Merge pull request #256 from PyPSA/fix-bug-myopic-co2

Fix bug myopic co2
This commit is contained in:
lisazeyen 2022-08-09 21:33:31 +02:00 committed by GitHub
commit 3daff49c99
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 173 additions and 88 deletions

View File

@ -442,14 +442,14 @@ rule build_population_weighted_energy_totals:
rule build_transport_demand:
input:
input:
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv",
pop_weighted_energy_totals="resources/pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
transport_data='resources/transport_data.csv',
traffic_data_KFZ="data/emobility/KFZ__count",
traffic_data_Pkw="data/emobility/Pkw__count",
temp_air_total="resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
output:
output:
transport_demand="resources/transport_demand_s{simpl}_{clusters}.csv",
transport_data="resources/transport_data_s{simpl}_{clusters}.csv",
avail_profile="resources/avail_profile_s{simpl}_{clusters}.csv",
@ -464,12 +464,14 @@ rule prepare_sector_network:
overrides="data/override_component_attrs",
network=pypsaeur('networks/elec_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc'),
energy_totals_name='resources/energy_totals.csv',
eurostat=input_eurostat,
pop_weighted_energy_totals="resources/pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
transport_demand="resources/transport_demand_s{simpl}_{clusters}.csv",
transport_data="resources/transport_data_s{simpl}_{clusters}.csv",
avail_profile="resources/avail_profile_s{simpl}_{clusters}.csv",
dsm_profile="resources/dsm_profile_s{simpl}_{clusters}.csv",
co2_totals_name='resources/co2_totals.csv',
co2="data/eea/UNFCCC_v23.csv",
biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv',
heat_profile="data/heat_load_profile_BDEW.csv",
costs=CDIR + "costs_{planning_horizons}.csv",
@ -568,7 +570,9 @@ rule plot_summary:
input:
costs=SDIR + '/csvs/costs.csv',
energy=SDIR + '/csvs/energy.csv',
balances=SDIR + '/csvs/supply_energy.csv'
balances=SDIR + '/csvs/supply_energy.csv',
eurostat=input_eurostat,
country_codes='data/Country_codes.csv',
output:
costs=SDIR + '/graphs/costs.pdf',
energy=SDIR + '/graphs/energy.pdf',

View File

@ -42,7 +42,12 @@ scenario:
# decay with initial growth rate 0
planning_horizons: # investment years for myopic and perfect; or costs year for overnight
- 2030
# for example, set to [2020, 2030, 2040, 2050] for myopic foresight
# for example, set to
# - 2020
# - 2030
# - 2040
# - 2050
# for myopic foresight
# CO2 budget as a fraction of 1990 emissions
# this is over-ridden if CO2Lx is set in sector_opts
@ -134,7 +139,8 @@ solar_thermal:
# only relevant for foresight = myopic or perfect
existing_capacities:
grouping_years: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030]
grouping_years_power: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030]
grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # these should not extend 2020
threshold_capacity: 10
conventional_carriers:
- lignite

View File

@ -131,7 +131,8 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
'Oil': 'oil',
'OCGT': 'OCGT',
'CCGT': 'CCGT',
'Natural Gas': 'gas'
'Natural Gas': 'gas',
'Bioenergy': 'urban central solid biomass CHP',
}
fueltype_to_drop = [
@ -139,7 +140,6 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
'Wind',
'Solar',
'Geothermal',
'Bioenergy',
'Waste',
'Other',
'CCGT, Thermal'
@ -150,10 +150,29 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
'Storage Technologies'
]
# drop unused fueltyps and technologies
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True)
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True)
df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel)
# Intermediate fix for DateIn & DateOut
# Fill missing DateIn
biomass_i = df_agg.loc[df_agg.Fueltype=='urban central solid biomass CHP'].index
mean = df_agg.loc[biomass_i, 'DateIn'].mean()
df_agg.loc[biomass_i, 'DateIn'] = df_agg.loc[biomass_i, 'DateIn'].fillna(int(mean))
# Fill missing DateOut
dateout = df_agg.loc[biomass_i, 'DateIn'] + snakemake.config['costs']['lifetime']
df_agg.loc[biomass_i, 'DateOut'] = df_agg.loc[biomass_i, 'DateOut'].fillna(dateout)
# drop assets which are already phased out / decomissioned
phased_out = df_agg[df_agg["DateOut"]<baseyear].index
df_agg.drop(phased_out, inplace=True)
# calculate remaining lifetime before phase-out (+1 because assumming
# phase out date at the end of the year)
df_agg["lifetime"] = df_agg.DateOut - df_agg.DateIn + 1
# assign clustered bus
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0).squeeze()
busmap = pd.read_csv(snakemake.input.busmap, index_col=0).squeeze()
@ -182,35 +201,52 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
aggfunc='sum'
)
lifetime = df_agg.pivot_table(
index=["grouping_year", 'Fueltype'],
columns='cluster_bus',
values='lifetime',
aggfunc='mean' # currently taken mean for clustering lifetimes
)
carrier = {
"OCGT": "gas",
"CCGT": "gas",
"coal": "coal",
"oil": "oil",
"lignite": "lignite",
"nuclear": "uranium"
"nuclear": "uranium",
'urban central solid biomass CHP': "biomass",
}
for grouping_year, generator in df.index:
# capacity is the capacity in MW at each node for this
capacity = df.loc[grouping_year, generator]
capacity = capacity[~capacity.isna()]
capacity = capacity[capacity > snakemake.config['existing_capacities']['threshold_capacity']]
suffix = '-ac' if generator == 'offwind' else ''
name_suffix = f' {generator}{suffix}-{grouping_year}'
asset_i = capacity.index + name_suffix
if generator in ['solar', 'onwind', 'offwind']:
suffix = '-ac' if generator == 'offwind' else ''
name_suffix = f' {generator}{suffix}-{baseyear}'
# to consider electricity grid connection costs or a split between
# solar utility and rooftop as well, rather take cost assumptions
# from existing network than from the cost database
capital_cost = n.generators.loc[n.generators.carrier==generator+suffix, "capital_cost"].mean()
# check if assets are already in network (e.g. for 2020)
already_build = n.generators.index.intersection(asset_i)
new_build = asset_i.difference(n.generators.index)
# this is for the year 2020
if not already_build.empty:
n.generators.loc[already_build, "p_nom_min"] = capacity.loc[already_build.str.replace(name_suffix, "")].values
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
if 'm' in snakemake.wildcards.clusters:
for ind in capacity.index:
for ind in new_capacity.index:
# existing capacities are split evenly among regions in every country
inv_ind = [i for i in inv_busmap[ind]]
@ -225,7 +261,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
[i + name_suffix for i in inv_ind],
bus=ind,
carrier=generator,
p_nom=capacity[ind] / len(inv_ind), # split among regions in a country
p_nom=new_capacity[ind] / len(inv_ind), # split among regions in a country
marginal_cost=costs.at[generator,'VOM'],
capital_cost=capital_cost,
efficiency=costs.at[generator, 'efficiency'],
@ -236,42 +272,72 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
else:
p_max_pu = n.generators_t.p_max_pu[capacity.index + name_suffix]
p_max_pu = n.generators_t.p_max_pu[capacity.index + f' {generator}{suffix}-{baseyear}']
n.madd("Generator",
capacity.index,
suffix=' ' + generator +"-"+ str(grouping_year),
bus=capacity.index,
carrier=generator,
p_nom=capacity,
marginal_cost=costs.at[generator, 'VOM'],
capital_cost=capital_cost,
efficiency=costs.at[generator, 'efficiency'],
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
build_year=grouping_year,
lifetime=costs.at[generator, 'lifetime']
)
if not new_build.empty:
n.madd("Generator",
new_capacity.index,
suffix=' ' + name_suffix,
bus=new_capacity.index,
carrier=generator,
p_nom=new_capacity,
marginal_cost=costs.at[generator, 'VOM'],
capital_cost=capital_cost,
efficiency=costs.at[generator, 'efficiency'],
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
build_year=grouping_year,
lifetime=costs.at[generator, 'lifetime']
)
else:
bus0 = vars(spatial)[carrier[generator]].nodes
if "EU" not in vars(spatial)[carrier[generator]].locations:
bus0 = bus0.intersection(capacity.index + " gas")
n.madd("Link",
capacity.index,
suffix= " " + generator +"-" + str(grouping_year),
bus0=bus0,
bus1=capacity.index,
bus2="co2 atmosphere",
carrier=generator,
marginal_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'VOM'], #NB: VOM is per MWel
capital_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'fixed'], #NB: fixed cost is per MWel
p_nom=capacity / costs.at[generator, 'efficiency'],
efficiency=costs.at[generator, 'efficiency'],
efficiency2=costs.at[carrier[generator], 'CO2 intensity'],
build_year=grouping_year,
lifetime=costs.at[generator, 'lifetime']
)
already_build = n.links.index.intersection(asset_i)
new_build = asset_i.difference(n.links.index)
lifetime_assets = lifetime.loc[grouping_year,generator].dropna()
# this is for the year 2020
if not already_build.empty:
n.links.loc[already_build, "p_nom_min"] = capacity.loc[already_build.str.replace(name_suffix, "")].values
if not new_build.empty:
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
if generator!="urban central solid biomass CHP":
n.madd("Link",
new_capacity.index,
suffix= name_suffix,
bus0=bus0,
bus1=new_capacity.index,
bus2="co2 atmosphere",
carrier=generator,
marginal_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'VOM'], #NB: VOM is per MWel
capital_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'fixed'], #NB: fixed cost is per MWel
p_nom=new_capacity / costs.at[generator, 'efficiency'],
efficiency=costs.at[generator, 'efficiency'],
efficiency2=costs.at[carrier[generator], 'CO2 intensity'],
build_year=grouping_year,
lifetime=lifetime_assets.loc[new_capacity.index],
)
else:
key = 'central solid biomass CHP'
n.madd("Link",
new_capacity.index,
suffix= name_suffix,
bus0=spatial.biomass.df.loc[new_capacity.index]["nodes"].values,
bus1=new_capacity.index,
bus2=new_capacity.index + " urban central heat",
carrier=generator,
p_nom=new_capacity / costs.at[key, 'efficiency'],
capital_cost=costs.at[key, 'fixed'] * costs.at[key, 'efficiency'],
marginal_cost=costs.at[key, 'VOM'],
efficiency=costs.at[key, 'efficiency'],
build_year=grouping_year,
efficiency2=costs.at[key, 'efficiency-heat'],
lifetime=lifetime_assets.loc[new_capacity.index]
)
def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years, ashp_cop, gshp_cop, time_dep_hp_cop, costs, default_lifetime):
@ -376,10 +442,10 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
for i, grouping_year in enumerate(grouping_years):
if int(grouping_year) + default_lifetime <= int(baseyear):
ratio = 0
else:
# installation is assumed to be linear for the past 25 years (default lifetime)
ratio = (int(grouping_year) - int(grouping_years[i-1])) / default_lifetime
continue
# installation is assumed to be linear for the past 25 years (default lifetime)
ratio = (int(grouping_year) - int(grouping_years[i-1])) / default_lifetime
n.madd("Link",
nodes[name],
@ -443,7 +509,7 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
# delete links with p_nom=nan corresponding to extra nodes in country
n.mremove("Link", [index for index in n.links.index.to_list() if str(grouping_year) in index and np.isnan(n.links.p_nom[index])])
# delete links if their lifetime is over and p_nom=0
# delete links with capacities below threshold
threshold = snakemake.config['existing_capacities']['threshold_capacity']
n.mremove("Link", [index for index in n.links.index.to_list() if str(grouping_year) in index and n.links.p_nom[index] < threshold])
@ -454,11 +520,11 @@ if __name__ == "__main__":
snakemake = mock_snakemake(
'add_existing_baseyear',
simpl='',
clusters="37",
clusters="45",
lv=1.0,
opts='',
sector_opts='168H-T-H-B-I-solar+p3-dist1',
planning_horizons=2020,
sector_opts='365H-T-H-B-I-A-solar+p3-dist1',
planning_horizons=2030,
)
logging.basicConfig(level=snakemake.config['logging_level'])
@ -468,7 +534,7 @@ if __name__ == "__main__":
options = snakemake.config["sector"]
opts = snakemake.wildcards.sector_opts.split('-')
baseyear= snakemake.config['scenario']["planning_horizons"][0]
baseyear = snakemake.config['scenario']["planning_horizons"][0]
overrides = override_component_attrs(snakemake.input.overrides)
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
@ -485,15 +551,17 @@ if __name__ == "__main__":
snakemake.config['costs']['lifetime']
)
grouping_years = snakemake.config['existing_capacities']['grouping_years']
add_power_capacities_installed_before_baseyear(n, grouping_years, costs, baseyear)
grouping_years_power = snakemake.config['existing_capacities']['grouping_years_power']
grouping_years_heat = snakemake.config['existing_capacities']['grouping_years_heat']
add_power_capacities_installed_before_baseyear(n, grouping_years_power, costs, baseyear)
if "H" in opts:
time_dep_hp_cop = options["time_dep_hp_cop"]
ashp_cop = xr.open_dataarray(snakemake.input.cop_air_total).to_pandas().reindex(index=n.snapshots)
gshp_cop = xr.open_dataarray(snakemake.input.cop_soil_total).to_pandas().reindex(index=n.snapshots)
default_lifetime = snakemake.config['costs']['lifetime']
add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years, ashp_cop, gshp_cop, time_dep_hp_cop, costs, default_lifetime)
add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years_heat,
ashp_cop, gshp_cop, time_dep_hp_cop, costs, default_lifetime)
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
n.export_to_netcdf(snakemake.output[0])

View File

@ -127,17 +127,16 @@ to_ipcc = {
}
def build_eurostat(countries, year):
def build_eurostat(input_eurostat, countries, report_year, year):
"""Return multi-index for all countries' energy data in TWh/a."""
report_year = snakemake.config["energy"]["eurostat_report_year"]
filenames = {
2016: f"/{year}-Energy-Balances-June2016edition.xlsx",
2017: f"/{year}-ENERGY-BALANCES-June2017edition.xlsx"
}
dfs = pd.read_excel(
snakemake.input.eurostat + filenames[report_year],
input_eurostat + filenames[report_year],
sheet_name=None,
skiprows=1,
index_col=list(range(4)),
@ -563,18 +562,18 @@ def build_energy_totals(countries, eurostat, swiss, idees):
return df
def build_eea_co2(year=1990):
def build_eea_co2(input_co2, year=1990, emissions_scope="CO2"):
# https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
# downloaded 201228 (modified by EEA last on 201221)
df = pd.read_csv(snakemake.input.co2, encoding="latin-1")
df = pd.read_csv(input_co2, encoding="latin-1")
df.replace(dict(Year="1985-1987"), 1986, inplace=True)
df.Year = df.Year.astype(int)
index_col = ["Country_code", "Pollutant_name", "Year", "Sector_name"]
df = df.set_index(index_col).sort_index()
emissions_scope = snakemake.config["energy"]["emissions"]
emissions_scope = emissions_scope
cts = ["CH", "EUA", "NO"] + eu28_eea
@ -611,9 +610,9 @@ def build_eea_co2(year=1990):
return emissions / 1e3
def build_eurostat_co2(countries, year=1990):
def build_eurostat_co2(input_eurostat, countries, report_year, year=1990):
eurostat = build_eurostat(countries, year)
eurostat = build_eurostat(input_eurostat, countries, report_year, year)
specific_emissions = pd.Series(index=eurostat.columns, dtype=float)
@ -702,7 +701,9 @@ if __name__ == "__main__":
idees_countries = countries.intersection(eu28)
data_year = config["energy_totals_year"]
eurostat = build_eurostat(countries, data_year)
report_year = snakemake.config["energy"]["eurostat_report_year"]
input_eurostat = snakemake.input.eurostat
eurostat = build_eurostat(input_eurostat, countries, report_year, data_year)
swiss = build_swiss(data_year)
idees = build_idees(idees_countries, data_year)
@ -710,8 +711,9 @@ if __name__ == "__main__":
energy.to_csv(snakemake.output.energy_name)
base_year_emissions = config["base_emissions_year"]
eea_co2 = build_eea_co2(base_year_emissions)
eurostat_co2 = build_eurostat_co2(countries, base_year_emissions)
emissions_scope = snakemake.config["energy"]["emissions"]
eea_co2 = build_eea_co2(snakemake.input.co2, base_year_emissions, emissions_scope)
eurostat_co2 = build_eurostat_co2(input_eurostat, countries, report_year, base_year_emissions)
co2 = build_co2_totals(countries, eea_co2, eurostat_co2)
co2.to_csv(snakemake.output.co2_name)

View File

@ -202,7 +202,7 @@ def plot_energy():
new_index = preferred_order.intersection(df.index).append(df.index.difference(preferred_order))
new_columns = df.columns.sort_values()
fig, ax = plt.subplots(figsize=(12,8))
print(df.loc[new_index, new_columns])
@ -363,7 +363,7 @@ def historical_emissions(cts):
def plot_carbon_budget_distribution():
def plot_carbon_budget_distribution(input_eurostat):
"""
Plot historical carbon emissions in the EU and decarbonization path
"""
@ -385,9 +385,9 @@ def plot_carbon_budget_distribution():
ax1.set_xlim([1990,snakemake.config['scenario']['planning_horizons'][-1]+1])
path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/'
countries=pd.read_csv(path_cb + 'countries.csv', index_col=1)
cts=countries.index.to_list()
e_1990 = co2_emissions_year(cts, opts, year=1990)
countries = pd.read_csv(snakemake.input.country_codes, index_col=1)
cts = countries.index.to_list()
e_1990 = co2_emissions_year(cts, input_eurostat, opts, year=1990)
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv',
index_col=0)
@ -438,8 +438,7 @@ if __name__ == "__main__":
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake('plot_summary')
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
n_header = 4
@ -453,4 +452,4 @@ if __name__ == "__main__":
opts=sector_opts.split('-')
for o in opts:
if "cb" in o:
plot_carbon_budget_distribution()
plot_carbon_budget_distribution(snakemake.input.eurostat)

View File

@ -158,21 +158,22 @@ def get(item, investment_year=None):
return item
def co2_emissions_year(countries, opts, year):
def co2_emissions_year(countries, input_eurostat, opts, emissions_scope, report_year, year):
"""
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
"""
eea_co2 = build_eea_co2(year)
emissions_scope = snakemake.config["energy"]["emissions"]
eea_co2 = build_eea_co2(snakemake.input.co2, year, emissions_scope)
# TODO: read Eurostat data from year > 2014
# this only affects the estimation of CO2 emissions for BA, RS, AL, ME, MK
report_year = snakemake.config["energy"]["eurostat_report_year"]
if year > 2014:
eurostat_co2 = build_eurostat_co2(year=2014)
eurostat_co2 = build_eurostat_co2(input_eurostat, countries, report_year, year=2014)
else:
eurostat_co2 = build_eurostat_co2(year)
eurostat_co2 = build_eurostat_co2(input_eurostat, countries, report_year, year)
co2_totals = build_co2_totals(eea_co2, eurostat_co2)
co2_totals = build_co2_totals(countries, eea_co2, eurostat_co2)
sectors = emission_sectors_from_opts(opts)
@ -185,7 +186,7 @@ def co2_emissions_year(countries, opts, year):
# TODO: move to own rule with sector-opts wildcard?
def build_carbon_budget(o, fn):
def build_carbon_budget(o, input_eurostat, fn, emissions_scope, report_year):
"""
Distribute carbon budget following beta or exponential transition path.
"""
@ -202,10 +203,12 @@ def build_carbon_budget(o, fn):
countries = n.buses.country.dropna().unique()
e_1990 = co2_emissions_year(countries, opts, year=1990)
e_1990 = co2_emissions_year(countries, input_eurostat, opts, emissions_scope,
report_year, year=1990)
#emissions at the beginning of the path (last year available 2018)
e_0 = co2_emissions_year(countries, opts, year=2018)
e_0 = co2_emissions_year(countries, input_eurostat, opts, emissions_scope,
report_year,year=2018)
planning_horizons = snakemake.config['scenario']['planning_horizons']
t_0 = planning_horizons[0]
@ -233,8 +236,9 @@ def build_carbon_budget(o, fn):
co2_cap = pd.Series({t: exponential_decay(t) for t in planning_horizons}, name=o)
# TODO log in Snakefile
if not os.path.exists(fn):
os.makedirs(fn)
csvs_folder = fn.rsplit("/", 1)[0]
if not os.path.exists(csvs_folder):
os.makedirs(csvs_folder)
co2_cap.to_csv(fn, float_format='%.3f')
@ -2423,7 +2427,7 @@ if __name__ == "__main__":
opts="",
clusters="37",
lv=1.5,
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
sector_opts='cb40ex0-365H-T-H-B-I-A-solar+p3-dist1',
planning_horizons="2020",
)
@ -2527,9 +2531,11 @@ if __name__ == "__main__":
limit_type = "carbon budget"
fn = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/carbon_budget_distribution.csv'
if not os.path.exists(fn):
build_carbon_budget(o, fn)
emissions_scope = snakemake.config["energy"]["emissions"]
report_year = snakemake.config["energy"]["eurostat_report_year"]
build_carbon_budget(o, snakemake.input.eurostat, fn, emissions_scope, report_year)
co2_cap = pd.read_csv(fn, index_col=0).squeeze()
limit = co2_cap[investment_year]
limit = co2_cap.loc[investment_year]
break
for o in opts:
if not "Co2L" in o: continue