Merge branch 'master' into methanol
This commit is contained in:
commit
38fd51fca9
37
Snakefile
37
Snakefile
@ -162,34 +162,26 @@ else:
|
||||
|
||||
rule build_heat_demands:
|
||||
input:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
pop_layout="resources/pop_layout_{scope}.nc",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
|
||||
output:
|
||||
heat_demand_urban="resources/heat_demand_urban_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_rural="resources/heat_demand_rural_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_total="resources/heat_demand_total_elec_s{simpl}_{clusters}.nc"
|
||||
heat_demand="resources/heat_demand_{scope}_elec_s{simpl}_{clusters}.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_heat_demands/s{simpl}_{clusters}"
|
||||
threads: 8
|
||||
benchmark: "benchmarks/build_heat_demands/{scope}_s{simpl}_{clusters}"
|
||||
script: "scripts/build_heat_demand.py"
|
||||
|
||||
|
||||
rule build_temperature_profiles:
|
||||
input:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
pop_layout="resources/pop_layout_{scope}.nc",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
|
||||
output:
|
||||
temp_soil_total="resources/temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/temp_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/temp_air_urban_elec_s{simpl}_{clusters}.nc"
|
||||
temp_soil="resources/temp_soil_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air="resources/temp_air_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_temperature_profiles/s{simpl}_{clusters}"
|
||||
threads: 8
|
||||
benchmark: "benchmarks/build_temperature_profiles/{scope}_s{simpl}_{clusters}"
|
||||
script: "scripts/build_temperature_profiles.py"
|
||||
|
||||
|
||||
@ -215,16 +207,13 @@ rule build_cop_profiles:
|
||||
|
||||
rule build_solar_thermal_profiles:
|
||||
input:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
pop_layout="resources/pop_layout_{scope}.nc",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
|
||||
output:
|
||||
solar_thermal_total="resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc"
|
||||
solar_thermal="resources/solar_thermal_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_solar_thermal_profiles/s{simpl}_{clusters}"
|
||||
threads: 16
|
||||
benchmark: "benchmarks/build_solar_thermal_profiles/{scope}_s{simpl}_{clusters}"
|
||||
script: "scripts/build_solar_thermal_profiles.py"
|
||||
|
||||
|
||||
|
@ -5,6 +5,7 @@ import atlite
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
import numpy as np
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
@ -15,14 +16,9 @@ if __name__ == '__main__':
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
nprocesses = int(snakemake.threads)
|
||||
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
time = pd.date_range(freq='h', **snakemake.config['snapshots'])
|
||||
cutout_config = snakemake.config['atlite']['cutout']
|
||||
@ -33,14 +29,14 @@ if __name__ == '__main__':
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
for area in ["rural", "urban", "total"]:
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
|
||||
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
|
||||
|
||||
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
|
||||
heat_demand = cutout.heat_demand(
|
||||
matrix=M.T, index=clustered_regions.index)
|
||||
matrix=M.T, index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False)
|
||||
|
||||
heat_demand.to_netcdf(snakemake.output[f"heat_demand_{area}"])
|
||||
heat_demand.to_netcdf(snakemake.output.heat_demand)
|
||||
|
@ -5,6 +5,7 @@ import atlite
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
import numpy as np
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
@ -15,14 +16,9 @@ if __name__ == '__main__':
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
nprocesses = int(snakemake.threads)
|
||||
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
config = snakemake.config['solar_thermal']
|
||||
|
||||
@ -35,9 +31,7 @@ if __name__ == '__main__':
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
for area in ["total", "rural", "urban"]:
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
|
||||
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
|
||||
|
||||
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
@ -47,6 +41,8 @@ if __name__ == '__main__':
|
||||
M_tilde = M / nonzero_sum
|
||||
|
||||
solar_thermal = cutout.solar_thermal(**config, matrix=M_tilde.T,
|
||||
index=clustered_regions.index)
|
||||
index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False)
|
||||
|
||||
solar_thermal.to_netcdf(snakemake.output[f"solar_thermal_{area}"])
|
||||
solar_thermal.to_netcdf(snakemake.output.solar_thermal)
|
||||
|
@ -5,6 +5,7 @@ import atlite
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
import numpy as np
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
@ -15,6 +16,10 @@ if __name__ == '__main__':
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
nprocesses = int(snakemake.threads)
|
||||
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
time = pd.date_range(freq='h', **snakemake.config['snapshots'])
|
||||
cutout_config = snakemake.config['atlite']['cutout']
|
||||
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
||||
@ -24,9 +29,7 @@ if __name__ == '__main__':
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
for area in ["total", "rural", "urban"]:
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
|
||||
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
|
||||
|
||||
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
@ -36,11 +39,15 @@ if __name__ == '__main__':
|
||||
M_tilde = M / nonzero_sum
|
||||
|
||||
temp_air = cutout.temperature(
|
||||
matrix=M_tilde.T, index=clustered_regions.index)
|
||||
matrix=M_tilde.T, index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False)
|
||||
|
||||
temp_air.to_netcdf(snakemake.output[f"temp_air_{area}"])
|
||||
temp_air.to_netcdf(snakemake.output.temp_air)
|
||||
|
||||
temp_soil = cutout.soil_temperature(
|
||||
matrix=M_tilde.T, index=clustered_regions.index)
|
||||
matrix=M_tilde.T, index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False)
|
||||
|
||||
temp_soil.to_netcdf(snakemake.output[f"temp_soil_{area}"])
|
||||
temp_soil.to_netcdf(snakemake.output.temp_soil)
|
||||
|
Loading…
Reference in New Issue
Block a user