
def voronoi_partition_pts(points, outline):
"""
Compute the polygons of a voronoi partition of `points` within the polygon
`outline`. Taken from
https://github.com/FRESNA/vresutils/blob/master/vresutils/graph.py.
Attributes
----------
points : Nx2 - ndarray[dtype=float]
outline : Polygon
Returns
-------
polygons : N - ndarray[dtype=Polygon|MultiPolygon]
"""
points = np.asarray(points)
if len(points) == 1:
polygons = [outline]
else:
xmin, ymin = np.amin(points, axis=0)
xmax, ymax = np.amax(points, axis=0)
xspan = xmax - xmin
yspan = ymax - ymin
# to avoid any network positions outside all Voronoi cells, append
# the corners of a rectangle framing these points
vor = Voronoi(
np.vstack(
(
points,
[
[xmin - 3.0 * xspan, ymin - 3.0 * yspan],
[xmin - 3.0 * xspan, ymax + 3.0 * yspan],
[xmax + 3.0 * xspan, ymin - 3.0 * yspan],
[xmax + 3.0 * xspan, ymax + 3.0 * yspan],
],
)
)
)
polygons = []
for i in range(len(points)):
poly = Polygon(vor.vertices[vor.regions[vor.point_region[i]]])
if not poly.is_valid:
poly = poly.buffer(0)
with np.errstate(invalid="ignore"):
poly = poly.intersection(outline)
polygons.append(poly)
return polygons
def append_bus_shapes(n, shapes, type):
"""
Append shapes to the network. If shapes with the same component and type
already exist, they will be removed.
Parameters:
n (pypsa.Network): The network to which the shapes will be appended.
shapes (geopandas.GeoDataFrame): The shapes to be appended.
**kwargs: Additional keyword arguments used in `n.madd`.
Returns:
None
"""
remove = n.shapes.query("component == 'Bus' and type == @type").index
n.mremove("Shape", remove)
offset = n.shapes.index.astype(int).max() + 1 if not n.shapes.empty else 0
shapes = shapes.rename(lambda x: int(x) + offset)
n.madd(
"Shape",
shapes.index,
geometry=shapes.geometry,
idx=shapes.name,
component="Bus",
type=type,
)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_bus_regions")
configure_logging(snakemake)
set_scenario_config(snakemake)
countries = snakemake.params.countries
base_network = snakemake.input.base_network
n = pypsa.Network(base_network)
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index("name")[
"geometry"
]
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes)
offshore_shapes = offshore_shapes.reindex(columns=REGION_COLS).set_index("name")[
"geometry"
]
onshore_regions = []
offshore_regions = []
for country in countries:
c_b = n.buses.country == country
onshore_shape = country_shapes[country]
onshore_locs = (
n.buses.loc[c_b & n.buses.onshore_bus]
.sort_values(
by="substation_lv", ascending=False
) # preference for substations
.drop_duplicates(subset=["x", "y"], keep="first")[["x", "y"]]
)
onshore_regions.append(
gpd.GeoDataFrame(
{
"name": onshore_locs.index,
"x": onshore_locs["x"],
"y": onshore_locs["y"],
"geometry": voronoi_partition_pts(
onshore_locs.values, onshore_shape
),
"country": country,
}
)
)
if country not in offshore_shapes.index:
continue
offshore_shape = offshore_shapes[country]
offshore_locs = n.buses.loc[c_b & n.buses.substation_off, ["x", "y"]]
offshore_regions_c = gpd.GeoDataFrame(
{
"name": offshore_locs.index,
"x": offshore_locs["x"],
"y": offshore_locs["y"],
"geometry": voronoi_partition_pts(offshore_locs.values, offshore_shape),
"country": country,
}
)
offshore_regions_c = offshore_regions_c.loc[offshore_regions_c.area > 1e-2]
offshore_regions.append(offshore_regions_c)
shapes = pd.concat(onshore_regions, ignore_index=True)
shapes.to_file(snakemake.output.regions_onshore)
append_bus_shapes(n, shapes, "onshore")
if offshore_regions:
shapes = pd.concat(offshore_regions, ignore_index=True)
shapes.to_file(snakemake.output.regions_offshore)
append_bus_shapes(n, shapes, "offshore")
else:
offshore_shapes.to_frame().to_file(snakemake.output.regions_offshore)
# save network with shapes
n.export_to_netcdf(base_network)

View File

@ -129,7 +129,7 @@ def copy_timeslice(load, cntry, start, stop, delta, fn_load=None):
load.loc[start:stop, cntry] = load.loc[
start - delta : stop - delta, cntry
].values
elif fn_load is not None:
elif fn_load is not None and cntry in load:
duration = pd.date_range(freq="h", start=start - delta, end=stop - delta)
load_raw = load_timeseries(fn_load, duration, [cntry])
load.loc[start:stop, cntry] = load_raw.loc[

View File

@ -142,6 +142,7 @@ def build_eurostat(input_eurostat, countries, nprocesses=1, disable_progressbar=
"Domestic navigation": "Domestic Navigation",
"International maritime bunkers": "Bunkers",
"UK": "GB",
"EL": "GR",
}
columns_rename = {"Total": "Total all products"}
df.rename(index=index_rename, columns=columns_rename, inplace=True)
@ -395,13 +396,12 @@ def build_idees(countries):
names=["country", "year"],
)
# efficiency kgoe/100km -> ktoe/100km
totals.loc[:, "passenger car efficiency"] *= 1e3
# convert ktoe to TWh
exclude = totals.columns.str.fullmatch("passenger cars")
totals.loc[:, ~exclude] *= 11.63 / 1e3
# convert TWh/100km to kWh/km
totals.loc[:, "passenger car efficiency"] *= 10
return totals
@ -854,6 +854,7 @@ def rescale_idees_from_eurostat(
"total passenger cars",
"total other road passenger",
"total light duty road freight",
"total heavy duty road freight",
],
"elec": [
"electricity road",
@ -891,6 +892,7 @@ def rescale_idees_from_eurostat(
navigation = [
"total domestic navigation",
]
# international navigation is already read in from the eurostat data directly
for country in idees_countries:
filling_years = [(2015, slice(2016, 2021)), (2000, slice(1990, 1999))]
@ -940,6 +942,22 @@ def rescale_idees_from_eurostat(
energy.loc[slicer_source, navigation].squeeze(axis=0),
).values
# set the total of agriculture/road to the sum of all agriculture/road categories (corresponding to the IDEES data)
sel = [
"total agriculture electricity",
"total agriculture heat",
"total agriculture machinery",
]
energy.loc[country, "total agriculture"] = energy.loc[country, sel].sum(axis=1)
sel = [
"total passenger cars",
"total other road passenger",
"total light duty road freight",
"total heavy duty road freight",
]
energy.loc[country, "total road"] = energy.loc[country, sel].sum(axis=1)
return energy

View File

@ -139,7 +139,10 @@ def approximate_missing_eia_stats(eia_stats, runoff_fn, countries):
runoff.index = runoff.index.astype(int)
# fix outliers; exceptional floods in 1977-1979 in ES & PT
runoff.loc[1978, ["ES", "PT"]] = runoff.loc[1979, ["ES", "PT"]]
if "ES" in runoff:
runoff.loc[1978, "ES"] = runoff.loc[1979, "ES"]
if "PT" in runoff:
runoff.loc[1978, "PT"] = runoff.loc[1979, "PT"]
runoff_eia = runoff.loc[eia_stats.index]

View File

@ -68,6 +68,7 @@ index = [
"heat",
"naphtha",
"ammonia",
"methanol",
"process emission",
"process emission from feedstock",
]
@ -313,7 +314,7 @@ def chemicals_industry():
df.loc["methane", sector] += s_fec["Natural gas"]
# LPG and other feedstock materials are assimilated to naphtha
# since they will be produced through Fischer-Tropsh process
# since they will be produced through Fischer-Tropsch process
sel = [
"Solids",
"Refinery gas",
@ -456,8 +457,7 @@ def chemicals_industry():
sector = "Methanol"
df[sector] = 0.0
df.loc["methane", sector] = params["MWh_CH4_per_tMeOH"]
df.loc["elec", sector] = params["MWh_elec_per_tMeOH"]
df.loc["methanol", sector] = params["MWh_MeOH_per_tMeOH"]
# Other chemicals

View File

@ -51,11 +51,14 @@ def build_industry_sector_ratios_intermediate():
intermediate_sector_ratios = {}
for ct, group in today_sector_ratios.T.groupby(level=0):
today_sector_ratios_ct = (
group.droplevel(0)
.T.reindex_like(future_sector_ratios)
.fillna(future_sector_ratios)
)
today_sector_ratios_ct = group.droplevel(0).T.reindex_like(future_sector_ratios)
missing_mask = today_sector_ratios_ct.isna().all()
today_sector_ratios_ct.loc[:, missing_mask] = future_sector_ratios.loc[
:, missing_mask
]
today_sector_ratios_ct.loc[:, ~missing_mask] = today_sector_ratios_ct.loc[
:, ~missing_mask
].fillna(0)
intermediate_sector_ratios[ct] = (
today_sector_ratios_ct * (1 - fraction_future)
+ future_sector_ratios * fraction_future

View File

@ -1,118 +0,0 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Rasters the vector data of the `Natura 2000.
<https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas onto all
cutout regions.
Relevant Settings
-----------------
.. code:: yaml
renewable:
{technology}:
cutout:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`renewable_cf`
Inputs
------
- ``data/bundle/natura/Natura2000_end2015.shp``: `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas.
.. image:: img/natura.png
:scale: 33 %
Outputs
-------
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times.
.. image:: img/natura.png
:scale: 33 %
Description
-----------
"""
import logging
import atlite
import geopandas as gpd
import rasterio as rio
from _helpers import configure_logging, set_scenario_config
from rasterio.features import geometry_mask
from rasterio.warp import transform_bounds
logger = logging.getLogger(__name__)
def determine_cutout_xXyY(cutout_name):
"""
Determine the full extent of a cutout.
Since the coordinates of the cutout data are given as the
center of the grid cells, the extent of the cutout is
calculated by adding/subtracting half of the grid cell size.
Parameters
----------
cutout_name : str
Path to the cutout.
Returns
-------
A list of extent coordinates in the order [x, X, y, Y].
"""
cutout = atlite.Cutout(cutout_name)
assert cutout.crs.to_epsg() == 4326
x, X, y, Y = cutout.extent
dx, dy = cutout.dx, cutout.dy
return [x - dx / 2.0, X + dx / 2.0, y - dy / 2.0, Y + dy / 2.0]
def get_transform_and_shape(bounds, res):
left, bottom = [(b // res) * res for b in bounds[:2]]
right, top = [(b // res + 1) * res for b in bounds[2:]]
shape = int((top - bottom) // res), int((right - left) / res)
transform = rio.Affine(res, 0, left, 0, -res, top)
return transform, shape
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_natura_raster")
configure_logging(snakemake)
set_scenario_config(snakemake)
x, X, y, Y = determine_cutout_xXyY(snakemake.input.cutout)
bounds = transform_bounds(4326, 3035, x, y, X, Y)
transform, out_shape = get_transform_and_shape(bounds, res=100)
# adjusted boundaries
shapes = gpd.read_file(snakemake.input.natura).to_crs(3035)
raster = ~geometry_mask(shapes.geometry, out_shape, transform)
raster = raster.astype(rio.uint8)
with rio.open(
snakemake.output[0],
"w",
driver="GTiff",
dtype=rio.uint8,
count=1,
transform=transform,
crs=3035,
compress="lzw",
width=raster.shape[1],
height=raster.shape[0],
) as dst:
dst.write(raster, indexes=1)

View File

@ -148,7 +148,11 @@ def add_everywhere_powerplants(ppl, substations, everywhere_powerplants):
def replace_natural_gas_technology(df):
mapping = {"Steam Turbine": "CCGT", "Combustion Engine": "OCGT"}
mapping = {
"Steam Turbine": "CCGT",
"Combustion Engine": "OCGT",
"Not Found": "CCGT",
}
tech = df.Technology.replace(mapping).fillna("CCGT")
return df.Technology.mask(df.Fueltype == "Natural Gas", tech)

View File

@ -26,7 +26,7 @@ Relevant settings
renewable:
{technology}:
cutout: corine: luisa: grid_codes: distance: natura: max_depth:
cutout: corine: luisa: grid_codes: distance: natura: max_depth: min_depth:
max_shore_distance: min_shore_distance: capacity_per_sqkm:
correction_factor: min_p_max_pu: clip_p_max_pu: resource:
@ -52,7 +52,7 @@ Inputs
CORINE land cover, see `Annex 1 of the technical documentation
<https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_.
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric
- ``data/bundle/gebco/GEBCO_2014_2D.nc``: A `bathymetric
<https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain
model for ocean and land at 15 arc-second intervals by the `General
Bathymetric Chart of the Oceans (GEBCO)
@ -284,6 +284,12 @@ if __name__ == "__main__":
func = functools.partial(np.greater, -params["max_depth"])
excluder.add_raster(snakemake.input.gebco, codes=func, crs=4326, nodata=-1000)
if params.get("min_depth"):
func = functools.partial(np.greater, -params["min_depth"])
excluder.add_raster(
snakemake.input.gebco, codes=func, crs=4326, nodata=-1000, invert=True
)
if "min_shore_distance" in params:
buffer = params["min_shore_distance"]
excluder.add_geometry(snakemake.input.country_shapes, buffer=buffer)

View File

@ -38,7 +38,7 @@ Inputs
- ``data/bundle/nama_10r_3popgdp.tsv.gz``: Average annual population by NUTS3 region (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en>`__)
- ``data/bundle/nama_10r_3gdp.tsv.gz``: Gross domestic product (GDP) by NUTS 3 regions (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3gdp&lang=en>`__)
- ``data/bundle/ch_cantons.csv``: Mapping between Swiss Cantons and NUTS3 regions
- ``data/ch_cantons.csv``: Mapping between Swiss Cantons and NUTS3 regions
- ``data/bundle/je-e-21.03.02.xls``: Population and GDP data per Canton (`BFS - Swiss Federal Statistical Office <https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.7786557.html>`_ )
Outputs

View File

@ -45,12 +45,38 @@ import logging
import zipfile
from pathlib import Path
import atlite
import rioxarray
from _helpers import configure_logging, set_scenario_config
from build_natura_raster import determine_cutout_xXyY
logger = logging.getLogger(__name__)
def determine_cutout_xXyY(cutout_name):
"""
Determine the full extent of a cutout.
Since the coordinates of the cutout data are given as the
center of the grid cells, the extent of the cutout is
calculated by adding/subtracting half of the grid cell size.
Parameters
----------
cutout_name : str
Path to the cutout.
Returns
-------
A list of extent coordinates in the order [x, X, y, Y].
"""
cutout = atlite.Cutout(cutout_name)
assert cutout.crs.to_epsg() == 4326
x, X, y, Y = cutout.extent
dx, dy = cutout.dx, cutout.dy
return [x - dx / 2.0, X + dx / 2.0, y - dy / 2.0, Y + dy / 2.0]
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -24,14 +24,17 @@ logger = logging.getLogger(__name__)
def build_nodal_transport_data(fn, pop_layout, year):
# get numbers of car and fuel efficiency per country
transport_data = pd.read_csv(fn, index_col=[0, 1])
transport_data = transport_data.xs(min(2015, year), level="year")
# break number of cars down to nodal level based on population density
nodal_transport_data = transport_data.loc[pop_layout.ct].fillna(0.0)
nodal_transport_data.index = pop_layout.index
nodal_transport_data["number cars"] = (
pop_layout["fraction"] * nodal_transport_data["number cars"]
)
# fill missing fuel efficiency with average data
nodal_transport_data.loc[
nodal_transport_data["average fuel efficiency"] == 0.0,
"average fuel efficiency",
@ -41,10 +44,13 @@ def build_nodal_transport_data(fn, pop_layout, year):
def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):
## Get overall demand curve for all vehicles
"""
Returns transport demand per bus in unit km driven [100 km].
"""
# averaged weekly counts from the year 2010-2015
traffic = pd.read_csv(traffic_fn, skiprows=2, usecols=["count"]).squeeze("columns")
# create annual profile take account time zone + summer time
transport_shape = generate_periodic_profiles(
dt_index=snapshots,
nodes=nodes,
@ -52,15 +58,6 @@ def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):
)
transport_shape = transport_shape / transport_shape.sum()
# electric motors are more efficient, so alter transport demand
plug_to_wheels_eta = options["bev_plug_to_wheel_efficiency"]
battery_to_wheels_eta = plug_to_wheels_eta * options["bev_charge_efficiency"]
efficiency_gain = (
nodal_transport_data["average fuel efficiency"] / battery_to_wheels_eta
)
# get heating demand for correction to demand time series
temperature = xr.open_dataarray(airtemp_fn).to_pandas()
@ -73,16 +70,7 @@ def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):
options["ICE_upper_degree_factor"],
)
dd_EV = transport_degree_factor(
temperature,
options["transport_heating_deadband_lower"],
options["transport_heating_deadband_upper"],
options["EV_lower_degree_factor"],
options["EV_upper_degree_factor"],
)
# divide out the heating/cooling demand from ICE totals
# and multiply back in the heating/cooling demand for EVs
ice_correction = (transport_shape * (1 + dd_ICE)).sum() / transport_shape.sum()
energy_totals_transport = (
@ -91,10 +79,11 @@ def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):
- pop_weighted_energy_totals["electricity rail"]
)
return (
(transport_shape.multiply(energy_totals_transport) * 1e6 * nyears)
.divide(efficiency_gain * ice_correction)
.multiply(1 + dd_EV)
# convert average fuel efficiency from kW/100 km -> MW/100km
eff = nodal_transport_data["average fuel efficiency"] / 1e3
return (transport_shape.multiply(energy_totals_transport) * 1e6 * nyears).divide(
eff * ice_correction
)
@ -131,11 +120,14 @@ def bev_availability_profile(fn, snapshots, nodes, options):
"""
Derive plugged-in availability for passenger electric vehicles.
"""
# car count in typical week
traffic = pd.read_csv(fn, skiprows=2, usecols=["count"]).squeeze("columns")
# maximum share plugged-in availability for passenger electric vehicles
avail_max = options["bev_avail_max"]
# average share plugged-in availability for passenger electric vehicles
avail_mean = options["bev_avail_mean"]
# linear scaling, highest when traffic is lowest, decreases if traffic increases
avail = avail_max - (avail_max - avail_mean) * (traffic - traffic.min()) / (
traffic.mean() - traffic.min()
)
@ -156,6 +148,8 @@ def bev_availability_profile(fn, snapshots, nodes, options):
def bev_dsm_profile(snapshots, nodes, options):
dsm_week = np.zeros((24 * 7,))
# assuming that at a certain time ("bev_dsm_restriction_time") EVs have to
# be charged to a minimum value (defined in bev_dsm_restriction_value)
dsm_week[(np.arange(0, 7, 1) * 24 + options["bev_dsm_restriction_time"])] = options[
"bev_dsm_restriction_value"
]
@ -167,6 +161,7 @@ def bev_dsm_profile(snapshots, nodes, options):
)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
@ -174,7 +169,7 @@ if __name__ == "__main__":
snakemake = mock_snakemake(
"build_transport_demand",
simpl="",
clusters=60,
clusters=37,
)
configure_logging(snakemake)
set_scenario_config(snakemake)

View File

@ -135,7 +135,7 @@ import pypsa
import seaborn as sns
from _helpers import configure_logging, set_scenario_config, update_p_nom_max
from add_electricity import load_costs
from build_bus_regions import append_bus_shapes
from base_network import append_bus_shapes
from packaging.version import Version, parse
from pypsa.clustering.spatial import (
busmap_by_greedy_modularity,

View File

@ -413,6 +413,85 @@ def calculate_supply_energy(n, label, supply_energy):
return supply_energy
def calculate_nodal_supply_energy(n, label, nodal_supply_energy):
"""
Calculate the total energy supply/consumption of each component at the
buses aggregated by carrier and node.
"""
bus_carriers = n.buses.carrier.unique()
for i in bus_carriers:
bus_map = n.buses.carrier == i
bus_map.at[""] = False
for c in n.iterate_components(n.one_port_components):
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
if len(items) == 0:
continue
s = (
pd.concat(
[
(
c.pnl.p[items]
.multiply(n.snapshot_weightings.generators, axis=0)
.sum()
.multiply(c.df.loc[items, "sign"])
),
c.df.loc[items][["bus", "carrier"]],
],
axis=1,
)
.groupby(by=["bus", "carrier"])
.sum()[0]
)
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[i])
nodal_supply_energy = nodal_supply_energy.reindex(
s.index.union(nodal_supply_energy.index)
)
nodal_supply_energy.loc[s.index, label] = s
for c in n.iterate_components(n.branch_components):
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
items = c.df.index[c.df["bus" + str(end)].map(bus_map).fillna(False)]
if (len(items) == 0) or c.pnl["p" + end].empty:
continue
s = (
pd.concat(
[
(
(-1)
* c.pnl["p" + end][items]
.multiply(n.snapshot_weightings.generators, axis=0)
.sum()
),
c.df.loc[items][["bus0", "carrier"]],
],
axis=1,
)
.groupby(by=["bus0", "carrier"])
.sum()[0]
)
s.index = s.index.map(lambda x: (x[0], x[1] + end))
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[i])
nodal_supply_energy = nodal_supply_energy.reindex(
s.index.union(nodal_supply_energy.index)
)
nodal_supply_energy.loc[s.index, label] = s
return nodal_supply_energy
def calculate_metrics(n, label, metrics):
metrics_list = [
"line_volume",
@ -637,6 +716,7 @@ def make_summaries(networks_dict):
"energy",
"supply",
"supply_energy",
"nodal_supply_energy",
"prices",
"weighted_prices",
"price_statistics",

View File

@ -60,6 +60,7 @@ def rename_techs(label):
"offwind": "offshore wind",
"offwind-ac": "offshore wind (AC)",
"offwind-dc": "offshore wind (DC)",
"offwind-float": "offshore wind (Float)",
"onwind": "onshore wind",
"ror": "hydroelectricity",
"hydro": "hydroelectricity",
@ -476,9 +477,10 @@ def plot_carbon_budget_distribution(input_eurostat, options):
)
emissions = historical_emissions(countries)
# add other years https://sdi.eea.europa.eu/data/0569441f-2853-4664-a7cd-db969ef54de0
emissions.loc[2019] = 2.971372
emissions.loc[2020] = 2.691958
emissions.loc[2021] = 2.869355
emissions.loc[2019] = 3.414362
emissions.loc[2020] = 3.092434
emissions.loc[2021] = 3.290418
emissions.loc[2022] = 3.213025
if snakemake.config["foresight"] == "myopic":
path_cb = "results/" + snakemake.params.RDIR + "/csvs/"

View File

@ -29,6 +29,7 @@ from build_energy_totals import (
build_eurostat,
build_eurostat_co2,
)
from build_transport_demand import transport_degree_factor
from networkx.algorithms import complement
from networkx.algorithms.connectivity.edge_augmentation import k_edge_augmentation
from prepare_network import maybe_adjust_costs_and_potentials
@ -97,7 +98,7 @@ def define_spatial(nodes, options):
spatial.gas.industry = nodes + " gas for industry"
spatial.gas.industry_cc = nodes + " gas for industry CC"
spatial.gas.biogas_to_gas = nodes + " biogas to gas"
spatial.gas.biogas_to_gas_cc = nodes + "biogas to gas CC"
spatial.gas.biogas_to_gas_cc = nodes + " biogas to gas CC"
else:
spatial.gas.nodes = ["EU gas"]
spatial.gas.locations = ["EU"]
@ -145,10 +146,12 @@ def define_spatial(nodes, options):
if options["regional_methanol_demand"]:
spatial.methanol.demand_locations = nodes
spatial.methanol.industry = nodes + " industry methanol"
spatial.methanol.shipping = nodes + " shipping methanol"
else:
spatial.methanol.demand_locations = ["EU"]
spatial.methanol.shipping = ["EU shipping methanol"]
spatial.methanol.industry = ["EU industry methanol"]
# oil
spatial.oil = SimpleNamespace()
@ -809,33 +812,6 @@ def add_co2limit(n, options, nyears=1.0, limit=0.0):
)
# TODO PyPSA-Eur merge issue
def average_every_nhours(n, offset):
logger.info(f"Resampling the network to {offset}")
m = n.copy(with_time=False)
snapshot_weightings = n.snapshot_weightings.resample(offset).sum()
sns = snapshot_weightings.index
if snakemake.params.drop_leap_day:
sns = sns[~((sns.month == 2) & (sns.day == 29))]
snapshot_weightings = snapshot_weightings.loc[sns]
m.set_snapshots(snapshot_weightings.index)
m.snapshot_weightings = snapshot_weightings
for c in n.iterate_components():
pnl = getattr(m, c.list_name + "_t")
for k, df in c.pnl.items():
if not df.empty:
if c.list_name == "stores" and k == "e_max_pu":
pnl[k] = df.resample(offset).min()
elif c.list_name == "stores" and k == "e_min_pu":
pnl[k] = df.resample(offset).max()
else:
pnl[k] = df.resample(offset).mean()
return m
def cycling_shift(df, steps=1):
"""
Cyclic shift on index of pd.Series|pd.DataFrame by number of steps.
@ -906,8 +882,6 @@ def add_ammonia(n, costs):
nodes = pop_layout.index
cf_industry = snakemake.params.industry
n.add("Carrier", "NH3")
n.madd(
@ -994,6 +968,18 @@ def insert_electricity_distribution_grid(n, costs):
capital_cost=costs.at["electricity distribution grid", "fixed"] * cost_factor,
)
# deduct distribution losses from electricity demand as these are included in total load
# https://nbviewer.org/github/Open-Power-System-Data/datapackage_timeseries/blob/2020-10-06/main.ipynb
if (
efficiency := options["transmission_efficiency"]
.get("electricity distribution grid", {})
.get("efficiency_static")
):
logger.info(
f"Deducting distribution losses from electricity demand: {100*(1-efficiency)}%"
)
n.loads_t.p_set.loc[:, n.loads.carrier == "electricity"] *= efficiency
# this catches regular electricity load and "industry electricity" and
# "agriculture machinery electric" and "agriculture electricity"
loads = n.loads.index[n.loads.carrier.str.contains("electric")]
@ -1025,9 +1011,9 @@ def insert_electricity_distribution_grid(n, costs):
else:
pop_solar = pop_layout.total.rename(index=lambda x: x + " solar")
# add max solar rooftop potential assuming 0.1 kW/m2 and 10 m2/person,
# i.e. 1 kW/person (population data is in thousands of people) so we get MW
potential = 0.1 * 10 * pop_solar
# add max solar rooftop potential assuming 0.1 kW/m2 and 20 m2/person,
# i.e. 2 kW/person (population data is in thousands of people) so we get MW
potential = 0.1 * 20 * pop_solar
n.madd(
"Generator",
@ -1115,7 +1101,7 @@ def insert_gas_distribution_costs(n, costs):
def add_electricity_grid_connection(n, costs):
carriers = ["onwind", "solar"]
carriers = ["onwind", "solar", "solar-hsat"]
gens = n.generators.index[n.generators.carrier.isin(carriers)]
@ -1503,103 +1489,122 @@ def add_storage_and_grids(n, costs):
)
def add_land_transport(n, costs):
# TODO options?
logger.info("Add land transport")
transport = pd.read_csv(
snakemake.input.transport_demand, index_col=0, parse_dates=True
)
number_cars = pd.read_csv(snakemake.input.transport_data, index_col=0)[
"number cars"
]
avail_profile = pd.read_csv(
snakemake.input.avail_profile, index_col=0, parse_dates=True
)
dsm_profile = pd.read_csv(
snakemake.input.dsm_profile, index_col=0, parse_dates=True
)
fuel_cell_share = get(options["land_transport_fuel_cell_share"], investment_year)
electric_share = get(options["land_transport_electric_share"], investment_year)
ice_share = get(options["land_transport_ice_share"], investment_year)
total_share = fuel_cell_share + electric_share + ice_share
def check_land_transport_shares(shares):
# Sums up the shares, ignoring None values
total_share = sum(filter(None, shares))
if total_share != 1:
logger.warning(
f"Total land transport shares sum up to {total_share:.2%}, corresponding to increased or decreased demand assumptions."
f"Total land transport shares sum up to {total_share:.2%},"
"corresponding to increased or decreased demand assumptions."
)
logger.info(f"FCEV share: {fuel_cell_share*100}%")
logger.info(f"EV share: {electric_share*100}%")
logger.info(f"ICEV share: {ice_share*100}%")
nodes = pop_layout.index
def get_temp_efficency(
car_efficiency,
temperature,
deadband_lw,
deadband_up,
degree_factor_lw,
degree_factor_up,
):
"""
Correct temperature depending on heating and cooling for respective car
type.
"""
# temperature correction for EVs
dd = transport_degree_factor(
temperature,
deadband_lw,
deadband_up,
degree_factor_lw,
degree_factor_up,
)
temp_eff = 1 / (1 + dd)
return car_efficiency * temp_eff
def add_EVs(
n,
avail_profile,
dsm_profile,
p_set,
electric_share,
number_cars,
temperature,
):
if electric_share > 0:
n.add("Carrier", "Li ion")
n.madd(
"Bus",
nodes,
spatial.nodes,
suffix=" EV battery",
location=nodes,
location=spatial.nodes,
carrier="Li ion",
unit="MWh_el",
)
p_set = (
electric_share
* (
transport[nodes]
+ cycling_shift(transport[nodes], 1)
+ cycling_shift(transport[nodes], 2)
)
/ 3
car_efficiency = options["transport_electric_efficiency"]
# temperature corrected efficiency
efficiency = get_temp_efficency(
car_efficiency,
temperature,
options["transport_heating_deadband_lower"],
options["transport_heating_deadband_upper"],
options["EV_lower_degree_factor"],
options["EV_upper_degree_factor"],
)
p_shifted = (p_set + cycling_shift(p_set, 1) + cycling_shift(p_set, 2)) / 3
cyclic_eff = p_set.div(p_shifted)
efficiency *= cyclic_eff
profile = electric_share * p_set.div(efficiency)
n.madd(
"Load",
nodes,
spatial.nodes,
suffix=" land transport EV",
bus=nodes + " EV battery",
bus=spatial.nodes + " EV battery",
carrier="land transport EV",
p_set=p_set,
p_set=profile,
)
p_nom = number_cars * options.get("bev_charge_rate", 0.011) * electric_share
n.madd(
"Link",
nodes,
spatial.nodes,
suffix=" BEV charger",
bus0=nodes,
bus1=nodes + " EV battery",
bus0=spatial.nodes,
bus1=spatial.nodes + " EV battery",
p_nom=p_nom,
carrier="BEV charger",
p_max_pu=avail_profile[nodes],
p_max_pu=avail_profile[spatial.nodes],
lifetime=1,
efficiency=options.get("bev_charge_efficiency", 0.9),
# These were set non-zero to find LU infeasibility when availability = 0.25
# p_nom_extendable=True,
# p_nom_min=p_nom,
# capital_cost=1e6, #i.e. so high it only gets built where necessary
)
if electric_share > 0 and options["v2g"]:
if options["v2g"]:
n.madd(
"Link",
nodes,
spatial.nodes,
suffix=" V2G",
bus1=nodes,
bus0=nodes + " EV battery",
bus1=spatial.nodes,
bus0=spatial.nodes + " EV battery",
p_nom=p_nom,
carrier="V2G",
p_max_pu=avail_profile[nodes],
p_max_pu=avail_profile[spatial.nodes],
lifetime=1,
efficiency=options.get("bev_charge_efficiency", 0.9),
)
if electric_share > 0 and options["bev_dsm"]:
if options["bev_dsm"]:
e_nom = (
number_cars
* options.get("bev_energy", 0.05)
@ -1609,43 +1614,65 @@ def add_land_transport(n, costs):
n.madd(
"Store",
nodes,
spatial.nodes,
suffix=" battery storage",
bus=nodes + " EV battery",
bus=spatial.nodes + " EV battery",
carrier="battery storage",
e_cyclic=True,
e_nom=e_nom,
e_max_pu=1,
e_min_pu=dsm_profile[nodes],
e_min_pu=dsm_profile[spatial.nodes],
)
if fuel_cell_share > 0:
def add_fuel_cell_cars(n, p_set, fuel_cell_share, temperature):
car_efficiency = options["transport_fuel_cell_efficiency"]
# temperature corrected efficiency
efficiency = get_temp_efficency(
car_efficiency,
temperature,
options["transport_heating_deadband_lower"],
options["transport_heating_deadband_upper"],
options["ICE_lower_degree_factor"],
options["ICE_upper_degree_factor"],
)
profile = fuel_cell_share * p_set.div(efficiency)
n.madd(
"Load",
nodes,
spatial.nodes,
suffix=" land transport fuel cell",
bus=nodes + " H2",
bus=spatial.h2.nodes,
carrier="land transport fuel cell",
p_set=fuel_cell_share
/ options["transport_fuel_cell_efficiency"]
* transport[nodes],
p_set=profile,
)
if ice_share > 0:
def add_ice_cars(n, p_set, ice_share, temperature):
add_carrier_buses(n, "oil")
ice_efficiency = options["transport_internal_combustion_efficiency"]
car_efficiency = options["transport_ice_efficiency"]
p_set_land_transport_oil = (
ice_share
/ ice_efficiency
* transport[nodes].rename(columns=lambda x: x + " land transport oil")
# temperature corrected efficiency
efficiency = get_temp_efficency(
car_efficiency,
temperature,
options["transport_heating_deadband_lower"],
options["transport_heating_deadband_upper"],
options["ICE_lower_degree_factor"],
options["ICE_upper_degree_factor"],
)
profile = ice_share * p_set.div(efficiency).rename(
columns=lambda x: x + " land transport oil"
)
if not options["regional_oil_demand"]:
p_set_land_transport_oil = p_set_land_transport_oil.sum(axis=1).to_frame(
name="EU land transport oil"
)
profile = profile.sum(axis=1).to_frame(name="EU land transport oil")
n.madd(
"Bus",
@ -1660,7 +1687,7 @@ def add_land_transport(n, costs):
spatial.oil.land_transport,
bus=spatial.oil.land_transport,
carrier="land transport oil",
p_set=p_set_land_transport_oil,
p_set=profile,
)
n.madd(
@ -1675,6 +1702,56 @@ def add_land_transport(n, costs):
)
def add_land_transport(n, costs):
logger.info("Add land transport")
# read in transport demand in units driven km [100 km]
transport = pd.read_csv(
snakemake.input.transport_demand, index_col=0, parse_dates=True
)
number_cars = pd.read_csv(snakemake.input.transport_data, index_col=0)[
"number cars"
]
avail_profile = pd.read_csv(
snakemake.input.avail_profile, index_col=0, parse_dates=True
)
dsm_profile = pd.read_csv(
snakemake.input.dsm_profile, index_col=0, parse_dates=True
)
# exogenous share of passenger car type
engine_types = ["fuel_cell", "electric", "ice"]
shares = pd.Series()
for engine in engine_types:
shares[engine] = get(options[f"land_transport_{engine}_share"], investment_year)
logger.info(f"{engine} share: {shares[engine]*100}%")
check_land_transport_shares(shares)
p_set = transport[spatial.nodes]
# temperature for correction factor for heating/cooling
temperature = xr.open_dataarray(snakemake.input.temp_air_total).to_pandas()
if shares["electric"] > 0:
add_EVs(
n,
avail_profile,
dsm_profile,
p_set,
shares["electric"],
number_cars,
temperature,
)
if shares["fuel_cell"] > 0:
add_fuel_cell_cars(n, p_set, shares["fuel_cell"], temperature)
if shares["ice"] > 0:
add_ice_cars(n, p_set, shares["ice"], temperature)
def build_heat_demand(n):
heat_demand_shape = (
xr.open_dataset(snakemake.input.hourly_heat_demand_total)
@ -2602,6 +2679,86 @@ def add_industry(n, costs):
p_set=industrial_demand.loc[nodes, "hydrogen"] / nhours,
)
# methanol for industry
n.madd(
"Bus",
spatial.methanol.nodes,
carrier="methanol",
location=spatial.methanol.locations,
unit="MWh_LHV",
)
n.madd(
"Store",
spatial.methanol.nodes,
suffix=" Store",
bus=spatial.methanol.nodes,
e_nom_extendable=True,
e_cyclic=True,
carrier="methanol",
)
n.madd(
"Bus",
spatial.methanol.industry,
carrier="industry methanol",
location=spatial.methanol.demand_locations,
unit="MWh_LHV",
)
p_set_methanol = (
industrial_demand["methanol"]
.rename(lambda x: x + " industry methanol")
/ nhours
)
if not options["regional_methanol_demand"]:
p_set_methanol = p_set_methanol.sum()
n.madd(
"Load",
spatial.methanol.industry,
bus=spatial.methanol.industry,
carrier="industry methanol",
p_set=p_set_methanol,
)
n.madd(
"Link",
spatial.methanol.industry,
bus0=spatial.methanol.nodes,
bus1=spatial.methanol.industry,
bus2="co2 atmosphere",
carrier="industry methanol",
p_nom_extendable=True,
efficiency2=1
/ options[
"MWh_MeOH_per_tCO2"
],
# CO2 intensity methanol based on stoichiometric calculation with 22.7 GJ/t methanol (32 g/mol), CO2 (44 g/mol), 277.78 MWh/TJ = 0.218 t/MWh
)
n.madd(
"Link",
spatial.h2.locations + " methanolisation",
bus0=spatial.h2.nodes,
bus1=spatial.methanol.nodes,
bus2=nodes,
bus3=spatial.co2.nodes,
carrier="methanolisation",
p_nom_extendable=True,
p_min_pu=options.get("min_part_load_methanolisation", 0),
capital_cost=costs.at["methanolisation", "fixed"]
* options["MWh_MeOH_per_MWh_H2"], # EUR/MW_H2/a
marginal_cost=options["MWh_MeOH_per_MWh_H2"]
* costs.at["methanolisation", "VOM"],
lifetime=costs.at["methanolisation", "lifetime"],
efficiency=options["MWh_MeOH_per_MWh_H2"],
efficiency2=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_MWh_e"],
efficiency3=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_tCO2"],
)
shipping_hydrogen_share = get(options["shipping_hydrogen_share"], investment_year)
shipping_methanol_share = get(options["shipping_methanol_share"], investment_year)
shipping_oil_share = get(options["shipping_oil_share"], investment_year)
@ -2671,56 +2828,18 @@ def add_industry(n, costs):
)
if shipping_methanol_share:
n.madd(
"Bus",
spatial.methanol.nodes,
carrier="methanol",
location=spatial.methanol.locations,
unit="MWh_LHV",
)
n.madd(
"Store",
spatial.methanol.nodes,
suffix=" Store",
bus=spatial.methanol.nodes,
e_nom_extendable=True,
e_cyclic=True,
carrier="methanol",
)
n.madd(
"Link",
spatial.h2.locations + " methanolisation",
bus0=spatial.h2.nodes,
bus1=spatial.methanol.nodes,
bus2=nodes,
bus3=spatial.co2.nodes,
carrier="methanolisation",
p_nom_extendable=True,
p_min_pu=options.get("min_part_load_methanolisation", 0),
capital_cost=costs.at["methanolisation", "fixed"]
* options["MWh_MeOH_per_MWh_H2"], # EUR/MW_H2/a
marginal_cost=options["MWh_MeOH_per_MWh_H2"]
* costs.at["methanolisation", "VOM"],
lifetime=costs.at["methanolisation", "lifetime"],
efficiency=options["MWh_MeOH_per_MWh_H2"],
efficiency2=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_MWh_e"],
efficiency3=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_tCO2"],
)
efficiency = (
options["shipping_oil_efficiency"] / options["shipping_methanol_efficiency"]
)
p_set_methanol = (
p_set_methanol_shipping = (
shipping_methanol_share
* p_set.rename(lambda x: x + " shipping methanol")
* efficiency
)
if not options["regional_methanol_demand"]:
p_set_methanol = p_set_methanol.sum()
p_set_methanol_shipping = p_set_methanol_shipping.sum()
n.madd(
"Bus",
@ -2735,7 +2854,7 @@ def add_industry(n, costs):
spatial.methanol.shipping,
bus=spatial.methanol.shipping,
carrier="shipping methanol",
p_set=p_set_methanol,
p_set=p_set_methanol_shipping,
)
n.madd(
@ -2865,7 +2984,7 @@ def add_industry(n, costs):
if demand_factor != 1:
logger.warning(f"Changing HVC demand by {demand_factor*100-100:+.2f}%.")
p_set_plastics = (
p_set_naphtha = (
demand_factor
* industrial_demand.loc[nodes, "naphtha"].rename(
lambda x: x + " naphtha for industry"
@ -2874,7 +2993,7 @@ def add_industry(n, costs):
)
if not options["regional_oil_demand"]:
p_set_plastics = p_set_plastics.sum()
p_set_naphtha = p_set_naphtha.sum()
n.madd(
"Bus",
@ -2889,7 +3008,7 @@ def add_industry(n, costs):
spatial.oil.naphtha,
bus=spatial.oil.naphtha,
carrier="naphtha for industry",
p_set=p_set_plastics,
p_set=p_set_naphtha,
)
# some CO2 from naphtha are process emissions from steam cracker
@ -2900,6 +3019,101 @@ def add_industry(n, costs):
)
emitted_co2_per_naphtha = costs.at["oil", "CO2 intensity"] - process_co2_per_naphtha
non_sequestered = 1 - get(
cf_industry["HVC_environment_sequestration_fraction"],
investment_year,
)
if cf_industry["waste_to_energy"] or cf_industry["waste_to_energy_cc"]:
non_sequestered_hvc_locations = (
pd.Index(spatial.oil.demand_locations) + " non-sequestered HVC"
)
n.madd(
"Bus",
non_sequestered_hvc_locations,
location=spatial.oil.demand_locations,
carrier="non-sequestered HVC",
unit="MWh_LHV",
)
n.madd(
"Link",
spatial.oil.naphtha,
bus0=spatial.oil.nodes,
bus1=spatial.oil.naphtha,
bus2=non_sequestered_hvc_locations,
bus3=spatial.co2.process_emissions,
carrier="naphtha for industry",
p_nom_extendable=True,
efficiency2=non_sequestered
* emitted_co2_per_naphtha
/ costs.at["oil", "CO2 intensity"],
efficiency3=process_co2_per_naphtha,
)
n.madd(
"Link",
spatial.oil.demand_locations,
suffix=" HVC to air",
bus0=non_sequestered_hvc_locations,
bus1="co2 atmosphere",
carrier="HVC to air",
p_nom_extendable=True,
efficiency=costs.at["oil", "CO2 intensity"],
)
if len(non_sequestered_hvc_locations) == 1:
waste_source = non_sequestered_hvc_locations[0]
else:
waste_source = non_sequestered_hvc_locations
if cf_industry["waste_to_energy"]:
n.madd(
"Link",
spatial.nodes + " waste CHP",
bus0=waste_source,
bus1=spatial.nodes,
bus2=spatial.nodes + " urban central heat",
bus3="co2 atmosphere",
carrier="waste CHP",
p_nom_extendable=True,
capital_cost=costs.at["waste CHP", "fixed"]
* costs.at["waste CHP", "efficiency"],
marginal_cost=costs.at["waste CHP", "VOM"],
efficiency=costs.at["waste CHP", "efficiency"],
efficiency2=costs.at["waste CHP", "efficiency-heat"],
efficiency3=costs.at["oil", "CO2 intensity"],
lifetime=costs.at["waste CHP", "lifetime"],
)
if cf_industry["waste_to_energy_cc"]:
n.madd(
"Link",
spatial.nodes + " waste CHP CC",
bus0=waste_source,
bus1=spatial.nodes,
bus2=spatial.nodes + " urban central heat",
bus3="co2 atmosphere",
bus4=spatial.co2.nodes,
carrier="waste CHP CC",
p_nom_extendable=True,
capital_cost=costs.at["waste CHP CC", "fixed"]
* costs.at["waste CHP CC", "efficiency"],
marginal_cost=costs.at["waste CHP CC", "VOM"],
efficiency=costs.at["waste CHP CC", "efficiency"],
efficiency2=costs.at["waste CHP CC", "efficiency-heat"],
efficiency3=costs.at["oil", "CO2 intensity"]
* (1 - options["cc_fraction"]),
efficiency4=costs.at["oil", "CO2 intensity"] * options["cc_fraction"],
lifetime=costs.at["waste CHP CC", "lifetime"],
)
else:
n.madd(
"Link",
spatial.oil.naphtha,
@ -2909,7 +3123,7 @@ def add_industry(n, costs):
bus3=spatial.co2.process_emissions,
carrier="naphtha for industry",
p_nom_extendable=True,
efficiency2=emitted_co2_per_naphtha,
efficiency2=emitted_co2_per_naphtha * non_sequestered,
efficiency3=process_co2_per_naphtha,
)
@ -3070,13 +3284,7 @@ def add_industry(n, costs):
p_set=p_set,
)
primary_steel = get(
snakemake.config["industry"]["St_primary_fraction"], investment_year
)
dri_steel = get(snakemake.config["industry"]["DRI_fraction"], investment_year)
bof_steel = primary_steel - dri_steel
if bof_steel > 0:
if industrial_demand[["coke", "coal"]].sum().sum() > 0:
add_carrier_buses(n, "coal")
mwh_coal_per_mwh_coke = 1.366 # from eurostat energy balance
@ -3122,7 +3330,6 @@ def add_waste_heat(n):
# TODO options?
logger.info("Add possibility to use industrial waste heat in district heating")
cf_industry = snakemake.params.industry
# AC buses with district heating
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
@ -3421,100 +3628,48 @@ def cluster_heat_buses(n):
import_components_from_dataframe(n, df.loc[to_add], c.name)
def apply_time_segmentation(
n, segments, solver_name="cbc", overwrite_time_dependent=True
):
def set_temporal_aggregation(n, resolution, snapshot_weightings):
"""
Aggregating time series to segments with different lengths.
Input:
n: pypsa Network
segments: (int) number of segments in which the typical period should be
subdivided
solver_name: (str) name of solver
overwrite_time_dependent: (bool) overwrite time dependent data of pypsa network
with typical time series created by tsam
Aggregate time-varying data to the given snapshots.
"""
try:
import tsam.timeseriesaggregation as tsam
except ImportError:
raise ModuleNotFoundError(
"Optional dependency 'tsam' not found." "Install via 'pip install tsam'"
)
# get all time-dependent data
columns = pd.MultiIndex.from_tuples([], names=["component", "key", "asset"])
raw = pd.DataFrame(index=n.snapshots, columns=columns)
for c in n.iterate_components():
for attr, pnl in c.pnl.items():
# exclude e_min_pu which is used for SOC of EVs in the morning
if not pnl.empty and attr != "e_min_pu":
df = pnl.copy()
df.columns = pd.MultiIndex.from_product([[c.name], [attr], df.columns])
raw = pd.concat([raw, df], axis=1)
# normalise all time-dependent data
annual_max = raw.max().replace(0, 1)
raw = raw.div(annual_max, level=0)
# get representative segments
agg = tsam.TimeSeriesAggregation(
raw,
hoursPerPeriod=len(raw),
noTypicalPeriods=1,
noSegments=int(segments),
segmentation=True,
solver=solver_name,
)
segmented = agg.createTypicalPeriods()
weightings = segmented.index.get_level_values("Segment Duration")
offsets = np.insert(np.cumsum(weightings[:-1]), 0, 0)
timesteps = [raw.index[0] + pd.Timedelta(f"{offset}h") for offset in offsets]
snapshots = pd.DatetimeIndex(timesteps)
sn_weightings = pd.Series(
weightings, index=snapshots, name="weightings", dtype="float64"
)
logger.info(f"Distribution of snapshot durations:\n{weightings.value_counts()}")
n.set_snapshots(sn_weightings.index)
n.snapshot_weightings = n.snapshot_weightings.mul(sn_weightings, axis=0)
# overwrite time-dependent data with timeseries created by tsam
if overwrite_time_dependent:
values_t = segmented.mul(annual_max).set_index(snapshots)
for component, key in values_t.columns.droplevel(2).unique():
n.pnl(component)[key] = values_t[component, key]
return n
def set_temporal_aggregation(n, resolution, solver_name):
"""
Aggregate network temporally.
"""
if not resolution:
return n
# representative snapshots
if "sn" in resolution.lower():
# Representative snapshots are dealt with directly
sn = int(resolution[:-2])
logger.info("Use every %s snapshot as representative", sn)
n.set_snapshots(n.snapshots[::sn])
n.snapshot_weightings *= sn
else:
# Otherwise, use the provided snapshots
snapshot_weightings = pd.read_csv(
snapshot_weightings, index_col=0, parse_dates=True
)
# segments with package tsam
elif "seg" in resolution.lower():
segments = int(resolution[:-3])
logger.info("Use temporal segmentation with %s segments", segments)
n = apply_time_segmentation(n, segments, solver_name=solver_name)
n.set_snapshots(snapshot_weightings.index)
n.snapshot_weightings = snapshot_weightings
# temporal averaging
elif "h" in resolution.lower():
logger.info("Aggregate to frequency %s", resolution)
n = average_every_nhours(n, resolution)
# Define a series used for aggregation, mapping each hour in
# n.snapshots to the closest previous timestep in
# snapshot_weightings.index
aggregation_map = (
pd.Series(
snapshot_weightings.index.get_indexer(n.snapshots), index=n.snapshots
)
.replace(-1, np.nan)
.ffill()
.astype(int)
.map(lambda i: snapshot_weightings.index[i])
)
return n
# Aggregation all time-varying data.
for c in n.iterate_components():
for k, df in c.pnl.items():
if not df.empty:
if c.list_name == "stores" and k == "e_max_pu":
c.pnl[k] = df.groupby(aggregation_map).min()
elif c.list_name == "stores" and k == "e_min_pu":
c.pnl[k] = df.groupby(aggregation_map).max()
else:
c.pnl[k] = df.groupby(aggregation_map).mean()
def lossy_bidirectional_links(n, carrier, efficiencies={}):
@ -3567,19 +3722,20 @@ def lossy_bidirectional_links(n, carrier, efficiencies={}):
)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"prepare_sector_network",
configfiles="test/config.overnight.yaml",
# configfiles="test/config.overnight.yaml",
simpl="",
opts="",
clusters="37",
ll="v1.0",
sector_opts="CO2L0-24H-T-H-B-I-A-dist1",
planning_horizons="2030",
sector_opts="730H-T-H-B-I-A-dist1",
planning_horizons="2050",
)
configure_logging(snakemake)
@ -3587,6 +3743,7 @@ if __name__ == "__main__":
update_config_from_wildcards(snakemake.config, snakemake.wildcards)
options = snakemake.params.sector
cf_industry = snakemake.params.industry
investment_year = int(snakemake.wildcards.planning_horizons[-4:])
@ -3665,9 +3822,9 @@ if __name__ == "__main__":
if options["allam_cycle"]:
add_allam(n, costs)
solver_name = snakemake.config["solving"]["solver"]["name"]
resolution = snakemake.params.time_resolution
n = set_temporal_aggregation(n, resolution, solver_name)
set_temporal_aggregation(
n, snakemake.params.time_resolution, snakemake.input.snapshot_weightings
)
co2_budget = snakemake.params.co2_budget
if isinstance(co2_budget, str) and co2_budget.startswith("cb"):

View File

@ -1,5 +1,5 @@
# -*- coding: utf-8 -*-
# Copyright 2019-2022 Fabian Hofmann (TUB, FIAS)
# Copyright 2019-2024 Fabian Hofmann (TUB, FIAS), Fabian Neumann (TUB)
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
@ -7,24 +7,15 @@
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3517935.svg
:target: https://doi.org/10.5281/zenodo.3517935
The data bundle (1.4 GB) contains common GIS datasets like NUTS3 shapes, EEZ shapes, CORINE Landcover, Natura 2000 and also electricity specific summary statistics like historic per country yearly totals of hydro generation, GDP and POP on NUTS3 levels and per-country load time-series.
The data bundle contains common GIS datasets like NUTS3 shapes, EEZ shapes,
CORINE Landcover, Natura 2000 and also electricity specific summary statistics
like historic per country yearly totals of hydro generation, GDP and population
data on NUTS3 levels and energy balances.
This rule downloads the data bundle from `zenodo <https://doi.org/10.5281/zenodo.3517935>`_ and extracts it in the ``data`` sub-directory, such that all files of the bundle are stored in the ``data/bundle`` subdirectory.
The :ref:`tutorial` uses a smaller `data bundle <https://zenodo.org/record/3517921/files/pypsa-eur-tutorial-data-bundle.tar.xz>`_ than required for the full model (188 MB)
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3517921.svg
:target: https://doi.org/10.5281/zenodo.3517921
**Relevant Settings**
.. code:: yaml
tutorial:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`toplevel_cf`
This rule downloads the data bundle from `zenodo
<https://doi.org/10.5281/zenodo.3517935>`_ and extracts it in the ``data``
sub-directory, such that all files of the bundle are stored in the
``data/bundle`` subdirectory.
**Outputs**
@ -57,10 +48,7 @@ if __name__ == "__main__":
configure_logging(snakemake)
set_scenario_config(snakemake)
if snakemake.config["tutorial"]:
url = "https://zenodo.org/record/3517921/files/pypsa-eur-tutorial-data-bundle.tar.xz"
else:
url = "https://zenodo.org/record/3517935/files/pypsa-eur-data-bundle.tar.xz"
url = "https://zenodo.org/records/10973944/files/bundle.tar.xz"
tarball_fn = Path(f"{rootpath}/bundle.tar.xz")
to_fn = Path(rootpath) / Path(snakemake.output[0]).parent.parent
@ -74,6 +62,7 @@ if __name__ == "__main__":
logger.info("Extracting databundle.")
tarfile.open(tarball_fn).extractall(to_fn)
logger.info("Unlinking tarball.")
tarball_fn.unlink()
logger.info(f"Databundle available in '{to_fn}'.")

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Retrieve gas infrastructure data from
https://zenodo.org/record/4767098/files/IGGIELGN.zip.
https://zenodo.org/records/4767098/files/IGGIELGN.zip.
"""
import logging
@ -32,7 +32,7 @@ if __name__ == "__main__":
configure_logging(snakemake)
set_scenario_config(snakemake)
url = "https://zenodo.org/record/4767098/files/IGGIELGN.zip"
url = "https://zenodo.org/records/4767098/files/IGGIELGN.zip"
# Save locations
zip_fn = Path(f"{rootpath}/IGGIELGN.zip")

View File

@ -1,108 +0,0 @@
# -*- coding: utf-8 -*-
# Copyright 2023 Thomas Gilon (Climact)
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
This rule downloads the existing capacities from `IRENASTAT <https://www.irena.org/Data/Downloads/IRENASTAT>`_ and extracts it in the ``data/existing_capacities`` sub-directory.
**Relevant Settings**
.. code:: yaml
enable:
retrieve_irena:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`enable_cf`
**Outputs**
- ``data/existing_capacities``: existing capacities for offwind, onwind and solar
"""
import logging
import pandas as pd
from _helpers import configure_logging, set_scenario_config
logger = logging.getLogger(__name__)
REGIONS = [
"Albania",
"Austria",
"Belgium",
"Bosnia and Herzegovina",
"Bulgaria",
"Croatia",
"Czechia",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Montenegro",
# "Netherlands",
"Netherlands (Kingdom of the)",
"North Macedonia",
"Norway",
"Poland",
"Portugal",
"Romania",
"Serbia",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
# "United Kingdom",
"United Kingdom of Great Britain and Northern Ireland (the)",
]
REGIONS_DICT = {
"Bosnia and Herzegovina": "Bosnia Herzg",
"Netherlands (Kingdom of the)": "Netherlands",
"United Kingdom of Great Britain and Northern Ireland (the)": "UK",
}
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("retrieve_irena")
configure_logging(snakemake)
set_scenario_config(snakemake)
irena_raw = pd.read_csv(
"https://pxweb.irena.org:443/sq/99e64b12-fe03-4a7b-92ea-a22cc3713b92",
skiprows=2,
index_col=[0, 1, 3],
encoding="latin-1",
)
var = "Installed electricity capacity (MW)"
irena = irena_raw[var].unstack(level=2).reset_index(level=1).replace(0, "")
irena = irena[irena.index.isin(REGIONS)]
irena.rename(index=REGIONS_DICT, inplace=True)
df_offwind = irena[irena.Technology.str.contains("Offshore")].drop(
columns=["Technology"]
)
df_onwind = irena[irena.Technology.str.contains("Onshore")].drop(
columns=["Technology"]
)
df_pv = irena[irena.Technology.str.contains("Solar")].drop(columns=["Technology"])
df_offwind.to_csv(snakemake.output["offwind"])
df_onwind.to_csv(snakemake.output["onwind"])
df_pv.to_csv(snakemake.output["solar"])

View File

@ -1,49 +0,0 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2021-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Retrieve and extract data bundle for sector-coupled studies.
"""
import logging
import tarfile
from pathlib import Path
from _helpers import (
configure_logging,
progress_retrieve,
set_scenario_config,
validate_checksum,
)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("retrieve_databundle")
rootpath = ".."
else:
rootpath = "."
configure_logging(snakemake)
set_scenario_config(snakemake)
url = "https://zenodo.org/record/5824485/files/pypsa-eur-sec-data-bundle.tar.gz"
tarball_fn = Path(f"{rootpath}/sector-bundle.tar.gz")
to_fn = Path(rootpath) / Path(snakemake.output[0]).parent.parent
logger.info(f"Downloading databundle from '{url}'.")
disable_progress = snakemake.config["run"].get("disable_progressbar", False)
progress_retrieve(url, tarball_fn, disable=disable_progress)
validate_checksum(tarball_fn, url)
logger.info("Extracting databundle.")
tarfile.open(tarball_fn).extractall(to_fn)
tarball_fn.unlink()
logger.info(f"Databundle available in '{to_fn}'.")

View File

@ -95,7 +95,7 @@ import pypsa
import scipy as sp
from _helpers import configure_logging, set_scenario_config, update_p_nom_max
from add_electricity import load_costs
from build_bus_regions import append_bus_shapes
from base_network import append_bus_shapes
from cluster_network import cluster_regions, clustering_for_n_clusters
from pypsa.clustering.spatial import (
aggregateoneport,

View File

@ -31,6 +31,7 @@ import logging
import os
import re
import sys
from functools import reduce
import numpy as np
import pandas as pd
@ -123,7 +124,15 @@ def add_land_use_constraint_perfect(n):
def _add_land_use_constraint(n):
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
for carrier in [
"solar",
"solar rooftop",
"solar-hsat",
"onwind",
"offwind-ac",
"offwind-dc",
"offwind-float",
]:
extendable_i = (n.generators.carrier == carrier) & n.generators.p_nom_extendable
n.generators.loc[extendable_i, "p_nom_min"] = 0
@ -158,7 +167,14 @@ def _add_land_use_constraint_m(n, planning_horizons, config):
grouping_years = config["existing_capacities"]["grouping_years_power"]
current_horizon = snakemake.wildcards.planning_horizons
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
for carrier in [
"solar",
"solar rooftop",
"solar-hsat",
"onwind",
"offwind-ac",
"offwind-dc",
]:
extendable_i = (n.generators.carrier == carrier) & n.generators.p_nom_extendable
n.generators.loc[extendable_i, "p_nom_min"] = 0
@ -199,6 +215,83 @@ def _add_land_use_constraint_m(n, planning_horizons, config):
n.generators.p_nom_max.clip(lower=0, inplace=True)
def add_solar_potential_constraints(n, config):
"""
Add constraint to make sure the sum capacity of all solar technologies (fixed, tracking, ets. ) is below the region potential.
Example:
ES1 0: total solar potential is 10 GW, meaning:
solar potential : 10 GW
solar-hsat potential : 8 GW (solar with single axis tracking is assumed to have higher land use)
The constraint ensures that:
solar_p_nom + solar_hsat_p_nom * 1.13 <= 10 GW
"""
land_use_factors = {
"solar-hsat": config["renewable"]["solar"]["capacity_per_sqkm"]
/ config["renewable"]["solar-hsat"]["capacity_per_sqkm"],
}
rename = {"Generator-ext": "Generator"}
solar_carriers = ["solar", "solar-hsat"]
solar = n.generators[
n.generators.carrier.isin(solar_carriers) & n.generators.p_nom_extendable
].index
solar_today = n.generators[
(n.generators.carrier == "solar") & (n.generators.p_nom_extendable)
].index
solar_hsat = n.generators[(n.generators.carrier == "solar-hsat")].index
if solar.empty:
return
land_use = pd.DataFrame(1, index=solar, columns=["land_use_factor"])
for carrier, factor in land_use_factors.items():
land_use = land_use.apply(
lambda x: (x * factor) if carrier in x.name else x, axis=1
)
if "m" in snakemake.wildcards.clusters:
location = pd.Series(
[" ".join(i.split(" ")[:2]) for i in n.generators.index],
index=n.generators.index,
)
ggrouper = pd.Series(
n.generators.loc[solar].index.rename("bus").map(location),
index=n.generators.loc[solar].index,
).to_xarray()
rhs = (
n.generators.loc[solar_today, "p_nom_max"]
.groupby(n.generators.loc[solar_today].index.rename("bus").map(location))
.sum()
- n.generators.loc[solar_hsat, "p_nom_opt"]
.groupby(n.generators.loc[solar_hsat].index.rename("bus").map(location))
.sum()
* land_use_factors["solar-hsat"]
).clip(lower=0)
else:
location = pd.Series(n.buses.index, index=n.buses.index)
ggrouper = n.generators.loc[solar].bus
rhs = (
n.generators.loc[solar_today, "p_nom_max"]
.groupby(n.generators.loc[solar_today].bus.map(location))
.sum()
- n.generators.loc[solar_hsat, "p_nom_opt"]
.groupby(n.generators.loc[solar_hsat].bus.map(location))
.sum()
* land_use_factors["solar-hsat"]
).clip(lower=0)
lhs = (
(n.model["Generator-p_nom"].rename(rename).loc[solar] * land_use.squeeze())
.groupby(ggrouper)
.sum()
)
logger.info("Adding solar potential constraint.")
n.model.add_constraints(lhs <= rhs, name="solar_potential")
def add_co2_sequestration_limit(n, limit=200):
"""
Add a global constraint on the amount of Mt CO2 that can be sequestered.
@ -438,23 +531,66 @@ def add_CCL_constraints(n, config):
agg_p_nom_limits: data/agg_p_nom_minmax.csv
"""
agg_p_nom_minmax = pd.read_csv(
config["electricity"]["agg_p_nom_limits"], index_col=[0, 1]
)
config["solving"]["agg_p_nom_limits"]["file"], index_col=[0, 1], header=[0, 1]
)[snakemake.wildcards.planning_horizons]
logger.info("Adding generation capacity constraints per carrier and country")
p_nom = n.model["Generator-p_nom"]
gens = n.generators.query("p_nom_extendable").rename_axis(index="Generator-ext")
grouper = pd.concat([gens.bus.map(n.buses.country), gens.carrier])
if config["solving"]["agg_p_nom_limits"]["agg_offwind"]:
rename_offwind = {
"offwind-ac": "offwind-all",
"offwind-dc": "offwind-all",
"offwind": "offwind-all",
}
gens = gens.replace(rename_offwind)
grouper = pd.concat([gens.bus.map(n.buses.country), gens.carrier], axis=1)
lhs = p_nom.groupby(grouper).sum().rename(bus="country")
if config["solving"]["agg_p_nom_limits"]["include_existing"]:
gens_cst = n.generators.query("~p_nom_extendable").rename_axis(
index="Generator-cst"
)
gens_cst = gens_cst[
(gens_cst["build_year"] + gens_cst["lifetime"])
>= int(snakemake.wildcards.planning_horizons)
]
if config["solving"]["agg_p_nom_limits"]["agg_offwind"]:
gens_cst = gens_cst.replace(rename_offwind)
rhs_cst = (
pd.concat(
[gens_cst.bus.map(n.buses.country), gens_cst[["carrier", "p_nom"]]],
axis=1,
)
.groupby(["bus", "carrier"])
.sum()
)
rhs_cst.index = rhs_cst.index.rename({"bus": "country"})
rhs_min = agg_p_nom_minmax["min"].dropna()
idx_min = rhs_min.index.join(rhs_cst.index, how="left")
rhs_min = rhs_min.reindex(idx_min).fillna(0)
rhs = (rhs_min - rhs_cst.reindex(idx_min).fillna(0).p_nom).dropna()
rhs[rhs < 0] = 0
minimum = xr.DataArray(rhs).rename(dim_0="group")
else:
minimum = xr.DataArray(agg_p_nom_minmax["min"].dropna()).rename(dim_0="group")
index = minimum.indexes["group"].intersection(lhs.indexes["group"])
if not index.empty:
n.model.add_constraints(
lhs.sel(group=index) >= minimum.loc[index], name="agg_p_nom_min"
)
if config["solving"]["agg_p_nom_limits"]["include_existing"]:
rhs_max = agg_p_nom_minmax["max"].dropna()
idx_max = rhs_max.index.join(rhs_cst.index, how="left")
rhs_max = rhs_max.reindex(idx_max).fillna(0)
rhs = (rhs_max - rhs_cst.reindex(idx_max).fillna(0).p_nom).dropna()
rhs[rhs < 0] = 0
maximum = xr.DataArray(rhs).rename(dim_0="group")
else:
maximum = xr.DataArray(agg_p_nom_minmax["max"].dropna()).rename(dim_0="group")
index = maximum.indexes["group"].intersection(lhs.indexes["group"])
if not index.empty:
n.model.add_constraints(
@ -642,9 +778,9 @@ def add_operational_reserve_margin(n, sns, config):
.loc[vres_i.intersection(ext_i)]
.rename({"Generator-ext": "Generator"})
)
lhs = summed_reserve + (p_nom_vres * (-EPSILON_VRES * capacity_factor)).sum(
"Generator"
)
lhs = summed_reserve + (
p_nom_vres * (-EPSILON_VRES * xr.DataArray(capacity_factor))
).sum("Generator")
# Total demand per t
demand = get_as_dense(n, "Load", "p_set").sum(axis=1)
@ -674,7 +810,7 @@ def add_operational_reserve_margin(n, sns, config):
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
lhs = dispatch + reserve - capacity_variable * p_max_pu[ext_i]
lhs = dispatch + reserve - capacity_variable * xr.DataArray(p_max_pu[ext_i])
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)
@ -862,6 +998,9 @@ def extra_functionality(n, snapshots):
if EQ_o := constraints["EQ"]:
add_EQ_constraints(n, EQ_o.replace("EQ", ""))
if {"solar-hsat", "solar"}.issubset(config["renewable"].keys()):
add_solar_potential_constraints(n, config)
add_battery_constraints(n)
add_lossy_bidirectional_link_constraints(n)
add_pipe_retrofit_constraint(n)
@ -911,7 +1050,7 @@ def solve_network(n, config, solving, **kwargs):
# add to network for extra_functionality
n.config = config
if rolling_horizon:
if rolling_horizon and snakemake.rule == "solve_operations_network":
kwargs["horizon"] = cf_solving.get("horizon", 365)
kwargs["overlap"] = cf_solving.get("overlap", 0)
n.optimize.optimize_with_rolling_horizon(**kwargs)
@ -919,9 +1058,12 @@ def solve_network(n, config, solving, **kwargs):
elif skip_iterations:
status, condition = n.optimize(**kwargs)
else:
kwargs["track_iterations"] = (cf_solving.get("track_iterations", False),)
kwargs["min_iterations"] = (cf_solving.get("min_iterations", 4),)
kwargs["max_iterations"] = (cf_solving.get("max_iterations", 6),)
kwargs["track_iterations"] = cf_solving["track_iterations"]
kwargs["min_iterations"] = cf_solving["min_iterations"]
kwargs["max_iterations"] = cf_solving["max_iterations"]
if cf_solving["post_discretization"].pop("enable"):
logger.info("Add post-discretization parameters.")
kwargs.update(cf_solving["post_discretization"])
status, condition = n.optimize.optimize_transmission_expansion_iteratively(
**kwargs
)

151
scripts/time_aggregation.py Normal file
View File

@ -0,0 +1,151 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Defines the time aggregation to be used for sector-coupled network.
Relevant Settings
-----------------
.. code:: yaml
clustering:
temporal:
resolution_sector:
enable:
drop_leap_day:
Inputs
------
- ``networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: the network whose
snapshots are to be aggregated
- ``resources/hourly_heat_demand_total_elec_s{simpl}_{clusters}.nc``: the total
hourly heat demand
- ``resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc``: the total
hourly solar thermal generation
Outputs
-------
- ``snapshot_weightings_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.csv``
Description
-----------
Computes a time aggregation scheme for the given network, in the form of a CSV
file with the snapshot weightings, indexed by the new subset of snapshots. This
rule only computes said aggregation scheme; aggregation of time-varying network
data is done in ``prepare_sector_network.py``.
"""
import logging
import numpy as np
import pandas as pd
import pypsa
import xarray as xr
from _helpers import (
configure_logging,
set_scenario_config,
update_config_from_wildcards,
)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"time_aggregation",
configfiles="test/config.overnight.yaml",
simpl="",
opts="",
clusters="37",
ll="v1.0",
sector_opts="Co2L0-24h-T-H-B-I-A-dist1",
planning_horizons="2030",
)
configure_logging(snakemake)
set_scenario_config(snakemake)
update_config_from_wildcards(snakemake.config, snakemake.wildcards)
n = pypsa.Network(snakemake.input.network)
resolution = snakemake.params.time_resolution
# Representative snapshots
if "sn" in resolution.lower():
logger.info("Use representative snapshots")
# Output an empty csv; this is taken care of in prepare_sector_network.py
pd.DataFrame().to_csv(snakemake.output.snapshot_weightings)
# Plain resampling
elif "h" in resolution.lower():
offset = resolution.lower()
logger.info(f"Averaging every {offset} hours")
snapshot_weightings = n.snapshot_weightings.resample(offset).sum()
sns = snapshot_weightings.index
if snakemake.params.drop_leap_day:
sns = sns[~((sns.month == 2) & (sns.day == 29))]
snapshot_weightings = snapshot_weightings.loc[sns]
snapshot_weightings.to_csv(snakemake.output.snapshot_weightings)
# Temporal segmentation
elif "seg" in resolution.lower():
segments = int(resolution[:-3])
logger.info(f"Use temporal segmentation with {segments} segments")
# Get all time-dependent data
dfs = [
pnl
for c in n.iterate_components()
for attr, pnl in c.pnl.items()
if not pnl.empty and attr != "e_min_pu"
]
if snakemake.input.hourly_heat_demand_total:
dfs.append(
xr.open_dataset(snakemake.input.hourly_heat_demand_total)
.to_dataframe()
.unstack(level=1)
)
if snakemake.input.solar_thermal_total:
dfs.append(
xr.open_dataset(snakemake.input.solar_thermal_total)
.to_dataframe()
.unstack(level=1)
)
df = pd.concat(dfs, axis=1)
# Reset columns to flat index
df = df.T.reset_index(drop=True).T
# Normalise all time-dependent data
annual_max = df.max().replace(0, 1)
df = df.div(annual_max, level=0)
# Get representative segments
agg = tsam.TimeSeriesAggregation(
df,
hoursPerPeriod=len(df),
noTypicalPeriods=1,
noSegments=segments,
segmentation=True,
solver=snakemake.params.solver_name,
)
agg = agg.createTypicalPeriods()
weightings = agg.index.get_level_values("Segment Duration")
offsets = np.insert(np.cumsum(weightings[:-1]), 0, 0)
snapshot_weightings = n.snapshot_weightings.loc[n.snapshots[offsets]].mul(
weightings, axis=0
)
logger.info(
f"Distribution of snapshot durations:\n{snapshot_weightings.objective.value_counts()}"
)
snapshot_weightings.to_csv(snakemake.output.snapshot_weightings)