Start refining
Fixing typos
This commit is contained in:
parent
b756ca6590
commit
2eefba3b95
@ -427,7 +427,7 @@ We assume that the primary route can be replaced by a third route in 2050, using
|
|||||||
FeO + H_2 \xrightarrow{} Fe + H_2O
|
FeO + H_2 \xrightarrow{} Fe + H_2O
|
||||||
|
|
||||||
|
|
||||||
This circumvents the process emissions associated with the use of coke. For hydrogen- based DRI, we assume energy requirements of 1.7 MWh :math:`_{H_2}` /t steel (Vogl et. al) <https://doi.org/10.1016/j.jclepro.2018.08.279>`_ and 0.322 MWh :math:`_{el}`/t steel `(HYBRIT 2016) <https://dh5k8ug1gwbyz.cloudfront.net/uploads/2021/02/Hybrit-broschure-engelska.pdf>`_.
|
This circumvents the process emissions associated with the use of coke. For hydrogen- based DRI, we assume energy requirements of 1.7 MWh :math:`_{H_2}` /t steel `(Vogl et. al) <https://doi.org/10.1016/j.jclepro.2018.08.279>`_ and 0.322 MWh :math:`_{el}`/t steel `(HYBRIT 2016) <https://dh5k8ug1gwbyz.cloudfront.net/uploads/2021/02/Hybrit-broschure-engelska.pdf>`_.
|
||||||
|
|
||||||
|
|
||||||
The share of steel produced via the primary route is exogenously set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L279>`_. The share of steel obtained via hydrogen-based DRI plus EAF is also set exogenously in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L287>`_. The remaining share is manufactured through the secondary route using scrap metal in EAF. Bioenergy as alternative to coke in blast furnaces is not considered in the model (`Mandova et.al <https://doi.org/10.1016/j.biombioe.2018.04.021>`_, `Suopajärvi et.al <https://doi.org/10.1016/j.apenergy.2018.01.060>`_).
|
The share of steel produced via the primary route is exogenously set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L279>`_. The share of steel obtained via hydrogen-based DRI plus EAF is also set exogenously in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L287>`_. The remaining share is manufactured through the secondary route using scrap metal in EAF. Bioenergy as alternative to coke in blast furnaces is not considered in the model (`Mandova et.al <https://doi.org/10.1016/j.biombioe.2018.04.021>`_, `Suopajärvi et.al <https://doi.org/10.1016/j.apenergy.2018.01.060>`_).
|
||||||
@ -453,7 +453,7 @@ Statistics for the production of ammonia, which is commonly used as a fertilizer
|
|||||||
|
|
||||||
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( 6.5 MWh :math:`_{H_2}` / t :math:`_{NH_3}` ) and electricity ( 1.17 MWh :math:`_{el}` /t :math:`_{NH_3}` ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
|
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( 6.5 MWh :math:`_{H_2}` / t :math:`_{NH_3}` ) and electricity ( 1.17 MWh :math:`_{el}` /t :math:`_{NH_3}` ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
|
||||||
|
|
||||||
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`_. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh `:math:`_{el}`/t of chlorine and yield hydrogen at 0.937 MWh :math:`_{H_2}`/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a, requiring electricity at 0.167 MWh :math:`_{el}`/t of methanol and methane at 10.25 MWh :math:`_{CH_4}`/t of methanol.
|
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`_. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh :math:`_{el}`/t of chlorine and yield hydrogen at 0.937 MWh :math:`_{H_2}`/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a, requiring electricity at 0.167 MWh :math:`_{el}`/t of methanol and methane at 10.25 MWh :math:`_{CH_4}`/t of methanol.
|
||||||
|
|
||||||
|
|
||||||
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWh :math:`_{naphtha}`/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`_), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWh :math:`_{CH_4}` /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`_); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWh :math:`_{el}`/t of HVC).
|
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWh :math:`_{naphtha}`/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`_), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWh :math:`_{CH_4}` /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`_); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWh :math:`_{el}`/t of HVC).
|
||||||
@ -461,7 +461,7 @@ The production of ammonia, methanol, and chlorine production is deducted from th
|
|||||||
The process emissions from feedstock in the chemical industry are as high as 0.369 t :math:`_{CO_2}`/t of ethylene equivalent. We consider process emissions for all the material output, which is a conservative approach since it assumes that all plastic-embedded :math:`CO_2` will eventually be released into the atmosphere. However, plastic disposal in landfilling will avoid, or at least delay, associated :math:`CO_2` emissions.
|
The process emissions from feedstock in the chemical industry are as high as 0.369 t :math:`_{CO_2}`/t of ethylene equivalent. We consider process emissions for all the material output, which is a conservative approach since it assumes that all plastic-embedded :math:`CO_2` will eventually be released into the atmosphere. However, plastic disposal in landfilling will avoid, or at least delay, associated :math:`CO_2` emissions.
|
||||||
|
|
||||||
Circular economy practices drastically reduce the amount of primary feedstock needed for the production of plastics in the model (see `Kullmann et al. <https://doi.org/10.1016/j.energy.2022.124660>`_, `Meys et al. (2021) <https://doi.org/10.1126/science.abg9853>`_, `Meys et al. (2020) <https://doi.org/10/gmxv6z>`_, `Gu et al. <https://doi.org/10/gf8n9w>`_) and consequently, also the energy demands and level of process emission. The percentage of plastics that are assumed to be mechanically recycled can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L315>`_, as well as
|
Circular economy practices drastically reduce the amount of primary feedstock needed for the production of plastics in the model (see `Kullmann et al. <https://doi.org/10.1016/j.energy.2022.124660>`_, `Meys et al. (2021) <https://doi.org/10.1126/science.abg9853>`_, `Meys et al. (2020) <https://doi.org/10/gmxv6z>`_, `Gu et al. <https://doi.org/10/gf8n9w>`_) and consequently, also the energy demands and level of process emission. The percentage of plastics that are assumed to be mechanically recycled can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L315>`_, as well as
|
||||||
the percentage that is chemically recycled, see `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L316>`_ The energy consumption for those recycling processes are respectively 0.547 MWh :math:`_{el}`/t of HVC (as indicated in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L318>`_) (`Meys et al. (2020) <https://doi.org/10/gmxv6z>`_), and 6.9 MWh :math:`_{el}`/t of HVC (as indicated in the config file `<https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L319>`_) based on pyrolysis and electric steam cracking (see `Materials Economics <https://materialeconomics.com/publications/industrial-transformation-2050>`_ report).
|
the percentage that is chemically recycled, see `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L316>`_ The energy consumption for those recycling processes are respectively 0.547 MWh :math:`_{el}`/t of HVC (as indicated in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L318>`_) (`Meys et al. (2020) <https://doi.org/10/gmxv6z>`_), and 6.9 MWh :math:`_{el}`/t of HVC (as indicated in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L319>`_) based on pyrolysis and electric steam cracking (see `Materials Economics <https://materialeconomics.com/publications/industrial-transformation-2050>`_ report).
|
||||||
|
|
||||||
|
|
||||||
**Non-metallic Mineral Products**
|
**Non-metallic Mineral Products**
|
||||||
|
Loading…
Reference in New Issue
Block a user