Merge branch 'master' into methanol

This commit is contained in:
Fabian Neumann 2022-12-28 12:22:01 +01:00
commit 38fd51fca9
4 changed files with 61 additions and 73 deletions

View File

@ -162,34 +162,26 @@ else:
rule build_heat_demands:
input:
pop_layout_total="resources/pop_layout_total.nc",
pop_layout_urban="resources/pop_layout_urban.nc",
pop_layout_rural="resources/pop_layout_rural.nc",
pop_layout="resources/pop_layout_{scope}.nc",
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
output:
heat_demand_urban="resources/heat_demand_urban_elec_s{simpl}_{clusters}.nc",
heat_demand_rural="resources/heat_demand_rural_elec_s{simpl}_{clusters}.nc",
heat_demand_total="resources/heat_demand_total_elec_s{simpl}_{clusters}.nc"
heat_demand="resources/heat_demand_{scope}_elec_s{simpl}_{clusters}.nc"
resources: mem_mb=20000
benchmark: "benchmarks/build_heat_demands/s{simpl}_{clusters}"
threads: 8
benchmark: "benchmarks/build_heat_demands/{scope}_s{simpl}_{clusters}"
script: "scripts/build_heat_demand.py"
rule build_temperature_profiles:
input:
pop_layout_total="resources/pop_layout_total.nc",
pop_layout_urban="resources/pop_layout_urban.nc",
pop_layout_rural="resources/pop_layout_rural.nc",
pop_layout="resources/pop_layout_{scope}.nc",
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
output:
temp_soil_total="resources/temp_soil_total_elec_s{simpl}_{clusters}.nc",
temp_soil_rural="resources/temp_soil_rural_elec_s{simpl}_{clusters}.nc",
temp_soil_urban="resources/temp_soil_urban_elec_s{simpl}_{clusters}.nc",
temp_air_total="resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
temp_air_rural="resources/temp_air_rural_elec_s{simpl}_{clusters}.nc",
temp_air_urban="resources/temp_air_urban_elec_s{simpl}_{clusters}.nc"
temp_soil="resources/temp_soil_{scope}_elec_s{simpl}_{clusters}.nc",
temp_air="resources/temp_air_{scope}_elec_s{simpl}_{clusters}.nc",
resources: mem_mb=20000
benchmark: "benchmarks/build_temperature_profiles/s{simpl}_{clusters}"
threads: 8
benchmark: "benchmarks/build_temperature_profiles/{scope}_s{simpl}_{clusters}"
script: "scripts/build_temperature_profiles.py"
@ -215,16 +207,13 @@ rule build_cop_profiles:
rule build_solar_thermal_profiles:
input:
pop_layout_total="resources/pop_layout_total.nc",
pop_layout_urban="resources/pop_layout_urban.nc",
pop_layout_rural="resources/pop_layout_rural.nc",
pop_layout="resources/pop_layout_{scope}.nc",
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
output:
solar_thermal_total="resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc",
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc"
solar_thermal="resources/solar_thermal_{scope}_elec_s{simpl}_{clusters}.nc",
resources: mem_mb=20000
benchmark: "benchmarks/build_solar_thermal_profiles/s{simpl}_{clusters}"
threads: 16
benchmark: "benchmarks/build_solar_thermal_profiles/{scope}_s{simpl}_{clusters}"
script: "scripts/build_solar_thermal_profiles.py"

View File

@ -5,6 +5,7 @@ import atlite
import pandas as pd
import xarray as xr
import numpy as np
from dask.distributed import Client, LocalCluster
if __name__ == '__main__':
if 'snakemake' not in globals():
@ -15,14 +16,9 @@ if __name__ == '__main__':
clusters=48,
)
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
nprocesses = int(snakemake.threads)
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
client = Client(cluster, asynchronous=True)
time = pd.date_range(freq='h', **snakemake.config['snapshots'])
cutout_config = snakemake.config['atlite']['cutout']
@ -33,14 +29,14 @@ if __name__ == '__main__':
I = cutout.indicatormatrix(clustered_regions)
for area in ["rural", "urban", "total"]:
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
heat_demand = cutout.heat_demand(
matrix=M.T, index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False)
heat_demand = cutout.heat_demand(
matrix=M.T, index=clustered_regions.index)
heat_demand.to_netcdf(snakemake.output[f"heat_demand_{area}"])
heat_demand.to_netcdf(snakemake.output.heat_demand)

View File

@ -5,6 +5,7 @@ import atlite
import pandas as pd
import xarray as xr
import numpy as np
from dask.distributed import Client, LocalCluster
if __name__ == '__main__':
if 'snakemake' not in globals():
@ -15,14 +16,9 @@ if __name__ == '__main__':
clusters=48,
)
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
nprocesses = int(snakemake.threads)
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
client = Client(cluster, asynchronous=True)
config = snakemake.config['solar_thermal']
@ -35,18 +31,18 @@ if __name__ == '__main__':
I = cutout.indicatormatrix(clustered_regions)
for area in ["total", "rural", "urban"]:
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.] = 1.
M_tilde = M / nonzero_sum
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.] = 1.
M_tilde = M / nonzero_sum
solar_thermal = cutout.solar_thermal(**config, matrix=M_tilde.T,
index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False)
solar_thermal = cutout.solar_thermal(**config, matrix=M_tilde.T,
index=clustered_regions.index)
solar_thermal.to_netcdf(snakemake.output[f"solar_thermal_{area}"])
solar_thermal.to_netcdf(snakemake.output.solar_thermal)

View File

@ -5,6 +5,7 @@ import atlite
import pandas as pd
import xarray as xr
import numpy as np
from dask.distributed import Client, LocalCluster
if __name__ == '__main__':
if 'snakemake' not in globals():
@ -15,6 +16,10 @@ if __name__ == '__main__':
clusters=48,
)
nprocesses = int(snakemake.threads)
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
client = Client(cluster, asynchronous=True)
time = pd.date_range(freq='h', **snakemake.config['snapshots'])
cutout_config = snakemake.config['atlite']['cutout']
cutout = atlite.Cutout(cutout_config).sel(time=time)
@ -24,23 +29,25 @@ if __name__ == '__main__':
I = cutout.indicatormatrix(clustered_regions)
for area in ["total", "rural", "urban"]:
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.] = 1.
M_tilde = M / nonzero_sum
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.] = 1.
M_tilde = M / nonzero_sum
temp_air = cutout.temperature(
matrix=M_tilde.T, index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False)
temp_air = cutout.temperature(
matrix=M_tilde.T, index=clustered_regions.index)
temp_air.to_netcdf(snakemake.output.temp_air)
temp_air.to_netcdf(snakemake.output[f"temp_air_{area}"])
temp_soil = cutout.soil_temperature(
matrix=M_tilde.T, index=clustered_regions.index,
dask_kwargs=dict(scheduler=client),
show_progress=False)
temp_soil = cutout.soil_temperature(
matrix=M_tilde.T, index=clustered_regions.index)
temp_soil.to_netcdf(snakemake.output[f"temp_soil_{area}"])
temp_soil.to_netcdf(snakemake.output.temp_soil)