Merge branch 'master' into agriculture-energy-co2
This commit is contained in:
commit
2e6e9c6802
3
.gitignore
vendored
3
.gitignore
vendored
@ -28,7 +28,8 @@ gurobi.log
|
|||||||
/data/.nfs*
|
/data/.nfs*
|
||||||
/data/Industrial_Database.csv
|
/data/Industrial_Database.csv
|
||||||
/data/retro/tabula-calculator-calcsetbuilding.csv
|
/data/retro/tabula-calculator-calcsetbuilding.csv
|
||||||
/data
|
/data/nuts*
|
||||||
|
|
||||||
*.org
|
*.org
|
||||||
|
|
||||||
*.nc
|
*.nc
|
||||||
|
694
LICENSE.txt
694
LICENSE.txt
@ -1,674 +1,20 @@
|
|||||||
GNU GENERAL PUBLIC LICENSE
|
MIT License
|
||||||
Version 3, 29 June 2007
|
|
||||||
|
Copyright 2017-2021 The PyPSA-Eur Authors
|
||||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
|
||||||
Everyone is permitted to copy and distribute verbatim copies
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||||
of this license document, but changing it is not allowed.
|
this software and associated documentation files (the "Software"), to deal in
|
||||||
|
the Software without restriction, including without limitation the rights to
|
||||||
Preamble
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||||||
|
the Software, and to permit persons to whom the Software is furnished to do so,
|
||||||
The GNU General Public License is a free, copyleft license for
|
subject to the following conditions:
|
||||||
software and other kinds of works.
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
The licenses for most software and other practical works are designed
|
copies or substantial portions of the Software.
|
||||||
to take away your freedom to share and change the works. By contrast,
|
|
||||||
the GNU General Public License is intended to guarantee your freedom to
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
share and change all versions of a program--to make sure it remains free
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||||||
software for all its users. We, the Free Software Foundation, use the
|
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||||||
GNU General Public License for most of our software; it applies also to
|
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||||||
any other work released this way by its authors. You can apply it to
|
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||||
your programs, too.
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||||
|
|
||||||
When we speak of free software, we are referring to freedom, not
|
|
||||||
price. Our General Public Licenses are designed to make sure that you
|
|
||||||
have the freedom to distribute copies of free software (and charge for
|
|
||||||
them if you wish), that you receive source code or can get it if you
|
|
||||||
want it, that you can change the software or use pieces of it in new
|
|
||||||
free programs, and that you know you can do these things.
|
|
||||||
|
|
||||||
To protect your rights, we need to prevent others from denying you
|
|
||||||
these rights or asking you to surrender the rights. Therefore, you have
|
|
||||||
certain responsibilities if you distribute copies of the software, or if
|
|
||||||
you modify it: responsibilities to respect the freedom of others.
|
|
||||||
|
|
||||||
For example, if you distribute copies of such a program, whether
|
|
||||||
gratis or for a fee, you must pass on to the recipients the same
|
|
||||||
freedoms that you received. You must make sure that they, too, receive
|
|
||||||
or can get the source code. And you must show them these terms so they
|
|
||||||
know their rights.
|
|
||||||
|
|
||||||
Developers that use the GNU GPL protect your rights with two steps:
|
|
||||||
(1) assert copyright on the software, and (2) offer you this License
|
|
||||||
giving you legal permission to copy, distribute and/or modify it.
|
|
||||||
|
|
||||||
For the developers' and authors' protection, the GPL clearly explains
|
|
||||||
that there is no warranty for this free software. For both users' and
|
|
||||||
authors' sake, the GPL requires that modified versions be marked as
|
|
||||||
changed, so that their problems will not be attributed erroneously to
|
|
||||||
authors of previous versions.
|
|
||||||
|
|
||||||
Some devices are designed to deny users access to install or run
|
|
||||||
modified versions of the software inside them, although the manufacturer
|
|
||||||
can do so. This is fundamentally incompatible with the aim of
|
|
||||||
protecting users' freedom to change the software. The systematic
|
|
||||||
pattern of such abuse occurs in the area of products for individuals to
|
|
||||||
use, which is precisely where it is most unacceptable. Therefore, we
|
|
||||||
have designed this version of the GPL to prohibit the practice for those
|
|
||||||
products. If such problems arise substantially in other domains, we
|
|
||||||
stand ready to extend this provision to those domains in future versions
|
|
||||||
of the GPL, as needed to protect the freedom of users.
|
|
||||||
|
|
||||||
Finally, every program is threatened constantly by software patents.
|
|
||||||
States should not allow patents to restrict development and use of
|
|
||||||
software on general-purpose computers, but in those that do, we wish to
|
|
||||||
avoid the special danger that patents applied to a free program could
|
|
||||||
make it effectively proprietary. To prevent this, the GPL assures that
|
|
||||||
patents cannot be used to render the program non-free.
|
|
||||||
|
|
||||||
The precise terms and conditions for copying, distribution and
|
|
||||||
modification follow.
|
|
||||||
|
|
||||||
TERMS AND CONDITIONS
|
|
||||||
|
|
||||||
0. Definitions.
|
|
||||||
|
|
||||||
"This License" refers to version 3 of the GNU General Public License.
|
|
||||||
|
|
||||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
|
||||||
works, such as semiconductor masks.
|
|
||||||
|
|
||||||
"The Program" refers to any copyrightable work licensed under this
|
|
||||||
License. Each licensee is addressed as "you". "Licensees" and
|
|
||||||
"recipients" may be individuals or organizations.
|
|
||||||
|
|
||||||
To "modify" a work means to copy from or adapt all or part of the work
|
|
||||||
in a fashion requiring copyright permission, other than the making of an
|
|
||||||
exact copy. The resulting work is called a "modified version" of the
|
|
||||||
earlier work or a work "based on" the earlier work.
|
|
||||||
|
|
||||||
A "covered work" means either the unmodified Program or a work based
|
|
||||||
on the Program.
|
|
||||||
|
|
||||||
To "propagate" a work means to do anything with it that, without
|
|
||||||
permission, would make you directly or secondarily liable for
|
|
||||||
infringement under applicable copyright law, except executing it on a
|
|
||||||
computer or modifying a private copy. Propagation includes copying,
|
|
||||||
distribution (with or without modification), making available to the
|
|
||||||
public, and in some countries other activities as well.
|
|
||||||
|
|
||||||
To "convey" a work means any kind of propagation that enables other
|
|
||||||
parties to make or receive copies. Mere interaction with a user through
|
|
||||||
a computer network, with no transfer of a copy, is not conveying.
|
|
||||||
|
|
||||||
An interactive user interface displays "Appropriate Legal Notices"
|
|
||||||
to the extent that it includes a convenient and prominently visible
|
|
||||||
feature that (1) displays an appropriate copyright notice, and (2)
|
|
||||||
tells the user that there is no warranty for the work (except to the
|
|
||||||
extent that warranties are provided), that licensees may convey the
|
|
||||||
work under this License, and how to view a copy of this License. If
|
|
||||||
the interface presents a list of user commands or options, such as a
|
|
||||||
menu, a prominent item in the list meets this criterion.
|
|
||||||
|
|
||||||
1. Source Code.
|
|
||||||
|
|
||||||
The "source code" for a work means the preferred form of the work
|
|
||||||
for making modifications to it. "Object code" means any non-source
|
|
||||||
form of a work.
|
|
||||||
|
|
||||||
A "Standard Interface" means an interface that either is an official
|
|
||||||
standard defined by a recognized standards body, or, in the case of
|
|
||||||
interfaces specified for a particular programming language, one that
|
|
||||||
is widely used among developers working in that language.
|
|
||||||
|
|
||||||
The "System Libraries" of an executable work include anything, other
|
|
||||||
than the work as a whole, that (a) is included in the normal form of
|
|
||||||
packaging a Major Component, but which is not part of that Major
|
|
||||||
Component, and (b) serves only to enable use of the work with that
|
|
||||||
Major Component, or to implement a Standard Interface for which an
|
|
||||||
implementation is available to the public in source code form. A
|
|
||||||
"Major Component", in this context, means a major essential component
|
|
||||||
(kernel, window system, and so on) of the specific operating system
|
|
||||||
(if any) on which the executable work runs, or a compiler used to
|
|
||||||
produce the work, or an object code interpreter used to run it.
|
|
||||||
|
|
||||||
The "Corresponding Source" for a work in object code form means all
|
|
||||||
the source code needed to generate, install, and (for an executable
|
|
||||||
work) run the object code and to modify the work, including scripts to
|
|
||||||
control those activities. However, it does not include the work's
|
|
||||||
System Libraries, or general-purpose tools or generally available free
|
|
||||||
programs which are used unmodified in performing those activities but
|
|
||||||
which are not part of the work. For example, Corresponding Source
|
|
||||||
includes interface definition files associated with source files for
|
|
||||||
the work, and the source code for shared libraries and dynamically
|
|
||||||
linked subprograms that the work is specifically designed to require,
|
|
||||||
such as by intimate data communication or control flow between those
|
|
||||||
subprograms and other parts of the work.
|
|
||||||
|
|
||||||
The Corresponding Source need not include anything that users
|
|
||||||
can regenerate automatically from other parts of the Corresponding
|
|
||||||
Source.
|
|
||||||
|
|
||||||
The Corresponding Source for a work in source code form is that
|
|
||||||
same work.
|
|
||||||
|
|
||||||
2. Basic Permissions.
|
|
||||||
|
|
||||||
All rights granted under this License are granted for the term of
|
|
||||||
copyright on the Program, and are irrevocable provided the stated
|
|
||||||
conditions are met. This License explicitly affirms your unlimited
|
|
||||||
permission to run the unmodified Program. The output from running a
|
|
||||||
covered work is covered by this License only if the output, given its
|
|
||||||
content, constitutes a covered work. This License acknowledges your
|
|
||||||
rights of fair use or other equivalent, as provided by copyright law.
|
|
||||||
|
|
||||||
You may make, run and propagate covered works that you do not
|
|
||||||
convey, without conditions so long as your license otherwise remains
|
|
||||||
in force. You may convey covered works to others for the sole purpose
|
|
||||||
of having them make modifications exclusively for you, or provide you
|
|
||||||
with facilities for running those works, provided that you comply with
|
|
||||||
the terms of this License in conveying all material for which you do
|
|
||||||
not control copyright. Those thus making or running the covered works
|
|
||||||
for you must do so exclusively on your behalf, under your direction
|
|
||||||
and control, on terms that prohibit them from making any copies of
|
|
||||||
your copyrighted material outside their relationship with you.
|
|
||||||
|
|
||||||
Conveying under any other circumstances is permitted solely under
|
|
||||||
the conditions stated below. Sublicensing is not allowed; section 10
|
|
||||||
makes it unnecessary.
|
|
||||||
|
|
||||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
|
||||||
|
|
||||||
No covered work shall be deemed part of an effective technological
|
|
||||||
measure under any applicable law fulfilling obligations under article
|
|
||||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
|
||||||
similar laws prohibiting or restricting circumvention of such
|
|
||||||
measures.
|
|
||||||
|
|
||||||
When you convey a covered work, you waive any legal power to forbid
|
|
||||||
circumvention of technological measures to the extent such circumvention
|
|
||||||
is effected by exercising rights under this License with respect to
|
|
||||||
the covered work, and you disclaim any intention to limit operation or
|
|
||||||
modification of the work as a means of enforcing, against the work's
|
|
||||||
users, your or third parties' legal rights to forbid circumvention of
|
|
||||||
technological measures.
|
|
||||||
|
|
||||||
4. Conveying Verbatim Copies.
|
|
||||||
|
|
||||||
You may convey verbatim copies of the Program's source code as you
|
|
||||||
receive it, in any medium, provided that you conspicuously and
|
|
||||||
appropriately publish on each copy an appropriate copyright notice;
|
|
||||||
keep intact all notices stating that this License and any
|
|
||||||
non-permissive terms added in accord with section 7 apply to the code;
|
|
||||||
keep intact all notices of the absence of any warranty; and give all
|
|
||||||
recipients a copy of this License along with the Program.
|
|
||||||
|
|
||||||
You may charge any price or no price for each copy that you convey,
|
|
||||||
and you may offer support or warranty protection for a fee.
|
|
||||||
|
|
||||||
5. Conveying Modified Source Versions.
|
|
||||||
|
|
||||||
You may convey a work based on the Program, or the modifications to
|
|
||||||
produce it from the Program, in the form of source code under the
|
|
||||||
terms of section 4, provided that you also meet all of these conditions:
|
|
||||||
|
|
||||||
a) The work must carry prominent notices stating that you modified
|
|
||||||
it, and giving a relevant date.
|
|
||||||
|
|
||||||
b) The work must carry prominent notices stating that it is
|
|
||||||
released under this License and any conditions added under section
|
|
||||||
7. This requirement modifies the requirement in section 4 to
|
|
||||||
"keep intact all notices".
|
|
||||||
|
|
||||||
c) You must license the entire work, as a whole, under this
|
|
||||||
License to anyone who comes into possession of a copy. This
|
|
||||||
License will therefore apply, along with any applicable section 7
|
|
||||||
additional terms, to the whole of the work, and all its parts,
|
|
||||||
regardless of how they are packaged. This License gives no
|
|
||||||
permission to license the work in any other way, but it does not
|
|
||||||
invalidate such permission if you have separately received it.
|
|
||||||
|
|
||||||
d) If the work has interactive user interfaces, each must display
|
|
||||||
Appropriate Legal Notices; however, if the Program has interactive
|
|
||||||
interfaces that do not display Appropriate Legal Notices, your
|
|
||||||
work need not make them do so.
|
|
||||||
|
|
||||||
A compilation of a covered work with other separate and independent
|
|
||||||
works, which are not by their nature extensions of the covered work,
|
|
||||||
and which are not combined with it such as to form a larger program,
|
|
||||||
in or on a volume of a storage or distribution medium, is called an
|
|
||||||
"aggregate" if the compilation and its resulting copyright are not
|
|
||||||
used to limit the access or legal rights of the compilation's users
|
|
||||||
beyond what the individual works permit. Inclusion of a covered work
|
|
||||||
in an aggregate does not cause this License to apply to the other
|
|
||||||
parts of the aggregate.
|
|
||||||
|
|
||||||
6. Conveying Non-Source Forms.
|
|
||||||
|
|
||||||
You may convey a covered work in object code form under the terms
|
|
||||||
of sections 4 and 5, provided that you also convey the
|
|
||||||
machine-readable Corresponding Source under the terms of this License,
|
|
||||||
in one of these ways:
|
|
||||||
|
|
||||||
a) Convey the object code in, or embodied in, a physical product
|
|
||||||
(including a physical distribution medium), accompanied by the
|
|
||||||
Corresponding Source fixed on a durable physical medium
|
|
||||||
customarily used for software interchange.
|
|
||||||
|
|
||||||
b) Convey the object code in, or embodied in, a physical product
|
|
||||||
(including a physical distribution medium), accompanied by a
|
|
||||||
written offer, valid for at least three years and valid for as
|
|
||||||
long as you offer spare parts or customer support for that product
|
|
||||||
model, to give anyone who possesses the object code either (1) a
|
|
||||||
copy of the Corresponding Source for all the software in the
|
|
||||||
product that is covered by this License, on a durable physical
|
|
||||||
medium customarily used for software interchange, for a price no
|
|
||||||
more than your reasonable cost of physically performing this
|
|
||||||
conveying of source, or (2) access to copy the
|
|
||||||
Corresponding Source from a network server at no charge.
|
|
||||||
|
|
||||||
c) Convey individual copies of the object code with a copy of the
|
|
||||||
written offer to provide the Corresponding Source. This
|
|
||||||
alternative is allowed only occasionally and noncommercially, and
|
|
||||||
only if you received the object code with such an offer, in accord
|
|
||||||
with subsection 6b.
|
|
||||||
|
|
||||||
d) Convey the object code by offering access from a designated
|
|
||||||
place (gratis or for a charge), and offer equivalent access to the
|
|
||||||
Corresponding Source in the same way through the same place at no
|
|
||||||
further charge. You need not require recipients to copy the
|
|
||||||
Corresponding Source along with the object code. If the place to
|
|
||||||
copy the object code is a network server, the Corresponding Source
|
|
||||||
may be on a different server (operated by you or a third party)
|
|
||||||
that supports equivalent copying facilities, provided you maintain
|
|
||||||
clear directions next to the object code saying where to find the
|
|
||||||
Corresponding Source. Regardless of what server hosts the
|
|
||||||
Corresponding Source, you remain obligated to ensure that it is
|
|
||||||
available for as long as needed to satisfy these requirements.
|
|
||||||
|
|
||||||
e) Convey the object code using peer-to-peer transmission, provided
|
|
||||||
you inform other peers where the object code and Corresponding
|
|
||||||
Source of the work are being offered to the general public at no
|
|
||||||
charge under subsection 6d.
|
|
||||||
|
|
||||||
A separable portion of the object code, whose source code is excluded
|
|
||||||
from the Corresponding Source as a System Library, need not be
|
|
||||||
included in conveying the object code work.
|
|
||||||
|
|
||||||
A "User Product" is either (1) a "consumer product", which means any
|
|
||||||
tangible personal property which is normally used for personal, family,
|
|
||||||
or household purposes, or (2) anything designed or sold for incorporation
|
|
||||||
into a dwelling. In determining whether a product is a consumer product,
|
|
||||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
|
||||||
product received by a particular user, "normally used" refers to a
|
|
||||||
typical or common use of that class of product, regardless of the status
|
|
||||||
of the particular user or of the way in which the particular user
|
|
||||||
actually uses, or expects or is expected to use, the product. A product
|
|
||||||
is a consumer product regardless of whether the product has substantial
|
|
||||||
commercial, industrial or non-consumer uses, unless such uses represent
|
|
||||||
the only significant mode of use of the product.
|
|
||||||
|
|
||||||
"Installation Information" for a User Product means any methods,
|
|
||||||
procedures, authorization keys, or other information required to install
|
|
||||||
and execute modified versions of a covered work in that User Product from
|
|
||||||
a modified version of its Corresponding Source. The information must
|
|
||||||
suffice to ensure that the continued functioning of the modified object
|
|
||||||
code is in no case prevented or interfered with solely because
|
|
||||||
modification has been made.
|
|
||||||
|
|
||||||
If you convey an object code work under this section in, or with, or
|
|
||||||
specifically for use in, a User Product, and the conveying occurs as
|
|
||||||
part of a transaction in which the right of possession and use of the
|
|
||||||
User Product is transferred to the recipient in perpetuity or for a
|
|
||||||
fixed term (regardless of how the transaction is characterized), the
|
|
||||||
Corresponding Source conveyed under this section must be accompanied
|
|
||||||
by the Installation Information. But this requirement does not apply
|
|
||||||
if neither you nor any third party retains the ability to install
|
|
||||||
modified object code on the User Product (for example, the work has
|
|
||||||
been installed in ROM).
|
|
||||||
|
|
||||||
The requirement to provide Installation Information does not include a
|
|
||||||
requirement to continue to provide support service, warranty, or updates
|
|
||||||
for a work that has been modified or installed by the recipient, or for
|
|
||||||
the User Product in which it has been modified or installed. Access to a
|
|
||||||
network may be denied when the modification itself materially and
|
|
||||||
adversely affects the operation of the network or violates the rules and
|
|
||||||
protocols for communication across the network.
|
|
||||||
|
|
||||||
Corresponding Source conveyed, and Installation Information provided,
|
|
||||||
in accord with this section must be in a format that is publicly
|
|
||||||
documented (and with an implementation available to the public in
|
|
||||||
source code form), and must require no special password or key for
|
|
||||||
unpacking, reading or copying.
|
|
||||||
|
|
||||||
7. Additional Terms.
|
|
||||||
|
|
||||||
"Additional permissions" are terms that supplement the terms of this
|
|
||||||
License by making exceptions from one or more of its conditions.
|
|
||||||
Additional permissions that are applicable to the entire Program shall
|
|
||||||
be treated as though they were included in this License, to the extent
|
|
||||||
that they are valid under applicable law. If additional permissions
|
|
||||||
apply only to part of the Program, that part may be used separately
|
|
||||||
under those permissions, but the entire Program remains governed by
|
|
||||||
this License without regard to the additional permissions.
|
|
||||||
|
|
||||||
When you convey a copy of a covered work, you may at your option
|
|
||||||
remove any additional permissions from that copy, or from any part of
|
|
||||||
it. (Additional permissions may be written to require their own
|
|
||||||
removal in certain cases when you modify the work.) You may place
|
|
||||||
additional permissions on material, added by you to a covered work,
|
|
||||||
for which you have or can give appropriate copyright permission.
|
|
||||||
|
|
||||||
Notwithstanding any other provision of this License, for material you
|
|
||||||
add to a covered work, you may (if authorized by the copyright holders of
|
|
||||||
that material) supplement the terms of this License with terms:
|
|
||||||
|
|
||||||
a) Disclaiming warranty or limiting liability differently from the
|
|
||||||
terms of sections 15 and 16 of this License; or
|
|
||||||
|
|
||||||
b) Requiring preservation of specified reasonable legal notices or
|
|
||||||
author attributions in that material or in the Appropriate Legal
|
|
||||||
Notices displayed by works containing it; or
|
|
||||||
|
|
||||||
c) Prohibiting misrepresentation of the origin of that material, or
|
|
||||||
requiring that modified versions of such material be marked in
|
|
||||||
reasonable ways as different from the original version; or
|
|
||||||
|
|
||||||
d) Limiting the use for publicity purposes of names of licensors or
|
|
||||||
authors of the material; or
|
|
||||||
|
|
||||||
e) Declining to grant rights under trademark law for use of some
|
|
||||||
trade names, trademarks, or service marks; or
|
|
||||||
|
|
||||||
f) Requiring indemnification of licensors and authors of that
|
|
||||||
material by anyone who conveys the material (or modified versions of
|
|
||||||
it) with contractual assumptions of liability to the recipient, for
|
|
||||||
any liability that these contractual assumptions directly impose on
|
|
||||||
those licensors and authors.
|
|
||||||
|
|
||||||
All other non-permissive additional terms are considered "further
|
|
||||||
restrictions" within the meaning of section 10. If the Program as you
|
|
||||||
received it, or any part of it, contains a notice stating that it is
|
|
||||||
governed by this License along with a term that is a further
|
|
||||||
restriction, you may remove that term. If a license document contains
|
|
||||||
a further restriction but permits relicensing or conveying under this
|
|
||||||
License, you may add to a covered work material governed by the terms
|
|
||||||
of that license document, provided that the further restriction does
|
|
||||||
not survive such relicensing or conveying.
|
|
||||||
|
|
||||||
If you add terms to a covered work in accord with this section, you
|
|
||||||
must place, in the relevant source files, a statement of the
|
|
||||||
additional terms that apply to those files, or a notice indicating
|
|
||||||
where to find the applicable terms.
|
|
||||||
|
|
||||||
Additional terms, permissive or non-permissive, may be stated in the
|
|
||||||
form of a separately written license, or stated as exceptions;
|
|
||||||
the above requirements apply either way.
|
|
||||||
|
|
||||||
8. Termination.
|
|
||||||
|
|
||||||
You may not propagate or modify a covered work except as expressly
|
|
||||||
provided under this License. Any attempt otherwise to propagate or
|
|
||||||
modify it is void, and will automatically terminate your rights under
|
|
||||||
this License (including any patent licenses granted under the third
|
|
||||||
paragraph of section 11).
|
|
||||||
|
|
||||||
However, if you cease all violation of this License, then your
|
|
||||||
license from a particular copyright holder is reinstated (a)
|
|
||||||
provisionally, unless and until the copyright holder explicitly and
|
|
||||||
finally terminates your license, and (b) permanently, if the copyright
|
|
||||||
holder fails to notify you of the violation by some reasonable means
|
|
||||||
prior to 60 days after the cessation.
|
|
||||||
|
|
||||||
Moreover, your license from a particular copyright holder is
|
|
||||||
reinstated permanently if the copyright holder notifies you of the
|
|
||||||
violation by some reasonable means, this is the first time you have
|
|
||||||
received notice of violation of this License (for any work) from that
|
|
||||||
copyright holder, and you cure the violation prior to 30 days after
|
|
||||||
your receipt of the notice.
|
|
||||||
|
|
||||||
Termination of your rights under this section does not terminate the
|
|
||||||
licenses of parties who have received copies or rights from you under
|
|
||||||
this License. If your rights have been terminated and not permanently
|
|
||||||
reinstated, you do not qualify to receive new licenses for the same
|
|
||||||
material under section 10.
|
|
||||||
|
|
||||||
9. Acceptance Not Required for Having Copies.
|
|
||||||
|
|
||||||
You are not required to accept this License in order to receive or
|
|
||||||
run a copy of the Program. Ancillary propagation of a covered work
|
|
||||||
occurring solely as a consequence of using peer-to-peer transmission
|
|
||||||
to receive a copy likewise does not require acceptance. However,
|
|
||||||
nothing other than this License grants you permission to propagate or
|
|
||||||
modify any covered work. These actions infringe copyright if you do
|
|
||||||
not accept this License. Therefore, by modifying or propagating a
|
|
||||||
covered work, you indicate your acceptance of this License to do so.
|
|
||||||
|
|
||||||
10. Automatic Licensing of Downstream Recipients.
|
|
||||||
|
|
||||||
Each time you convey a covered work, the recipient automatically
|
|
||||||
receives a license from the original licensors, to run, modify and
|
|
||||||
propagate that work, subject to this License. You are not responsible
|
|
||||||
for enforcing compliance by third parties with this License.
|
|
||||||
|
|
||||||
An "entity transaction" is a transaction transferring control of an
|
|
||||||
organization, or substantially all assets of one, or subdividing an
|
|
||||||
organization, or merging organizations. If propagation of a covered
|
|
||||||
work results from an entity transaction, each party to that
|
|
||||||
transaction who receives a copy of the work also receives whatever
|
|
||||||
licenses to the work the party's predecessor in interest had or could
|
|
||||||
give under the previous paragraph, plus a right to possession of the
|
|
||||||
Corresponding Source of the work from the predecessor in interest, if
|
|
||||||
the predecessor has it or can get it with reasonable efforts.
|
|
||||||
|
|
||||||
You may not impose any further restrictions on the exercise of the
|
|
||||||
rights granted or affirmed under this License. For example, you may
|
|
||||||
not impose a license fee, royalty, or other charge for exercise of
|
|
||||||
rights granted under this License, and you may not initiate litigation
|
|
||||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
|
||||||
any patent claim is infringed by making, using, selling, offering for
|
|
||||||
sale, or importing the Program or any portion of it.
|
|
||||||
|
|
||||||
11. Patents.
|
|
||||||
|
|
||||||
A "contributor" is a copyright holder who authorizes use under this
|
|
||||||
License of the Program or a work on which the Program is based. The
|
|
||||||
work thus licensed is called the contributor's "contributor version".
|
|
||||||
|
|
||||||
A contributor's "essential patent claims" are all patent claims
|
|
||||||
owned or controlled by the contributor, whether already acquired or
|
|
||||||
hereafter acquired, that would be infringed by some manner, permitted
|
|
||||||
by this License, of making, using, or selling its contributor version,
|
|
||||||
but do not include claims that would be infringed only as a
|
|
||||||
consequence of further modification of the contributor version. For
|
|
||||||
purposes of this definition, "control" includes the right to grant
|
|
||||||
patent sublicenses in a manner consistent with the requirements of
|
|
||||||
this License.
|
|
||||||
|
|
||||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
|
||||||
patent license under the contributor's essential patent claims, to
|
|
||||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
|
||||||
propagate the contents of its contributor version.
|
|
||||||
|
|
||||||
In the following three paragraphs, a "patent license" is any express
|
|
||||||
agreement or commitment, however denominated, not to enforce a patent
|
|
||||||
(such as an express permission to practice a patent or covenant not to
|
|
||||||
sue for patent infringement). To "grant" such a patent license to a
|
|
||||||
party means to make such an agreement or commitment not to enforce a
|
|
||||||
patent against the party.
|
|
||||||
|
|
||||||
If you convey a covered work, knowingly relying on a patent license,
|
|
||||||
and the Corresponding Source of the work is not available for anyone
|
|
||||||
to copy, free of charge and under the terms of this License, through a
|
|
||||||
publicly available network server or other readily accessible means,
|
|
||||||
then you must either (1) cause the Corresponding Source to be so
|
|
||||||
available, or (2) arrange to deprive yourself of the benefit of the
|
|
||||||
patent license for this particular work, or (3) arrange, in a manner
|
|
||||||
consistent with the requirements of this License, to extend the patent
|
|
||||||
license to downstream recipients. "Knowingly relying" means you have
|
|
||||||
actual knowledge that, but for the patent license, your conveying the
|
|
||||||
covered work in a country, or your recipient's use of the covered work
|
|
||||||
in a country, would infringe one or more identifiable patents in that
|
|
||||||
country that you have reason to believe are valid.
|
|
||||||
|
|
||||||
If, pursuant to or in connection with a single transaction or
|
|
||||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
|
||||||
covered work, and grant a patent license to some of the parties
|
|
||||||
receiving the covered work authorizing them to use, propagate, modify
|
|
||||||
or convey a specific copy of the covered work, then the patent license
|
|
||||||
you grant is automatically extended to all recipients of the covered
|
|
||||||
work and works based on it.
|
|
||||||
|
|
||||||
A patent license is "discriminatory" if it does not include within
|
|
||||||
the scope of its coverage, prohibits the exercise of, or is
|
|
||||||
conditioned on the non-exercise of one or more of the rights that are
|
|
||||||
specifically granted under this License. You may not convey a covered
|
|
||||||
work if you are a party to an arrangement with a third party that is
|
|
||||||
in the business of distributing software, under which you make payment
|
|
||||||
to the third party based on the extent of your activity of conveying
|
|
||||||
the work, and under which the third party grants, to any of the
|
|
||||||
parties who would receive the covered work from you, a discriminatory
|
|
||||||
patent license (a) in connection with copies of the covered work
|
|
||||||
conveyed by you (or copies made from those copies), or (b) primarily
|
|
||||||
for and in connection with specific products or compilations that
|
|
||||||
contain the covered work, unless you entered into that arrangement,
|
|
||||||
or that patent license was granted, prior to 28 March 2007.
|
|
||||||
|
|
||||||
Nothing in this License shall be construed as excluding or limiting
|
|
||||||
any implied license or other defenses to infringement that may
|
|
||||||
otherwise be available to you under applicable patent law.
|
|
||||||
|
|
||||||
12. No Surrender of Others' Freedom.
|
|
||||||
|
|
||||||
If conditions are imposed on you (whether by court order, agreement or
|
|
||||||
otherwise) that contradict the conditions of this License, they do not
|
|
||||||
excuse you from the conditions of this License. If you cannot convey a
|
|
||||||
covered work so as to satisfy simultaneously your obligations under this
|
|
||||||
License and any other pertinent obligations, then as a consequence you may
|
|
||||||
not convey it at all. For example, if you agree to terms that obligate you
|
|
||||||
to collect a royalty for further conveying from those to whom you convey
|
|
||||||
the Program, the only way you could satisfy both those terms and this
|
|
||||||
License would be to refrain entirely from conveying the Program.
|
|
||||||
|
|
||||||
13. Use with the GNU Affero General Public License.
|
|
||||||
|
|
||||||
Notwithstanding any other provision of this License, you have
|
|
||||||
permission to link or combine any covered work with a work licensed
|
|
||||||
under version 3 of the GNU Affero General Public License into a single
|
|
||||||
combined work, and to convey the resulting work. The terms of this
|
|
||||||
License will continue to apply to the part which is the covered work,
|
|
||||||
but the special requirements of the GNU Affero General Public License,
|
|
||||||
section 13, concerning interaction through a network will apply to the
|
|
||||||
combination as such.
|
|
||||||
|
|
||||||
14. Revised Versions of this License.
|
|
||||||
|
|
||||||
The Free Software Foundation may publish revised and/or new versions of
|
|
||||||
the GNU General Public License from time to time. Such new versions will
|
|
||||||
be similar in spirit to the present version, but may differ in detail to
|
|
||||||
address new problems or concerns.
|
|
||||||
|
|
||||||
Each version is given a distinguishing version number. If the
|
|
||||||
Program specifies that a certain numbered version of the GNU General
|
|
||||||
Public License "or any later version" applies to it, you have the
|
|
||||||
option of following the terms and conditions either of that numbered
|
|
||||||
version or of any later version published by the Free Software
|
|
||||||
Foundation. If the Program does not specify a version number of the
|
|
||||||
GNU General Public License, you may choose any version ever published
|
|
||||||
by the Free Software Foundation.
|
|
||||||
|
|
||||||
If the Program specifies that a proxy can decide which future
|
|
||||||
versions of the GNU General Public License can be used, that proxy's
|
|
||||||
public statement of acceptance of a version permanently authorizes you
|
|
||||||
to choose that version for the Program.
|
|
||||||
|
|
||||||
Later license versions may give you additional or different
|
|
||||||
permissions. However, no additional obligations are imposed on any
|
|
||||||
author or copyright holder as a result of your choosing to follow a
|
|
||||||
later version.
|
|
||||||
|
|
||||||
15. Disclaimer of Warranty.
|
|
||||||
|
|
||||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
|
||||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
|
||||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
|
||||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
|
||||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
||||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
|
||||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
|
||||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
|
||||||
|
|
||||||
16. Limitation of Liability.
|
|
||||||
|
|
||||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
|
||||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
|
||||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
|
||||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
|
||||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
|
||||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
|
||||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
|
||||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
|
||||||
SUCH DAMAGES.
|
|
||||||
|
|
||||||
17. Interpretation of Sections 15 and 16.
|
|
||||||
|
|
||||||
If the disclaimer of warranty and limitation of liability provided
|
|
||||||
above cannot be given local legal effect according to their terms,
|
|
||||||
reviewing courts shall apply local law that most closely approximates
|
|
||||||
an absolute waiver of all civil liability in connection with the
|
|
||||||
Program, unless a warranty or assumption of liability accompanies a
|
|
||||||
copy of the Program in return for a fee.
|
|
||||||
|
|
||||||
END OF TERMS AND CONDITIONS
|
|
||||||
|
|
||||||
How to Apply These Terms to Your New Programs
|
|
||||||
|
|
||||||
If you develop a new program, and you want it to be of the greatest
|
|
||||||
possible use to the public, the best way to achieve this is to make it
|
|
||||||
free software which everyone can redistribute and change under these terms.
|
|
||||||
|
|
||||||
To do so, attach the following notices to the program. It is safest
|
|
||||||
to attach them to the start of each source file to most effectively
|
|
||||||
state the exclusion of warranty; and each file should have at least
|
|
||||||
the "copyright" line and a pointer to where the full notice is found.
|
|
||||||
|
|
||||||
{one line to give the program's name and a brief idea of what it does.}
|
|
||||||
Copyright (C) {year} {name of author}
|
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
Also add information on how to contact you by electronic and paper mail.
|
|
||||||
|
|
||||||
If the program does terminal interaction, make it output a short
|
|
||||||
notice like this when it starts in an interactive mode:
|
|
||||||
|
|
||||||
{project} Copyright (C) {year} {fullname}
|
|
||||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
|
||||||
This is free software, and you are welcome to redistribute it
|
|
||||||
under certain conditions; type `show c' for details.
|
|
||||||
|
|
||||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
|
||||||
parts of the General Public License. Of course, your program's commands
|
|
||||||
might be different; for a GUI interface, you would use an "about box".
|
|
||||||
|
|
||||||
You should also get your employer (if you work as a programmer) or school,
|
|
||||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
|
||||||
For more information on this, and how to apply and follow the GNU GPL, see
|
|
||||||
<http://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
The GNU General Public License does not permit incorporating your program
|
|
||||||
into proprietary programs. If your program is a subroutine library, you
|
|
||||||
may consider it more useful to permit linking proprietary applications with
|
|
||||||
the library. If this is what you want to do, use the GNU Lesser General
|
|
||||||
Public License instead of this License. But first, please read
|
|
||||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
|
@ -65,6 +65,6 @@ the additional sectors.
|
|||||||
# Licence
|
# Licence
|
||||||
|
|
||||||
The code in PyPSA-Eur-Sec is released as free software under the
|
The code in PyPSA-Eur-Sec is released as free software under the
|
||||||
[GPLv3](http://www.gnu.org/licenses/gpl-3.0.en.html), see LICENSE.txt.
|
[MIT License](https://opensource.org/licenses/MIT), see `LICENSE.txt`.
|
||||||
However, different licenses and terms of use may apply to the various
|
However, different licenses and terms of use may apply to the various
|
||||||
input data.
|
input data.
|
||||||
|
39
Snakefile
39
Snakefile
@ -1,4 +1,7 @@
|
|||||||
|
|
||||||
|
from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider
|
||||||
|
HTTP = HTTPRemoteProvider()
|
||||||
|
|
||||||
configfile: "config.yaml"
|
configfile: "config.yaml"
|
||||||
|
|
||||||
|
|
||||||
@ -20,7 +23,6 @@ subworkflow pypsaeur:
|
|||||||
snakefile: "../pypsa-eur/Snakefile"
|
snakefile: "../pypsa-eur/Snakefile"
|
||||||
configfile: "../pypsa-eur/config.yaml"
|
configfile: "../pypsa-eur/config.yaml"
|
||||||
|
|
||||||
|
|
||||||
rule all:
|
rule all:
|
||||||
input: SDIR + '/graphs/costs.pdf'
|
input: SDIR + '/graphs/costs.pdf'
|
||||||
|
|
||||||
@ -156,6 +158,7 @@ rule build_energy_totals:
|
|||||||
co2="data/eea/UNFCCC_v23.csv",
|
co2="data/eea/UNFCCC_v23.csv",
|
||||||
swiss="data/switzerland-sfoe/switzerland-new_format.csv",
|
swiss="data/switzerland-sfoe/switzerland-new_format.csv",
|
||||||
idees="data/jrc-idees-2015",
|
idees="data/jrc-idees-2015",
|
||||||
|
district_heat_share='data/district_heat_share.csv',
|
||||||
eurostat=input_eurostat
|
eurostat=input_eurostat
|
||||||
output:
|
output:
|
||||||
energy_name='resources/energy_totals.csv',
|
energy_name='resources/energy_totals.csv',
|
||||||
@ -169,16 +172,37 @@ rule build_energy_totals:
|
|||||||
|
|
||||||
rule build_biomass_potentials:
|
rule build_biomass_potentials:
|
||||||
input:
|
input:
|
||||||
jrc_potentials="data/biomass/JRC Biomass Potentials.xlsx"
|
enspreso_biomass=HTTP.remote("https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/ENSPRESO/ENSPRESO_BIOMASS.xlsx", keep_local=True),
|
||||||
|
nuts2="data/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
|
||||||
|
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||||
|
nuts3_population="../pypsa-eur/data/bundle/nama_10r_3popgdp.tsv.gz",
|
||||||
|
swiss_cantons="../pypsa-eur/data/bundle/ch_cantons.csv",
|
||||||
|
swiss_population="../pypsa-eur/data/bundle/je-e-21.03.02.xls",
|
||||||
|
country_shapes=pypsaeur('resources/country_shapes.geojson')
|
||||||
output:
|
output:
|
||||||
biomass_potentials_all='resources/biomass_potentials_all.csv',
|
biomass_potentials_all='resources/biomass_potentials_all_s{simpl}_{clusters}.csv',
|
||||||
biomass_potentials='resources/biomass_potentials.csv'
|
biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv'
|
||||||
threads: 1
|
threads: 1
|
||||||
resources: mem_mb=1000
|
resources: mem_mb=1000
|
||||||
benchmark: "benchmarks/build_biomass_potentials"
|
benchmark: "benchmarks/build_biomass_potentials_s{simpl}_{clusters}"
|
||||||
script: 'scripts/build_biomass_potentials.py'
|
script: 'scripts/build_biomass_potentials.py'
|
||||||
|
|
||||||
|
|
||||||
|
if config["sector"]["biomass_transport"]:
|
||||||
|
rule build_biomass_transport_costs:
|
||||||
|
input:
|
||||||
|
transport_cost_data=HTTP.remote("publications.jrc.ec.europa.eu/repository/bitstream/JRC98626/biomass potentials in europe_web rev.pdf", keep_local=True)
|
||||||
|
output:
|
||||||
|
biomass_transport_costs="resources/biomass_transport_costs.csv",
|
||||||
|
threads: 1
|
||||||
|
resources: mem_mb=1000
|
||||||
|
benchmark: "benchmarks/build_biomass_transport_costs"
|
||||||
|
script: 'scripts/build_biomass_transport_costs.py'
|
||||||
|
build_biomass_transport_costs_output = rules.build_biomass_transport_costs.output
|
||||||
|
else:
|
||||||
|
build_biomass_transport_costs_output = {}
|
||||||
|
|
||||||
|
|
||||||
rule build_ammonia_production:
|
rule build_ammonia_production:
|
||||||
input:
|
input:
|
||||||
usgs="data/myb1-2017-nitro.xls"
|
usgs="data/myb1-2017-nitro.xls"
|
||||||
@ -322,7 +346,7 @@ rule prepare_sector_network:
|
|||||||
transport_name='resources/transport_data.csv',
|
transport_name='resources/transport_data.csv',
|
||||||
traffic_data_KFZ = "data/emobility/KFZ__count",
|
traffic_data_KFZ = "data/emobility/KFZ__count",
|
||||||
traffic_data_Pkw = "data/emobility/Pkw__count",
|
traffic_data_Pkw = "data/emobility/Pkw__count",
|
||||||
biomass_potentials='resources/biomass_potentials.csv',
|
biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv',
|
||||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||||
costs=CDIR + "costs_{planning_horizons}.csv",
|
costs=CDIR + "costs_{planning_horizons}.csv",
|
||||||
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),
|
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),
|
||||||
@ -351,7 +375,8 @@ rule prepare_sector_network:
|
|||||||
solar_thermal_total="resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc",
|
solar_thermal_total="resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc",
|
||||||
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
|
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
|
||||||
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc",
|
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc",
|
||||||
**build_retro_cost_output
|
**build_retro_cost_output,
|
||||||
|
**build_biomass_transport_costs_output
|
||||||
output: RDIR + '/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
output: RDIR + '/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
||||||
threads: 1
|
threads: 1
|
||||||
resources: mem_mb=2000
|
resources: mem_mb=2000
|
||||||
|
@ -73,7 +73,7 @@ electricity:
|
|||||||
|
|
||||||
# regulate what components with which carriers are kept from PyPSA-Eur;
|
# regulate what components with which carriers are kept from PyPSA-Eur;
|
||||||
# some technologies are removed because they are implemented differently
|
# some technologies are removed because they are implemented differently
|
||||||
# (e.g. battery or H2 storage) or have different year-dependent costs
|
# (e.g. battery or H2 storage) or have different year-dependent costs
|
||||||
# in PyPSA-Eur-Sec
|
# in PyPSA-Eur-Sec
|
||||||
pypsa_eur:
|
pypsa_eur:
|
||||||
Bus:
|
Bus:
|
||||||
@ -100,28 +100,28 @@ energy:
|
|||||||
|
|
||||||
biomass:
|
biomass:
|
||||||
year: 2030
|
year: 2030
|
||||||
scenario: Med
|
scenario: ENS_Med
|
||||||
classes:
|
classes:
|
||||||
solid biomass:
|
solid biomass:
|
||||||
- Primary agricultural residues
|
- Agricultural waste
|
||||||
- Forestry energy residue
|
- Fuelwood residues
|
||||||
- Secondary forestry residues
|
- Secondary Forestry residues - woodchips
|
||||||
- Secondary Forestry residues sawdust
|
- Sawdust
|
||||||
- Forestry residues from landscape care biomass
|
- Residues from landscape care
|
||||||
- Municipal waste
|
- Municipal waste
|
||||||
not included:
|
not included:
|
||||||
- Bioethanol sugar beet biomass
|
- Sugar from sugar beet
|
||||||
- Rapeseeds for biodiesel
|
- Rape seed
|
||||||
- sunflower and soya for Biodiesel
|
- "Sunflower, soya seed "
|
||||||
- Starchy crops biomass
|
- Bioethanol barley, wheat, grain maize, oats, other cereals and rye
|
||||||
- Grassy crops biomass
|
- Miscanthus, switchgrass, RCG
|
||||||
- Willow biomass
|
- Willow
|
||||||
- Poplar biomass potential
|
- Poplar
|
||||||
- Roundwood fuelwood
|
- FuelwoodRW
|
||||||
- Roundwood Chips & Pellets
|
- C&P_RW
|
||||||
biogas:
|
biogas:
|
||||||
- Manure biomass potential
|
- Manure solid, liquid
|
||||||
- Sludge biomass
|
- Sludge
|
||||||
|
|
||||||
|
|
||||||
solar_thermal:
|
solar_thermal:
|
||||||
@ -142,8 +142,16 @@ existing_capacities:
|
|||||||
|
|
||||||
|
|
||||||
sector:
|
sector:
|
||||||
central: true
|
district_heating:
|
||||||
central_fraction: 0.6
|
potential: 0.6 # maximum fraction of urban demand which can be supplied by district heating
|
||||||
|
# increase of today's district heating demand to potential maximum district heating share
|
||||||
|
# progress = 0 means today's district heating share, progress = 1 means maximum fraction of urban demand is supplied by district heating
|
||||||
|
progress:
|
||||||
|
2020: 0.0
|
||||||
|
2030: 0.3
|
||||||
|
2040: 0.6
|
||||||
|
2050: 1.0
|
||||||
|
district_heating_loss: 0.15
|
||||||
bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM
|
bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM
|
||||||
bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
||||||
transport_heating_deadband_upper: 20.
|
transport_heating_deadband_upper: 20.
|
||||||
@ -152,7 +160,6 @@ sector:
|
|||||||
ICE_upper_degree_factor: 1.6
|
ICE_upper_degree_factor: 1.6
|
||||||
EV_lower_degree_factor: 0.98
|
EV_lower_degree_factor: 0.98
|
||||||
EV_upper_degree_factor: 0.63
|
EV_upper_degree_factor: 0.63
|
||||||
district_heating_loss: 0.15
|
|
||||||
bev_dsm: true #turns on EV battery
|
bev_dsm: true #turns on EV battery
|
||||||
bev_availability: 0.5 #How many cars do smart charging
|
bev_availability: 0.5 #How many cars do smart charging
|
||||||
bev_energy: 0.05 #average battery size in MWh
|
bev_energy: 0.05 #average battery size in MWh
|
||||||
@ -179,7 +186,7 @@ sector:
|
|||||||
agriculture_machinery_fuel_efficiency: 0.7 # fuel oil per use
|
agriculture_machinery_fuel_efficiency: 0.7 # fuel oil per use
|
||||||
agriculture_machinery_electric_efficiency: 0.3 # electricity per use
|
agriculture_machinery_electric_efficiency: 0.3 # electricity per use
|
||||||
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
|
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
|
||||||
shipping_hydrogen_liquefaction: true # whether to consider liquefaction costs for shipping H2 demands
|
shipping_hydrogen_liquefaction: false # whether to consider liquefaction costs for shipping H2 demands
|
||||||
shipping_hydrogen_share: # 1 means all hydrogen FC
|
shipping_hydrogen_share: # 1 means all hydrogen FC
|
||||||
2020: 0
|
2020: 0
|
||||||
2025: 0
|
2025: 0
|
||||||
@ -227,7 +234,8 @@ sector:
|
|||||||
co2_vent: true
|
co2_vent: true
|
||||||
SMR: true
|
SMR: true
|
||||||
co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe
|
co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe
|
||||||
co2_sequestration_cost: 20 #EUR/tCO2 for transport and sequestration of CO2
|
co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2
|
||||||
|
co2_network: false
|
||||||
cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture
|
cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture
|
||||||
hydrogen_underground_storage: true
|
hydrogen_underground_storage: true
|
||||||
use_fischer_tropsch_waste_heat: true
|
use_fischer_tropsch_waste_heat: true
|
||||||
@ -237,6 +245,7 @@ sector:
|
|||||||
electricity_grid_connection: true # only applies to onshore wind and utility PV
|
electricity_grid_connection: true # only applies to onshore wind and utility PV
|
||||||
gas_distribution_grid: true
|
gas_distribution_grid: true
|
||||||
gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||||
|
biomass_transport: false # biomass transport between nodes
|
||||||
conventional_generation: # generator : carrier
|
conventional_generation: # generator : carrier
|
||||||
OCGT: gas
|
OCGT: gas
|
||||||
|
|
||||||
@ -274,10 +283,23 @@ industry:
|
|||||||
MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
||||||
NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
||||||
petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
||||||
HVC_primary_fraction: 1.0 #fraction of current non-ammonia basic chemicals produced via primary route
|
HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route
|
||||||
|
HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling
|
||||||
|
HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling
|
||||||
|
HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX
|
||||||
|
MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756.
|
||||||
|
MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking
|
||||||
|
chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43
|
||||||
|
MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43
|
||||||
|
MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process
|
||||||
|
methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62
|
||||||
|
MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65
|
||||||
|
MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65
|
||||||
hotmaps_locate_missing: false
|
hotmaps_locate_missing: false
|
||||||
reference_year: 2015
|
reference_year: 2015
|
||||||
|
# references:
|
||||||
|
# DECHEMA (2017): https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf
|
||||||
|
# Material Economics (2019): https://materialeconomics.com/latest-updates/industrial-transformation-2050
|
||||||
|
|
||||||
costs:
|
costs:
|
||||||
lifetime: 25 #default lifetime
|
lifetime: 25 #default lifetime
|
||||||
@ -339,7 +361,7 @@ solving:
|
|||||||
|
|
||||||
plotting:
|
plotting:
|
||||||
map:
|
map:
|
||||||
boundaries: [-11, 30, 34, 71]
|
boundaries: [-11, 30, 34, 71]
|
||||||
color_geomap:
|
color_geomap:
|
||||||
ocean: white
|
ocean: white
|
||||||
land: whitesmoke
|
land: whitesmoke
|
||||||
@ -424,6 +446,7 @@ plotting:
|
|||||||
lines: k
|
lines: k
|
||||||
transmission lines: k
|
transmission lines: k
|
||||||
H2: m
|
H2: m
|
||||||
|
H2 liquefaction: m
|
||||||
hydrogen storage: m
|
hydrogen storage: m
|
||||||
battery: slategray
|
battery: slategray
|
||||||
battery storage: slategray
|
battery storage: slategray
|
||||||
@ -470,6 +493,7 @@ plotting:
|
|||||||
hot water storage: '#BBBBBB'
|
hot water storage: '#BBBBBB'
|
||||||
hot water charging: '#BBBBBB'
|
hot water charging: '#BBBBBB'
|
||||||
hot water discharging: '#999999'
|
hot water discharging: '#999999'
|
||||||
|
CO2 pipeline: '#999999'
|
||||||
CHP: r
|
CHP: r
|
||||||
CHP heat: r
|
CHP heat: r
|
||||||
CHP electric: r
|
CHP electric: r
|
||||||
@ -510,5 +534,6 @@ plotting:
|
|||||||
shipping oil: "#6495ED"
|
shipping oil: "#6495ED"
|
||||||
shipping oil emissions: "#6495ED"
|
shipping oil emissions: "#6495ED"
|
||||||
electricity distribution grid: '#333333'
|
electricity distribution grid: '#333333'
|
||||||
|
solid biomass transport: green
|
||||||
H2 for industry: "#222222"
|
H2 for industry: "#222222"
|
||||||
H2 for shipping: "#6495ED"
|
H2 for shipping: "#6495ED"
|
||||||
|
34
data/district_heat_share.csv
Normal file
34
data/district_heat_share.csv
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
country,share to satisfy heat demand (residential) in percent,capacity[MWth]
|
||||||
|
AT,14,11200
|
||||||
|
BG,16,6162
|
||||||
|
BA,8,
|
||||||
|
HR,6.3,2221
|
||||||
|
CZ,40,
|
||||||
|
DK,65,
|
||||||
|
FI,38,23390
|
||||||
|
FR,5,
|
||||||
|
DE,13.8,
|
||||||
|
HU,7.92875588637399,8549
|
||||||
|
IS,90,8079000
|
||||||
|
IE,0.8,
|
||||||
|
IT,3,8727
|
||||||
|
LV,73,2254
|
||||||
|
LT,56,
|
||||||
|
MK,23.7745607009008,636
|
||||||
|
NO,4,3400
|
||||||
|
PL,42,54912
|
||||||
|
PT,0.070754716981132,34
|
||||||
|
RS,25,5821
|
||||||
|
SI,8.86,1739
|
||||||
|
ES,0.251589260787732,1273
|
||||||
|
SE,50.4,
|
||||||
|
UK,2,
|
||||||
|
BY,70,
|
||||||
|
EE,52,5406
|
||||||
|
KO,3,207
|
||||||
|
RO,23,9962
|
||||||
|
SK,54,15000
|
||||||
|
NL,4,9800
|
||||||
|
CH,4,2792
|
||||||
|
AL,0,
|
||||||
|
ME,0,
|
|
@ -2,6 +2,7 @@ description,file/folder,licence,source
|
|||||||
JRC IDEES database,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees
|
JRC IDEES database,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees
|
||||||
urban/rural fraction,urban_percent.csv,unknown,unknown
|
urban/rural fraction,urban_percent.csv,unknown,unknown
|
||||||
JRC biomass potentials,biomass/,unknown,https://doi.org/10.2790/39014
|
JRC biomass potentials,biomass/,unknown,https://doi.org/10.2790/39014
|
||||||
|
JRC ENSPRESO biomass potentials,remote,CC BY 4.0,https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f
|
||||||
EEA emission statistics,eea/UNFCCC_v23.csv,EEA standard re-use policy,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
EEA emission statistics,eea/UNFCCC_v23.csv,EEA standard re-use policy,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
||||||
Eurostat Energy Balances,eurostat-energy_balances-*/,Eurostat,https://ec.europa.eu/eurostat/web/energy/data/energy-balances
|
Eurostat Energy Balances,eurostat-energy_balances-*/,Eurostat,https://ec.europa.eu/eurostat/web/energy/data/energy-balances
|
||||||
Swiss energy statistics from Swiss Federal Office of Energy,switzerland-sfoe/,unknown,http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169
|
Swiss energy statistics from Swiss Federal Office of Energy,switzerland-sfoe/,unknown,http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169
|
||||||
@ -24,3 +25,6 @@ Comparative level investment,comparative_level_investment.csv,Eurostat,https://e
|
|||||||
Electricity taxes,electricity_taxes_eu.csv,Eurostat,https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
|
Electricity taxes,electricity_taxes_eu.csv,Eurostat,https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
|
||||||
Building topologies and corresponding standard values,tabula-calculator-calcsetbuilding.csv,unknown,https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx
|
Building topologies and corresponding standard values,tabula-calculator-calcsetbuilding.csv,unknown,https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx
|
||||||
Retrofitting thermal envelope costs for Germany,retro_cost_germany.csv,unkown,https://www.iwu.de/forschung/handlungslogiken/kosten-energierelevanter-bau-und-anlagenteile-bei-modernisierung/
|
Retrofitting thermal envelope costs for Germany,retro_cost_germany.csv,unkown,https://www.iwu.de/forschung/handlungslogiken/kosten-energierelevanter-bau-und-anlagenteile-bei-modernisierung/
|
||||||
|
District heating most countries,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees,,
|
||||||
|
District heating missing countries,district_heat_share.csv,unkown,https://www.euroheat.org/knowledge-hub/country-profiles,,
|
||||||
|
|
||||||
|
Can't render this file because it has a wrong number of fields in line 28.
|
@ -134,7 +134,7 @@ it.
|
|||||||
Licence
|
Licence
|
||||||
=======
|
=======
|
||||||
|
|
||||||
The code in PyPSA-Eur-Sec is released as free software under the `GPLv3
|
The code in PyPSA-Eur-Sec is released as free software under the
|
||||||
<http://www.gnu.org/licenses/gpl-3.0.en.html>`_, see
|
`MIT license <https://opensource.org/licenses/MIT>`_, see
|
||||||
`LICENSE <https://github.com/PyPSA/pypsa-eur-sec/blob/master/LICENSE.txt>`_.
|
`LICENSE <https://github.com/PyPSA/pypsa-eur-sec/blob/master/LICENSE.txt>`_.
|
||||||
However, different licenses and terms of use may apply to the various input data.
|
However, different licenses and terms of use may apply to the various input data.
|
||||||
|
@ -8,6 +8,8 @@ Future release
|
|||||||
.. note::
|
.. note::
|
||||||
This unreleased version currently requires the master branches of PyPSA, PyPSA-Eur, and the technology-data repository.
|
This unreleased version currently requires the master branches of PyPSA, PyPSA-Eur, and the technology-data repository.
|
||||||
|
|
||||||
|
* With this release, we change the license from copyleft GPLv3 to the more
|
||||||
|
liberal MIT license with the consent of all contributors.
|
||||||
* Extended use of ``multiprocessing`` for much better performance
|
* Extended use of ``multiprocessing`` for much better performance
|
||||||
(from up to 20 minutes to less than one minute).
|
(from up to 20 minutes to less than one minute).
|
||||||
* Compatibility with ``atlite>=0.2``. Older versions of ``atlite`` will no longer work.
|
* Compatibility with ``atlite>=0.2``. Older versions of ``atlite`` will no longer work.
|
||||||
@ -60,17 +62,38 @@ Future release
|
|||||||
These are included in the environment specifications of PyPSA-Eur.
|
These are included in the environment specifications of PyPSA-Eur.
|
||||||
* Consistent use of ``__main__`` block and further unspecific code cleaning.
|
* Consistent use of ``__main__`` block and further unspecific code cleaning.
|
||||||
* Distinguish costs for home battery storage and inverter from utility-scale battery costs.
|
* Distinguish costs for home battery storage and inverter from utility-scale battery costs.
|
||||||
|
* Add option to regionally resolve CO2 storage and add CO2 pipeline transport because geological storage potential,
|
||||||
|
CO2 utilisation sites and CO2 capture sites may be separated.
|
||||||
|
The CO2 network is built from zero based on the topology of the electricity grid (greenfield).
|
||||||
|
Pipelines are assumed to be bidirectional and lossless.
|
||||||
|
Furthermore, neither retrofitting of natural gas pipelines (required pressures are too high, 80-160 bar vs <80 bar)
|
||||||
|
nor other modes of CO2 transport (by ship, road or rail) are considered.
|
||||||
|
The regional representation of CO2 is activated with the config setting ``sector: co2_network: true`` but is deactivated by default.
|
||||||
|
The global limit for CO2 sequestration now applies to the sum of all CO2 stores via an ``extra_functionality`` constraint.
|
||||||
* Added option for hydrogen liquefaction costs for hydrogen demand in shipping.
|
* Added option for hydrogen liquefaction costs for hydrogen demand in shipping.
|
||||||
This introduces a new ``H2 liquid`` bus at each location.
|
This introduces a new ``H2 liquid`` bus at each location.
|
||||||
It is activated via ``sector: shipping_hydrogen_liquefaction: true``.
|
It is activated via ``sector: shipping_hydrogen_liquefaction: true``.
|
||||||
* The share of shipping transformed into hydrogen fuel cell can be now defined for different years in the ``config.yaml`` file. The carbon emission from the remaining share is treated as a negative load on the atmospheric carbon dioxide bus, just like aviation and land transport emissions.
|
* The share of shipping transformed into hydrogen fuel cell can be now defined for different years in the ``config.yaml`` file. The carbon emission from the remaining share is treated as a negative load on the atmospheric carbon dioxide bus, just like aviation and land transport emissions.
|
||||||
* The transformation of the Steel and Aluminium production can be now defined for different years in the ``config.yaml`` file.
|
* The transformation of the Steel and Aluminium production can be now defined for different years in the ``config.yaml`` file.
|
||||||
* Include the option to alter the maximum energy capacity of a store via the ``carrier+factor`` in the ``{sector_opts}`` wildcard. This can be useful for sensitivity analyses. Example: ``co2 stored+e2`` multiplies the ``e_nom_max`` by factor 2. In this example, ``e_nom_max`` represents the CO2 sequestration potential in Europe.
|
* Include the option to alter the maximum energy capacity of a store via the ``carrier+factor`` in the ``{sector_opts}`` wildcard. This can be useful for sensitivity analyses. Example: ``co2 stored+e2`` multiplies the ``e_nom_max`` by factor 2. In this example, ``e_nom_max`` represents the CO2 sequestration potential in Europe.
|
||||||
|
* Add option to regionally disaggregate biomass potential to individual nodes
|
||||||
|
(currently given per country, then distributed by population density within)
|
||||||
|
and allow the transport of solid biomass.
|
||||||
|
The transport costs are determined based on the `JRC-EU-Times Bioenergy report <http://dx.doi.org/10.2790/01017>`_
|
||||||
|
in the new optional rule ``build_biomass_transport_costs``.
|
||||||
|
Biomass transport can be activated with the setting ``sector: biomass_transport: true``.
|
||||||
|
* Use `JRC ENSPRESO database <https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f>`_ to
|
||||||
|
spatially disaggregate biomass potentials to PyPSA-Eur regions based on overlaps with NUTS2 regions from ENSPRESO
|
||||||
|
(proportional to area) (`#151 <https://github.com/PyPSA/pypsa-eur-sec/pull/151>`_).
|
||||||
* Compatibility with ``xarray`` version 0.19.
|
* Compatibility with ``xarray`` version 0.19.
|
||||||
* Added option to include emissions and energy demands of agriculture, forestry and fishing sector via the letter ``A`` in the ``{sector_opts}`` wildcard.
|
* Added option to include emissions and energy demands of agriculture, forestry and fishing sector via the letter ``A`` in the ``{sector_opts}`` wildcard.
|
||||||
Demands are separated into electricity, heat and oil for machinery.
|
Demands are separated into electricity, heat and oil for machinery.
|
||||||
Fuel-switching for machinery from oil to electricity can be set exogenously in the ``config.yaml``
|
Fuel-switching for machinery from oil to electricity can be set exogenously in the ``config.yaml``
|
||||||
`#147 <https://github.com/PyPSA/PyPSA/pull/147>`_.
|
`#147 <https://github.com/PyPSA/PyPSA/pull/147>`_.
|
||||||
|
* Separate basic chemicals into HVC, chlorine, methanol and ammonia [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
|
||||||
|
* Add option to specify reuse, primary production, and mechanical and chemical recycling fraction of platics [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
|
||||||
|
* Include today's district heating shares in myopic optimisation and add option to specify exogenous path for district heating share increase under ``sector: district_heating:`` [`#149 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/149>`_].
|
||||||
|
* The myopic option can now be used together with different clustering for the generators and the network. The existing renewable capacities are split evenly among the regions in every country [`#144 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/144>`_].
|
||||||
|
|
||||||
PyPSA-Eur-Sec 0.5.0 (21st May 2021)
|
PyPSA-Eur-Sec 0.5.0 (21st May 2021)
|
||||||
===================================
|
===================================
|
||||||
|
@ -44,11 +44,13 @@ Hydrogen network: nodal.
|
|||||||
Methane network: single node for Europe, since future demand is so
|
Methane network: single node for Europe, since future demand is so
|
||||||
low and no bottlenecks are expected.
|
low and no bottlenecks are expected.
|
||||||
|
|
||||||
Solid biomass: single node for Europe, until transport costs can be
|
Solid biomass: choice between single node for Europe and nodal where biomass
|
||||||
incorporated.
|
potential is regionally disaggregated (currently given per country,
|
||||||
|
then distributed by population density within)
|
||||||
|
and transport of solid biomass is possible.
|
||||||
|
|
||||||
CO2: single node for Europe, but a transport and storage cost is added for
|
CO2: single node for Europe, but a transport and storage cost is added for
|
||||||
sequestered CO2.
|
sequestered CO2. Optionally: nodal, with CO2 transport via pipelines.
|
||||||
|
|
||||||
Liquid hydrocarbons: single node for Europe, since transport costs for
|
Liquid hydrocarbons: single node for Europe, since transport costs for
|
||||||
liquids are low.
|
liquids are low.
|
||||||
|
@ -183,7 +183,7 @@ Solid biomass provides process heat up to 500 Celsius in industry, as well as fe
|
|||||||
Solid biomass supply
|
Solid biomass supply
|
||||||
=====================
|
=====================
|
||||||
|
|
||||||
Only wastes and residues from the JRC biomass dataset.
|
Only wastes and residues from the JRC ENSPRESO biomass dataset.
|
||||||
|
|
||||||
|
|
||||||
Oil product demand
|
Oil product demand
|
||||||
|
@ -28,7 +28,7 @@ def add_build_year_to_new_assets(n, baseyear):
|
|||||||
# Give assets with lifetimes and no build year the build year baseyear
|
# Give assets with lifetimes and no build year the build year baseyear
|
||||||
for c in n.iterate_components(["Link", "Generator", "Store"]):
|
for c in n.iterate_components(["Link", "Generator", "Store"]):
|
||||||
|
|
||||||
assets = c.df.index[~c.df.lifetime.isna() & c.df.build_year.isna()]
|
assets = c.df.index[~c.df.lifetime.isna() & c.df.build_year==0]
|
||||||
c.df.loc[assets, "build_year"] = baseyear
|
c.df.loc[assets, "build_year"] = baseyear
|
||||||
|
|
||||||
# add -baseyear to name
|
# add -baseyear to name
|
||||||
@ -60,7 +60,7 @@ def add_existing_renewables(df_agg):
|
|||||||
}
|
}
|
||||||
|
|
||||||
for tech in ['solar', 'onwind', 'offwind']:
|
for tech in ['solar', 'onwind', 'offwind']:
|
||||||
|
|
||||||
carrier = carriers[tech]
|
carrier = carriers[tech]
|
||||||
|
|
||||||
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.)
|
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.)
|
||||||
@ -112,9 +112,9 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
|||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
n : pypsa.Network
|
n : pypsa.Network
|
||||||
grouping_years :
|
grouping_years :
|
||||||
intervals to group existing capacities
|
intervals to group existing capacities
|
||||||
costs :
|
costs :
|
||||||
to read lifetime to estimate YearDecomissioning
|
to read lifetime to estimate YearDecomissioning
|
||||||
baseyear : int
|
baseyear : int
|
||||||
"""
|
"""
|
||||||
@ -155,6 +155,11 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
|||||||
# assign clustered bus
|
# assign clustered bus
|
||||||
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0, squeeze=True)
|
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0, squeeze=True)
|
||||||
busmap = pd.read_csv(snakemake.input.busmap, index_col=0, squeeze=True)
|
busmap = pd.read_csv(snakemake.input.busmap, index_col=0, squeeze=True)
|
||||||
|
|
||||||
|
inv_busmap = {}
|
||||||
|
for k, v in busmap.iteritems():
|
||||||
|
inv_busmap[v] = inv_busmap.get(v, []) + [k]
|
||||||
|
|
||||||
clustermaps = busmap_s.map(busmap)
|
clustermaps = busmap_s.map(busmap)
|
||||||
clustermaps.index = clustermaps.index.astype(int)
|
clustermaps.index = clustermaps.index.astype(int)
|
||||||
|
|
||||||
@ -192,24 +197,54 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
|||||||
capacity = capacity[capacity > snakemake.config['existing_capacities']['threshold_capacity']]
|
capacity = capacity[capacity > snakemake.config['existing_capacities']['threshold_capacity']]
|
||||||
|
|
||||||
if generator in ['solar', 'onwind', 'offwind']:
|
if generator in ['solar', 'onwind', 'offwind']:
|
||||||
|
|
||||||
rename = {"offwind": "offwind-ac"}
|
|
||||||
p_max_pu=n.generators_t.p_max_pu[capacity.index + ' ' + rename.get(generator, generator) + '-' + str(baseyear)]
|
|
||||||
|
|
||||||
n.madd("Generator",
|
|
||||||
capacity.index,
|
|
||||||
suffix=' ' + generator +"-"+ str(grouping_year),
|
|
||||||
bus=capacity.index,
|
|
||||||
carrier=generator,
|
|
||||||
p_nom=capacity,
|
|
||||||
marginal_cost=costs.at[generator, 'VOM'],
|
|
||||||
capital_cost=costs.at[generator, 'fixed'],
|
|
||||||
efficiency=costs.at[generator, 'efficiency'],
|
|
||||||
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
|
|
||||||
build_year=grouping_year,
|
|
||||||
lifetime=costs.at[generator, 'lifetime']
|
|
||||||
)
|
|
||||||
|
|
||||||
|
suffix = '-ac' if generator == 'offwind' else ''
|
||||||
|
name_suffix = f' {generator}{suffix}-{baseyear}'
|
||||||
|
|
||||||
|
if 'm' in snakemake.wildcards.clusters:
|
||||||
|
|
||||||
|
for ind in capacity.index:
|
||||||
|
|
||||||
|
# existing capacities are split evenly among regions in every country
|
||||||
|
inv_ind = [i for i in inv_busmap[ind]]
|
||||||
|
|
||||||
|
# for offshore the spliting only inludes coastal regions
|
||||||
|
inv_ind = [i for i in inv_ind if (i + name_suffix) in n.generators.index]
|
||||||
|
|
||||||
|
p_max_pu = n.generators_t.p_max_pu[[i + name_suffix for i in inv_ind]]
|
||||||
|
p_max_pu.columns=[i + name_suffix for i in inv_ind ]
|
||||||
|
|
||||||
|
n.madd("Generator",
|
||||||
|
[i + name_suffix for i in inv_ind],
|
||||||
|
bus=ind,
|
||||||
|
carrier=generator,
|
||||||
|
p_nom=capacity[ind] / len(inv_ind), # split among regions in a country
|
||||||
|
marginal_cost=costs.at[generator,'VOM'],
|
||||||
|
capital_cost=costs.at[generator,'fixed'],
|
||||||
|
efficiency=costs.at[generator, 'efficiency'],
|
||||||
|
p_max_pu=p_max_pu,
|
||||||
|
build_year=grouping_year,
|
||||||
|
lifetime=costs.at[generator,'lifetime']
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
p_max_pu = n.generators_t.p_max_pu[capacity.index + name_suffix]
|
||||||
|
|
||||||
|
n.madd("Generator",
|
||||||
|
capacity.index,
|
||||||
|
suffix=' ' + generator +"-"+ str(grouping_year),
|
||||||
|
bus=capacity.index,
|
||||||
|
carrier=generator,
|
||||||
|
p_nom=capacity,
|
||||||
|
marginal_cost=costs.at[generator, 'VOM'],
|
||||||
|
capital_cost=costs.at[generator, 'fixed'],
|
||||||
|
efficiency=costs.at[generator, 'efficiency'],
|
||||||
|
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
|
||||||
|
build_year=grouping_year,
|
||||||
|
lifetime=costs.at[generator, 'lifetime']
|
||||||
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
@ -268,7 +303,7 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
|||||||
df.fillna(0., inplace=True)
|
df.fillna(0., inplace=True)
|
||||||
|
|
||||||
# convert GW to MW
|
# convert GW to MW
|
||||||
df *= 1e3
|
df *= 1e3
|
||||||
|
|
||||||
cc = pd.read_csv(snakemake.input.country_codes, index_col=0)
|
cc = pd.read_csv(snakemake.input.country_codes, index_col=0)
|
||||||
|
|
||||||
@ -327,7 +362,7 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
|||||||
efficiency = cop[heat_pump_type][nodes[name]]
|
efficiency = cop[heat_pump_type][nodes[name]]
|
||||||
else:
|
else:
|
||||||
efficiency = costs.at[costs_name, 'efficiency']
|
efficiency = costs.at[costs_name, 'efficiency']
|
||||||
|
|
||||||
for i, grouping_year in enumerate(grouping_years):
|
for i, grouping_year in enumerate(grouping_years):
|
||||||
|
|
||||||
if int(grouping_year) + default_lifetime <= int(baseyear):
|
if int(grouping_year) + default_lifetime <= int(baseyear):
|
||||||
@ -378,7 +413,7 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
|||||||
build_year=int(grouping_year),
|
build_year=int(grouping_year),
|
||||||
lifetime=costs.at[name_type + ' gas boiler', 'lifetime']
|
lifetime=costs.at[name_type + ' gas boiler', 'lifetime']
|
||||||
)
|
)
|
||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
nodes[name],
|
nodes[name],
|
||||||
suffix=f" {name} oil boiler-{grouping_year}",
|
suffix=f" {name} oil boiler-{grouping_year}",
|
||||||
@ -410,7 +445,8 @@ if __name__ == "__main__":
|
|||||||
simpl='',
|
simpl='',
|
||||||
clusters=45,
|
clusters=45,
|
||||||
lv=1.0,
|
lv=1.0,
|
||||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
opts='',
|
||||||
|
sector_opts='Co2L0-168H-T-H-B-I-solar+p3-dist1',
|
||||||
planning_horizons=2020,
|
planning_horizons=2020,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,55 +1,194 @@
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import geopandas as gpd
|
||||||
rename = {"UK" : "GB", "BH" : "BA"}
|
|
||||||
|
|
||||||
|
|
||||||
def build_biomass_potentials():
|
def build_nuts_population_data(year=2013):
|
||||||
|
|
||||||
config = snakemake.config['biomass']
|
pop = pd.read_csv(
|
||||||
year = config["year"]
|
snakemake.input.nuts3_population,
|
||||||
scenario = config["scenario"]
|
sep=r'\,| \t|\t',
|
||||||
|
engine='python',
|
||||||
|
na_values=[":"],
|
||||||
|
index_col=1
|
||||||
|
)[str(year)]
|
||||||
|
|
||||||
|
# only countries
|
||||||
|
pop.drop("EU28", inplace=True)
|
||||||
|
|
||||||
df = pd.read_excel(snakemake.input.jrc_potentials,
|
# mapping from Cantons to NUTS3
|
||||||
"Potentials (PJ)",
|
cantons = pd.read_csv(snakemake.input.swiss_cantons)
|
||||||
index_col=[0,1])
|
cantons = cantons.set_index(cantons.HASC.str[3:]).NUTS
|
||||||
|
cantons = cantons.str.pad(5, side='right', fillchar='0')
|
||||||
|
|
||||||
df.rename(columns={"Unnamed: 18": "Municipal waste"}, inplace=True)
|
# get population by NUTS3
|
||||||
df.drop(columns="Total", inplace=True)
|
swiss = pd.read_excel(snakemake.input.swiss_population, skiprows=3, index_col=0).loc["Residents in 1000"]
|
||||||
df.replace("-", 0., inplace=True)
|
swiss = swiss.rename(cantons).filter(like="CH")
|
||||||
|
|
||||||
column = df.iloc[:,0]
|
# aggregate also to higher order NUTS levels
|
||||||
countries = column.where(column.str.isalpha()).pad()
|
swiss = [swiss.groupby(swiss.index.str[:i]).sum() for i in range(2, 6)]
|
||||||
countries = [rename.get(ct, ct) for ct in countries]
|
|
||||||
countries_i = pd.Index(countries, name='country')
|
|
||||||
df.set_index(countries_i, append=True, inplace=True)
|
|
||||||
|
|
||||||
df.drop(index='MS', level=0, inplace=True)
|
# merge Europe + Switzerland
|
||||||
|
pop = pd.DataFrame(pop.append(swiss), columns=["total"])
|
||||||
|
|
||||||
|
# add missing manually
|
||||||
|
pop["AL"] = 2893
|
||||||
|
pop["BA"] = 3871
|
||||||
|
pop["RS"] = 7210
|
||||||
|
|
||||||
|
pop["ct"] = pop.index.str[:2]
|
||||||
|
|
||||||
|
return pop
|
||||||
|
|
||||||
# convert from PJ to MWh
|
|
||||||
df = df / 3.6 * 1e6
|
|
||||||
|
|
||||||
df.to_csv(snakemake.output.biomass_potentials_all)
|
def enspreso_biomass_potentials(year=2020, scenario="ENS_Low"):
|
||||||
|
"""
|
||||||
|
Loads the JRC ENSPRESO biomass potentials.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
year : int
|
||||||
|
The year for which potentials are to be taken.
|
||||||
|
Can be {2010, 2020, 2030, 2040, 2050}.
|
||||||
|
scenario : str
|
||||||
|
The scenario. Can be {"ENS_Low", "ENS_Med", "ENS_High"}.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
Biomass potentials for given year and scenario
|
||||||
|
in TWh/a by commodity and NUTS2 region.
|
||||||
|
"""
|
||||||
|
|
||||||
# solid biomass includes:
|
glossary = pd.read_excel(
|
||||||
# Primary agricultural residues (MINBIOAGRW1),
|
str(snakemake.input.enspreso_biomass),
|
||||||
# Forestry energy residue (MINBIOFRSF1),
|
sheet_name="Glossary",
|
||||||
# Secondary forestry residues (MINBIOWOOW1),
|
usecols="B:D",
|
||||||
# Secondary Forestry residues – sawdust (MINBIOWOO1a)',
|
skiprows=1,
|
||||||
# Forestry residues from landscape care biomass (MINBIOFRSF1a),
|
index_col=0
|
||||||
# Municipal waste (MINBIOMUN1)',
|
)
|
||||||
|
|
||||||
|
df = pd.read_excel(
|
||||||
|
str(snakemake.input.enspreso_biomass),
|
||||||
|
sheet_name="ENER - NUTS2 BioCom E",
|
||||||
|
usecols="A:H"
|
||||||
|
)
|
||||||
|
|
||||||
# biogas includes:
|
df["group"] = df["E-Comm"].map(glossary.group)
|
||||||
# Manure biomass potential (MINBIOGAS1),
|
df["commodity"] = df["E-Comm"].map(glossary.description)
|
||||||
# Sludge biomass (MINBIOSLU1),
|
|
||||||
|
|
||||||
df = df.loc[year, scenario, :]
|
to_rename = {
|
||||||
|
"NUTS2 Potential available by Bio Commodity": "potential",
|
||||||
|
"NUST2": "NUTS2",
|
||||||
|
}
|
||||||
|
df.rename(columns=to_rename, inplace=True)
|
||||||
|
|
||||||
|
# fill up with NUTS0 if NUTS2 is not given
|
||||||
|
df.NUTS2 = df.apply(lambda x: x.NUTS0 if x.NUTS2 == '-' else x.NUTS2, axis=1)
|
||||||
|
|
||||||
grouper = {v: k for k, vv in config["classes"].items() for v in vv}
|
# convert PJ to TWh
|
||||||
df = df.groupby(grouper, axis=1).sum()
|
df.potential /= 3.6
|
||||||
|
df.Unit = "TWh/a"
|
||||||
|
|
||||||
df.index.name = "MWh/a"
|
dff = df.query("Year == @year and Scenario == @scenario")
|
||||||
|
|
||||||
df.to_csv(snakemake.output.biomass_potentials)
|
bio = dff.groupby(["NUTS2", "commodity"]).potential.sum().unstack()
|
||||||
|
|
||||||
|
# currently Serbia and Kosovo not split, so aggregate
|
||||||
|
bio.loc["RS"] += bio.loc["XK"]
|
||||||
|
bio.drop("XK", inplace=True)
|
||||||
|
|
||||||
|
return bio
|
||||||
|
|
||||||
|
|
||||||
|
def disaggregate_nuts0(bio):
|
||||||
|
"""
|
||||||
|
Some commodities are only given on NUTS0 level.
|
||||||
|
These are disaggregated here using the NUTS2
|
||||||
|
population as distribution key.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
bio : pd.DataFrame
|
||||||
|
from enspreso_biomass_potentials()
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
"""
|
||||||
|
|
||||||
|
pop = build_nuts_population_data()
|
||||||
|
|
||||||
|
# get population in nuts2
|
||||||
|
pop_nuts2 = pop.loc[pop.index.str.len() == 4]
|
||||||
|
by_country = pop_nuts2.total.groupby(pop_nuts2.ct).sum()
|
||||||
|
pop_nuts2["fraction"] = pop_nuts2.total / pop_nuts2.ct.map(by_country)
|
||||||
|
|
||||||
|
# distribute nuts0 data to nuts2 by population
|
||||||
|
bio_nodal = bio.loc[pop_nuts2.ct]
|
||||||
|
bio_nodal.index = pop_nuts2.index
|
||||||
|
bio_nodal = bio_nodal.mul(pop_nuts2.fraction, axis=0)
|
||||||
|
|
||||||
|
# update inplace
|
||||||
|
bio.update(bio_nodal)
|
||||||
|
|
||||||
|
return bio
|
||||||
|
|
||||||
|
|
||||||
|
def build_nuts2_shapes():
|
||||||
|
"""
|
||||||
|
- load NUTS2 geometries
|
||||||
|
- add RS, AL, BA country shapes (not covered in NUTS 2013)
|
||||||
|
- consistently name ME, MK
|
||||||
|
"""
|
||||||
|
|
||||||
|
nuts2 = gpd.GeoDataFrame(gpd.read_file(snakemake.input.nuts2).set_index('id').geometry)
|
||||||
|
|
||||||
|
countries = gpd.read_file(snakemake.input.country_shapes).set_index('name')
|
||||||
|
missing = countries.loc[["AL", "RS", "BA"]]
|
||||||
|
nuts2.rename(index={"ME00": "ME", "MK00": "MK"}, inplace=True)
|
||||||
|
|
||||||
|
return nuts2.append(missing)
|
||||||
|
|
||||||
|
|
||||||
|
def area(gdf):
|
||||||
|
"""Returns area of GeoDataFrame geometries in square kilometers."""
|
||||||
|
return gdf.to_crs(epsg=3035).area.div(1e6)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_nuts2_to_regions(bio_nuts2, regions):
|
||||||
|
"""
|
||||||
|
Converts biomass potentials given in NUTS2 to PyPSA-Eur regions based on the
|
||||||
|
overlay of both GeoDataFrames in proportion to the area.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
bio_nuts2 : gpd.GeoDataFrame
|
||||||
|
JRC ENSPRESO biomass potentials indexed by NUTS2 shapes.
|
||||||
|
regions : gpd.GeoDataFrame
|
||||||
|
PyPSA-Eur clustered onshore regions
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
gpd.GeoDataFrame
|
||||||
|
"""
|
||||||
|
|
||||||
|
# calculate area of nuts2 regions
|
||||||
|
bio_nuts2["area_nuts2"] = area(bio_nuts2)
|
||||||
|
|
||||||
|
overlay = gpd.overlay(regions, bio_nuts2)
|
||||||
|
|
||||||
|
# calculate share of nuts2 area inside region
|
||||||
|
overlay["share"] = area(overlay) / overlay["area_nuts2"]
|
||||||
|
|
||||||
|
# multiply all nuts2-level values with share of nuts2 inside region
|
||||||
|
adjust_cols = overlay.columns.difference({"name", "area_nuts2", "geometry", "share"})
|
||||||
|
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
|
||||||
|
|
||||||
|
bio_regions = overlay.groupby("name").sum()
|
||||||
|
|
||||||
|
bio_regions.drop(["area_nuts2", "share"], axis=1, inplace=True)
|
||||||
|
|
||||||
|
return bio_regions
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@ -57,12 +196,28 @@ if __name__ == "__main__":
|
|||||||
from helper import mock_snakemake
|
from helper import mock_snakemake
|
||||||
snakemake = mock_snakemake('build_biomass_potentials')
|
snakemake = mock_snakemake('build_biomass_potentials')
|
||||||
|
|
||||||
|
config = snakemake.config['biomass']
|
||||||
|
year = config["year"]
|
||||||
|
scenario = config["scenario"]
|
||||||
|
|
||||||
# This is a hack, to be replaced once snakemake is unicode-conform
|
enspreso = enspreso_biomass_potentials(year, scenario)
|
||||||
|
|
||||||
solid_biomass = snakemake.config['biomass']['classes']['solid biomass']
|
enspreso = disaggregate_nuts0(enspreso)
|
||||||
if 'Secondary Forestry residues sawdust' in solid_biomass:
|
|
||||||
solid_biomass.remove('Secondary Forestry residues sawdust')
|
|
||||||
solid_biomass.append('Secondary Forestry residues – sawdust')
|
|
||||||
|
|
||||||
build_biomass_potentials()
|
nuts2 = build_nuts2_shapes()
|
||||||
|
|
||||||
|
df_nuts2 = gpd.GeoDataFrame(nuts2.geometry).join(enspreso)
|
||||||
|
|
||||||
|
regions = gpd.read_file(snakemake.input.regions_onshore)
|
||||||
|
|
||||||
|
df = convert_nuts2_to_regions(df_nuts2, regions)
|
||||||
|
|
||||||
|
df.to_csv(snakemake.output.biomass_potentials_all)
|
||||||
|
|
||||||
|
grouper = {v: k for k, vv in config["classes"].items() for v in vv}
|
||||||
|
df = df.groupby(grouper, axis=1).sum()
|
||||||
|
|
||||||
|
df *= 1e6 # TWh/a to MWh/a
|
||||||
|
df.index.name = "MWh/a"
|
||||||
|
|
||||||
|
df.to_csv(snakemake.output.biomass_potentials)
|
||||||
|
90
scripts/build_biomass_transport_costs.py
Normal file
90
scripts/build_biomass_transport_costs.py
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
"""
|
||||||
|
Reads biomass transport costs for different countries of the JRC report
|
||||||
|
|
||||||
|
"The JRC-EU-TIMES model.
|
||||||
|
Bioenergy potentials
|
||||||
|
for EU and neighbouring countries."
|
||||||
|
(2015)
|
||||||
|
|
||||||
|
converts them from units 'EUR per km/ton' -> 'EUR/ (km MWh)'
|
||||||
|
|
||||||
|
assuming as an approximation energy content of wood pellets
|
||||||
|
|
||||||
|
@author: bw0928
|
||||||
|
"""
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import tabula as tbl
|
||||||
|
|
||||||
|
ENERGY_CONTENT = 4.8 # unit MWh/t (wood pellets)
|
||||||
|
|
||||||
|
def get_countries():
|
||||||
|
|
||||||
|
pandas_options = dict(
|
||||||
|
skiprows=range(6),
|
||||||
|
header=None,
|
||||||
|
index_col=0
|
||||||
|
)
|
||||||
|
|
||||||
|
return tbl.read_pdf(
|
||||||
|
str(snakemake.input.transport_cost_data),
|
||||||
|
pages="145",
|
||||||
|
multiple_tables=False,
|
||||||
|
pandas_options=pandas_options
|
||||||
|
)[0].index
|
||||||
|
|
||||||
|
|
||||||
|
def get_cost_per_tkm(page, countries):
|
||||||
|
|
||||||
|
pandas_options = dict(
|
||||||
|
skiprows=range(6),
|
||||||
|
header=0,
|
||||||
|
sep=' |,',
|
||||||
|
engine='python',
|
||||||
|
index_col=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
sc = tbl.read_pdf(
|
||||||
|
str(snakemake.input.transport_cost_data),
|
||||||
|
pages=page,
|
||||||
|
multiple_tables=False,
|
||||||
|
pandas_options=pandas_options
|
||||||
|
)[0]
|
||||||
|
sc.index = countries
|
||||||
|
sc.columns = sc.columns.str.replace("€", "EUR")
|
||||||
|
|
||||||
|
return sc
|
||||||
|
|
||||||
|
|
||||||
|
def build_biomass_transport_costs():
|
||||||
|
|
||||||
|
countries = get_countries()
|
||||||
|
|
||||||
|
sc1 = get_cost_per_tkm(146, countries)
|
||||||
|
sc2 = get_cost_per_tkm(147, countries)
|
||||||
|
|
||||||
|
# take mean of both supply chains
|
||||||
|
to_concat = [sc1["EUR/km/ton"], sc2["EUR/km/ton"]]
|
||||||
|
transport_costs = pd.concat(to_concat, axis=1).mean(axis=1)
|
||||||
|
|
||||||
|
# convert tonnes to MWh
|
||||||
|
transport_costs /= ENERGY_CONTENT
|
||||||
|
transport_costs.name = "EUR/km/MWh"
|
||||||
|
|
||||||
|
# rename country names
|
||||||
|
to_rename = {
|
||||||
|
"UK": "GB",
|
||||||
|
"XK": "KO",
|
||||||
|
"EL": "GR"
|
||||||
|
}
|
||||||
|
transport_costs.rename(to_rename, inplace=True)
|
||||||
|
|
||||||
|
# add missing Norway with data from Sweden
|
||||||
|
transport_costs["NO"] = transport_costs["SE"]
|
||||||
|
|
||||||
|
transport_costs.to_csv(snakemake.output[0])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
build_biomass_transport_costs()
|
@ -213,6 +213,12 @@ def idees_per_country(ct, year):
|
|||||||
assert df.index[47] == "Electricity"
|
assert df.index[47] == "Electricity"
|
||||||
ct_totals["electricity residential"] = df[47]
|
ct_totals["electricity residential"] = df[47]
|
||||||
|
|
||||||
|
assert df.index[46] == "Derived heat"
|
||||||
|
ct_totals["Derived heat residential"] = df[46]
|
||||||
|
|
||||||
|
assert df.index[50] == 'Thermal uses'
|
||||||
|
ct_totals["thermal uses residential"] = df[50]
|
||||||
|
|
||||||
# services
|
# services
|
||||||
|
|
||||||
df = pd.read_excel(fn_tertiary, "SER_hh_fec", index_col=0)[year]
|
df = pd.read_excel(fn_tertiary, "SER_hh_fec", index_col=0)[year]
|
||||||
@ -240,6 +246,13 @@ def idees_per_country(ct, year):
|
|||||||
assert df.index[50] == "Electricity"
|
assert df.index[50] == "Electricity"
|
||||||
ct_totals["electricity services"] = df[50]
|
ct_totals["electricity services"] = df[50]
|
||||||
|
|
||||||
|
assert df.index[49] == "Derived heat"
|
||||||
|
ct_totals["derived heat services"] = df[49]
|
||||||
|
|
||||||
|
assert df.index[53] == 'Thermal uses'
|
||||||
|
ct_totals["thermal uses services"] = df[53]
|
||||||
|
|
||||||
|
|
||||||
# agriculture, forestry and fishing
|
# agriculture, forestry and fishing
|
||||||
|
|
||||||
start = "Detailed split of energy consumption (ktoe)"
|
start = "Detailed split of energy consumption (ktoe)"
|
||||||
@ -371,6 +384,7 @@ def build_idees(countries, year):
|
|||||||
with mp.Pool(processes=nprocesses) as pool:
|
with mp.Pool(processes=nprocesses) as pool:
|
||||||
totals_list = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
totals_list = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
||||||
|
|
||||||
|
|
||||||
totals = pd.concat(totals_list, axis=1)
|
totals = pd.concat(totals_list, axis=1)
|
||||||
|
|
||||||
# convert ktoe to TWh
|
# convert ktoe to TWh
|
||||||
@ -380,6 +394,13 @@ def build_idees(countries, year):
|
|||||||
# convert TWh/100km to kWh/km
|
# convert TWh/100km to kWh/km
|
||||||
totals.loc["passenger car efficiency"] *= 10
|
totals.loc["passenger car efficiency"] *= 10
|
||||||
|
|
||||||
|
# district heating share
|
||||||
|
district_heat = totals.loc[["derived heat residential",
|
||||||
|
"derived heat services"]].sum()
|
||||||
|
total_heat = totals.loc[["thermal uses residential",
|
||||||
|
"thermal uses services"]].sum()
|
||||||
|
totals.loc["district heat share"] = district_heat.div(total_heat)
|
||||||
|
|
||||||
return totals.T
|
return totals.T
|
||||||
|
|
||||||
|
|
||||||
@ -522,7 +543,7 @@ def build_energy_totals(countries, eurostat, swiss, idees):
|
|||||||
|
|
||||||
for purpose in ["passenger", "freight"]:
|
for purpose in ["passenger", "freight"]:
|
||||||
attrs = [f"total domestic aviation {purpose}", f"total international aviation {purpose}"]
|
attrs = [f"total domestic aviation {purpose}", f"total international aviation {purpose}"]
|
||||||
df.loc[missing, f"total aviation {purpose}"] = df.loc[missing, attrs].sum(axis=1)
|
df.loc[missing, f"total aviation {purpose}"] = df.loc[missing, attrs].sum(axis=1)
|
||||||
|
|
||||||
if "BA" in df.index:
|
if "BA" in df.index:
|
||||||
# fill missing data for BA (services and road energy data)
|
# fill missing data for BA (services and road energy data)
|
||||||
@ -531,6 +552,14 @@ def build_energy_totals(countries, eurostat, swiss, idees):
|
|||||||
ratio = df.at["BA", "total residential"] / df.at["RS", "total residential"]
|
ratio = df.at["BA", "total residential"] / df.at["RS", "total residential"]
|
||||||
df.loc['BA', missing] = ratio * df.loc["RS", missing]
|
df.loc['BA', missing] = ratio * df.loc["RS", missing]
|
||||||
|
|
||||||
|
# Missing district heating share
|
||||||
|
dh_share = pd.read_csv(snakemake.input.district_heat_share,
|
||||||
|
index_col=0, usecols=[0, 1])
|
||||||
|
# make conservative assumption and take minimum from both data sets
|
||||||
|
df["district heat share"] = (pd.concat([df["district heat share"],
|
||||||
|
dh_share.reindex(index=df.index)/100],
|
||||||
|
axis=1).min(axis=1))
|
||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
@ -103,6 +103,7 @@ def add_ammonia_energy_demand(demand):
|
|||||||
demand['Basic chemicals (without ammonia)'] = demand["Basic chemicals"] - demand["Ammonia"]
|
demand['Basic chemicals (without ammonia)'] = demand["Basic chemicals"] - demand["Ammonia"]
|
||||||
|
|
||||||
demand['Basic chemicals (without ammonia)'].clip(lower=0, inplace=True)
|
demand['Basic chemicals (without ammonia)'].clip(lower=0, inplace=True)
|
||||||
|
|
||||||
demand.drop(columns='Basic chemicals', inplace=True)
|
demand.drop(columns='Basic chemicals', inplace=True)
|
||||||
|
|
||||||
return demand
|
return demand
|
||||||
@ -114,6 +115,11 @@ def add_non_eu28_industrial_energy_demand(demand):
|
|||||||
fn = snakemake.input.industrial_production_per_country
|
fn = snakemake.input.industrial_production_per_country
|
||||||
production = pd.read_csv(fn, index_col=0) / 1e3
|
production = pd.read_csv(fn, index_col=0) / 1e3
|
||||||
|
|
||||||
|
#recombine HVC, Chlorine and Methanol to Basic chemicals (without ammonia)
|
||||||
|
chemicals = ["HVC", "Chlorine", "Methanol"]
|
||||||
|
production["Basic chemicals (without ammonia)"] = production[chemicals].sum(axis=1)
|
||||||
|
production.drop(columns=chemicals, inplace=True)
|
||||||
|
|
||||||
eu28_production = production.loc[eu28].sum()
|
eu28_production = production.loc[eu28].sum()
|
||||||
eu28_energy = demand.groupby(level=1).sum()
|
eu28_energy = demand.groupby(level=1).sum()
|
||||||
eu28_averages = eu28_energy / eu28_production
|
eu28_averages = eu28_energy / eu28_production
|
||||||
|
@ -179,8 +179,8 @@ def industry_production(countries):
|
|||||||
return demand
|
return demand
|
||||||
|
|
||||||
|
|
||||||
def add_ammonia_demand_separately(demand):
|
def separate_basic_chemicals(demand):
|
||||||
"""Include ammonia demand separately and remove ammonia from basic chemicals."""
|
"""Separate basic chemicals into ammonia, chlorine, methanol and HVC."""
|
||||||
|
|
||||||
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
|
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
|
||||||
|
|
||||||
@ -189,7 +189,7 @@ def add_ammonia_demand_separately(demand):
|
|||||||
|
|
||||||
print("Following countries have no ammonia demand:", missing)
|
print("Following countries have no ammonia demand:", missing)
|
||||||
|
|
||||||
demand.insert(2, "Ammonia", 0.)
|
demand["Ammonia"] = 0.
|
||||||
|
|
||||||
demand.loc[there, "Ammonia"] = ammonia.loc[there, str(year)]
|
demand.loc[there, "Ammonia"] = ammonia.loc[there, str(year)]
|
||||||
|
|
||||||
@ -198,9 +198,13 @@ def add_ammonia_demand_separately(demand):
|
|||||||
# EE, HR and LT got negative demand through subtraction - poor data
|
# EE, HR and LT got negative demand through subtraction - poor data
|
||||||
demand['Basic chemicals'].clip(lower=0., inplace=True)
|
demand['Basic chemicals'].clip(lower=0., inplace=True)
|
||||||
|
|
||||||
to_rename = {"Basic chemicals": "Basic chemicals (without ammonia)"}
|
# assume HVC, methanol, chlorine production proportional to non-ammonia basic chemicals
|
||||||
demand.rename(columns=to_rename, inplace=True)
|
distribution_key = demand["Basic chemicals"] / demand["Basic chemicals"].sum()
|
||||||
|
demand["HVC"] = config["HVC_production_today"] * 1e3 * distribution_key
|
||||||
|
demand["Chlorine"] = config["chlorine_production_today"] * 1e3 * distribution_key
|
||||||
|
demand["Methanol"] = config["methanol_production_today"] * 1e3 * distribution_key
|
||||||
|
|
||||||
|
demand.drop(columns=["Basic chemicals"], inplace=True)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
if 'snakemake' not in globals():
|
if 'snakemake' not in globals():
|
||||||
@ -211,12 +215,14 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
year = snakemake.config['industry']['reference_year']
|
year = snakemake.config['industry']['reference_year']
|
||||||
|
|
||||||
|
config = snakemake.config["industry"]
|
||||||
|
|
||||||
jrc_dir = snakemake.input.jrc
|
jrc_dir = snakemake.input.jrc
|
||||||
eurostat_dir = snakemake.input.eurostat
|
eurostat_dir = snakemake.input.eurostat
|
||||||
|
|
||||||
demand = industry_production(countries)
|
demand = industry_production(countries)
|
||||||
|
|
||||||
add_ammonia_demand_separately(demand)
|
separate_basic_chemicals(demand)
|
||||||
|
|
||||||
fn = snakemake.output.industrial_production_per_country
|
fn = snakemake.output.industrial_production_per_country
|
||||||
demand.to_csv(fn, float_format='%.2f')
|
demand.to_csv(fn, float_format='%.2f')
|
||||||
|
@ -39,11 +39,14 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
al_primary_fraction = get(config["Al_primary_fraction"], investment_year)
|
al_primary_fraction = get(config["Al_primary_fraction"], investment_year)
|
||||||
fraction_persistent_primary = al_primary_fraction * total_aluminium.sum() / production[key_pri].sum()
|
fraction_persistent_primary = al_primary_fraction * total_aluminium.sum() / production[key_pri].sum()
|
||||||
|
|
||||||
production[key_pri] = fraction_persistent_primary * production[key_pri]
|
production[key_pri] = fraction_persistent_primary * production[key_pri]
|
||||||
production[key_sec] = total_aluminium - production[key_pri]
|
production[key_sec] = total_aluminium - production[key_pri]
|
||||||
|
|
||||||
production["Basic chemicals (without ammonia)"] *= config['HVC_primary_fraction']
|
production["HVC (mechanical recycling)"] = get(config["HVC_mechanical_recycling_fraction"], investment_year) * production["HVC"]
|
||||||
|
production["HVC (chemical recycling)"] = get(config["HVC_chemical_recycling_fraction"], investment_year) * production["HVC"]
|
||||||
|
|
||||||
|
production["HVC"] *= get(config['HVC_primary_fraction'], investment_year)
|
||||||
|
|
||||||
fn = snakemake.output.industrial_production_per_country_tomorrow
|
fn = snakemake.output.industrial_production_per_country_tomorrow
|
||||||
production.to_csv(fn, float_format='%.2f')
|
production.to_csv(fn, float_format='%.2f')
|
||||||
|
@ -9,7 +9,11 @@ sector_mapping = {
|
|||||||
'Integrated steelworks': 'Iron and steel',
|
'Integrated steelworks': 'Iron and steel',
|
||||||
'DRI + Electric arc': 'Iron and steel',
|
'DRI + Electric arc': 'Iron and steel',
|
||||||
'Ammonia': 'Chemical industry',
|
'Ammonia': 'Chemical industry',
|
||||||
'Basic chemicals (without ammonia)': 'Chemical industry',
|
'HVC': 'Chemical industry',
|
||||||
|
'HVC (mechanical recycling)': 'Chemical industry',
|
||||||
|
'HVC (chemical recycling)': 'Chemical industry',
|
||||||
|
'Methanol': 'Chemical industry',
|
||||||
|
'Chlorine': 'Chemical industry',
|
||||||
'Other chemicals': 'Chemical industry',
|
'Other chemicals': 'Chemical industry',
|
||||||
'Pharmaceutical products etc.': 'Chemical industry',
|
'Pharmaceutical products etc.': 'Chemical industry',
|
||||||
'Cement': 'Cement',
|
'Cement': 'Cement',
|
||||||
@ -40,12 +44,12 @@ def build_nodal_industrial_production():
|
|||||||
|
|
||||||
countries = keys.country.unique()
|
countries = keys.country.unique()
|
||||||
sectors = industrial_production.columns
|
sectors = industrial_production.columns
|
||||||
|
|
||||||
for country, sector in product(countries, sectors):
|
for country, sector in product(countries, sectors):
|
||||||
|
|
||||||
buses = keys.index[keys.country == country]
|
buses = keys.index[keys.country == country]
|
||||||
mapping = sector_mapping.get(sector, "population")
|
mapping = sector_mapping.get(sector, "population")
|
||||||
|
|
||||||
key = keys.loc[buses, mapping]
|
key = keys.loc[buses, mapping]
|
||||||
nodal_production.loc[buses, sector] = industrial_production.at[country, sector] * key
|
nodal_production.loc[buses, sector] = industrial_production.at[country, sector] * key
|
||||||
|
|
||||||
|
@ -279,7 +279,7 @@ def chemicals_industry():
|
|||||||
|
|
||||||
df = pd.DataFrame(index=index)
|
df = pd.DataFrame(index=index)
|
||||||
|
|
||||||
# Basid chemicals
|
# Basic chemicals
|
||||||
|
|
||||||
sector = "Basic chemicals"
|
sector = "Basic chemicals"
|
||||||
|
|
||||||
@ -374,52 +374,82 @@ def chemicals_industry():
|
|||||||
# putting in ammonia demand for H2 and electricity separately
|
# putting in ammonia demand for H2 and electricity separately
|
||||||
|
|
||||||
s_emi = idees["emi"][3:57]
|
s_emi = idees["emi"][3:57]
|
||||||
s_out = idees["out"][8:9]
|
|
||||||
assert s_emi.index[0] == sector
|
assert s_emi.index[0] == sector
|
||||||
assert sector in str(s_out.index)
|
|
||||||
|
|
||||||
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
|
# convert from MtHVC/a to ktHVC/a
|
||||||
|
s_out = config["HVC_production_today"] * 1e3
|
||||||
# ktNH3/a
|
|
||||||
ammonia_total = ammonia.loc[ammonia.index.intersection(eu28), str(year)].sum()
|
|
||||||
|
|
||||||
s_out -= ammonia_total
|
|
||||||
|
|
||||||
# tCO2/t material
|
# tCO2/t material
|
||||||
df.loc["process emission", sector] += (
|
df.loc["process emission", sector] += (
|
||||||
s_emi["Process emissions"]
|
s_emi["Process emissions"]
|
||||||
- config["petrochemical_process_emissions"] * 1e3
|
- config["petrochemical_process_emissions"] * 1e3
|
||||||
- config["NH3_process_emissions"] * 1e3
|
- config["NH3_process_emissions"] * 1e3
|
||||||
) / s_out.values
|
) / s_out
|
||||||
|
|
||||||
# emissions originating from feedstock, could be non-fossil origin
|
# emissions originating from feedstock, could be non-fossil origin
|
||||||
# tCO2/t material
|
# tCO2/t material
|
||||||
df.loc["process emission from feedstock", sector] += (
|
df.loc["process emission from feedstock", sector] += (
|
||||||
config["petrochemical_process_emissions"] * 1e3
|
config["petrochemical_process_emissions"] * 1e3
|
||||||
) / s_out.values
|
) / s_out
|
||||||
|
|
||||||
# convert from ktoe/a to GWh/a
|
# convert from ktoe/a to GWh/a
|
||||||
sources = ["elec", "biomass", "methane", "hydrogen", "heat", "naphtha"]
|
sources = ["elec", "biomass", "methane", "hydrogen", "heat", "naphtha"]
|
||||||
df.loc[sources, sector] *= toe_to_MWh
|
df.loc[sources, sector] *= toe_to_MWh
|
||||||
|
|
||||||
|
# subtract ammonia energy demand (in ktNH3/a)
|
||||||
|
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
|
||||||
|
ammonia_total = ammonia.loc[ammonia.index.intersection(eu28), str(year)].sum()
|
||||||
df.loc["methane", sector] -= ammonia_total * config["MWh_CH4_per_tNH3_SMR"]
|
df.loc["methane", sector] -= ammonia_total * config["MWh_CH4_per_tNH3_SMR"]
|
||||||
df.loc["elec", sector] -= ammonia_total * config["MWh_elec_per_tNH3_SMR"]
|
df.loc["elec", sector] -= ammonia_total * config["MWh_elec_per_tNH3_SMR"]
|
||||||
|
|
||||||
# MWh/t material
|
# subtract chlorine demand
|
||||||
df.loc[sources, sector] = df.loc[sources, sector] / s_out.values
|
chlorine_total = config["chlorine_production_today"]
|
||||||
|
df.loc["hydrogen", sector] -= chlorine_total * config["MWh_H2_per_tCl"]
|
||||||
|
df.loc["elec", sector] -= chlorine_total * config["MWh_elec_per_tCl"]
|
||||||
|
|
||||||
to_rename = {sector: f"{sector} (without ammonia)"}
|
# subtract methanol demand
|
||||||
df.rename(columns=to_rename, inplace=True)
|
methanol_total = config["methanol_production_today"]
|
||||||
|
df.loc["methane", sector] -= methanol_total * config["MWh_CH4_per_tMeOH"]
|
||||||
|
df.loc["elec", sector] -= methanol_total * config["MWh_elec_per_tMeOH"]
|
||||||
|
|
||||||
|
# MWh/t material
|
||||||
|
df.loc[sources, sector] = df.loc[sources, sector] / s_out
|
||||||
|
|
||||||
|
df.rename(columns={sector: "HVC"}, inplace=True)
|
||||||
|
|
||||||
|
# HVC mechanical recycling
|
||||||
|
|
||||||
|
sector = "HVC (mechanical recycling)"
|
||||||
|
df[sector] = 0.0
|
||||||
|
df.loc["elec", sector] = config["MWh_elec_per_tHVC_mechanical_recycling"]
|
||||||
|
|
||||||
|
# HVC chemical recycling
|
||||||
|
|
||||||
|
sector = "HVC (chemical recycling)"
|
||||||
|
df[sector] = 0.0
|
||||||
|
df.loc["elec", sector] = config["MWh_elec_per_tHVC_chemical_recycling"]
|
||||||
|
|
||||||
# Ammonia
|
# Ammonia
|
||||||
|
|
||||||
sector = "Ammonia"
|
sector = "Ammonia"
|
||||||
|
|
||||||
df[sector] = 0.0
|
df[sector] = 0.0
|
||||||
|
|
||||||
df.loc["hydrogen", sector] = config["MWh_H2_per_tNH3_electrolysis"]
|
df.loc["hydrogen", sector] = config["MWh_H2_per_tNH3_electrolysis"]
|
||||||
df.loc["elec", sector] = config["MWh_elec_per_tNH3_electrolysis"]
|
df.loc["elec", sector] = config["MWh_elec_per_tNH3_electrolysis"]
|
||||||
|
|
||||||
|
# Chlorine
|
||||||
|
|
||||||
|
sector = "Chlorine"
|
||||||
|
df[sector] = 0.0
|
||||||
|
df.loc["hydrogen", sector] = config["MWh_H2_per_tCl"]
|
||||||
|
df.loc["elec", sector] = config["MWh_elec_per_tCl"]
|
||||||
|
|
||||||
|
# Methanol
|
||||||
|
|
||||||
|
sector = "Methanol"
|
||||||
|
df[sector] = 0.0
|
||||||
|
df.loc["methane", sector] = config["MWh_CH4_per_tMeOH"]
|
||||||
|
df.loc["elec", sector] = config["MWh_elec_per_tMeOH"]
|
||||||
|
|
||||||
# Other chemicals
|
# Other chemicals
|
||||||
|
|
||||||
sector = "Other chemicals"
|
sector = "Other chemicals"
|
||||||
|
@ -289,7 +289,7 @@ def plot_h2_map(network):
|
|||||||
title='Electrolyzer capacity',
|
title='Electrolyzer capacity',
|
||||||
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.add_artist(l2)
|
ax.add_artist(l2)
|
||||||
|
|
||||||
handles = []
|
handles = []
|
||||||
@ -398,7 +398,8 @@ def plot_series(network, carrier="AC", name="test"):
|
|||||||
|
|
||||||
supply = pd.DataFrame(index=n.snapshots)
|
supply = pd.DataFrame(index=n.snapshots)
|
||||||
for c in n.iterate_components(n.branch_components):
|
for c in n.iterate_components(n.branch_components):
|
||||||
for i in range(2):
|
n_port = 4 if c.name=='Link' else 2
|
||||||
|
for i in range(n_port):
|
||||||
supply = pd.concat((supply,
|
supply = pd.concat((supply,
|
||||||
(-1) * c.pnl["p" + str(i)].loc[:,
|
(-1) * c.pnl["p" + str(i)].loc[:,
|
||||||
c.df.index[c.df["bus" + str(i)].isin(buses)]].groupby(c.df.carrier,
|
c.df.index[c.df["bus" + str(i)].isin(buses)]].groupby(c.df.carrier,
|
||||||
@ -522,10 +523,11 @@ if __name__ == "__main__":
|
|||||||
snakemake = mock_snakemake(
|
snakemake = mock_snakemake(
|
||||||
'plot_network',
|
'plot_network',
|
||||||
simpl='',
|
simpl='',
|
||||||
clusters=48,
|
clusters=45,
|
||||||
lv=1.0,
|
lv=1.5,
|
||||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
opts='',
|
||||||
planning_horizons=2050,
|
sector_opts='Co2L0-168H-T-H-B-I-solar+p3-dist1',
|
||||||
|
planning_horizons=2030,
|
||||||
)
|
)
|
||||||
|
|
||||||
overrides = override_component_attrs(snakemake.input.overrides)
|
overrides = override_component_attrs(snakemake.input.overrides)
|
||||||
|
@ -19,6 +19,56 @@ from helper import override_component_attrs
|
|||||||
import logging
|
import logging
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
from types import SimpleNamespace
|
||||||
|
spatial = SimpleNamespace()
|
||||||
|
|
||||||
|
|
||||||
|
def define_spatial(nodes):
|
||||||
|
"""
|
||||||
|
Namespace for spatial
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nodes : list-like
|
||||||
|
"""
|
||||||
|
|
||||||
|
global spatial
|
||||||
|
global options
|
||||||
|
|
||||||
|
spatial.nodes = nodes
|
||||||
|
|
||||||
|
# biomass
|
||||||
|
|
||||||
|
spatial.biomass = SimpleNamespace()
|
||||||
|
|
||||||
|
if options["biomass_transport"]:
|
||||||
|
spatial.biomass.nodes = nodes + " solid biomass"
|
||||||
|
spatial.biomass.locations = nodes
|
||||||
|
spatial.biomass.industry = nodes + " solid biomass for industry"
|
||||||
|
spatial.biomass.industry_cc = nodes + " solid biomass for industry CC"
|
||||||
|
else:
|
||||||
|
spatial.biomass.nodes = ["EU solid biomass"]
|
||||||
|
spatial.biomass.locations = ["EU"]
|
||||||
|
spatial.biomass.industry = ["solid biomass for industry"]
|
||||||
|
spatial.biomass.industry_cc = ["solid biomass for industry CC"]
|
||||||
|
|
||||||
|
spatial.biomass.df = pd.DataFrame(vars(spatial.biomass), index=nodes)
|
||||||
|
|
||||||
|
# co2
|
||||||
|
|
||||||
|
spatial.co2 = SimpleNamespace()
|
||||||
|
|
||||||
|
if options["co2_network"]:
|
||||||
|
spatial.co2.nodes = nodes + " co2 stored"
|
||||||
|
spatial.co2.locations = nodes
|
||||||
|
spatial.co2.vents = nodes + " co2 vent"
|
||||||
|
else:
|
||||||
|
spatial.co2.nodes = ["co2 stored"]
|
||||||
|
spatial.co2.locations = ["EU"]
|
||||||
|
spatial.co2.vents = ["co2 vent"]
|
||||||
|
|
||||||
|
spatial.co2.df = pd.DataFrame(vars(spatial.co2), index=nodes)
|
||||||
|
|
||||||
|
|
||||||
def emission_sectors_from_opts(opts):
|
def emission_sectors_from_opts(opts):
|
||||||
|
|
||||||
@ -58,6 +108,40 @@ def get(item, investment_year=None):
|
|||||||
return item
|
return item
|
||||||
|
|
||||||
|
|
||||||
|
def create_network_topology(n, prefix, connector=" -> "):
|
||||||
|
"""
|
||||||
|
Create a network topology like the power transmission network.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
n : pypsa.Network
|
||||||
|
prefix : str
|
||||||
|
connector : str
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pd.DataFrame with columns bus0, bus1 and length
|
||||||
|
"""
|
||||||
|
|
||||||
|
ln_attrs = ["bus0", "bus1", "length"]
|
||||||
|
lk_attrs = ["bus0", "bus1", "length", "underwater_fraction"]
|
||||||
|
|
||||||
|
candidates = pd.concat([
|
||||||
|
n.lines[ln_attrs],
|
||||||
|
n.links.loc[n.links.carrier == "DC", lk_attrs]
|
||||||
|
]).fillna(0)
|
||||||
|
|
||||||
|
positive_order = candidates.bus0 < candidates.bus1
|
||||||
|
candidates_p = candidates[positive_order]
|
||||||
|
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||||
|
candidates_n = candidates[~positive_order].rename(columns=swap_buses)
|
||||||
|
candidates = pd.concat([candidates_p, candidates_n])
|
||||||
|
|
||||||
|
topo = candidates.groupby(["bus0", "bus1"], as_index=False).mean()
|
||||||
|
topo.index = topo.apply(lambda c: prefix + c.bus0 + connector + c.bus1, axis=1)
|
||||||
|
return topo
|
||||||
|
|
||||||
|
|
||||||
def co2_emissions_year(countries, opts, year):
|
def co2_emissions_year(countries, opts, year):
|
||||||
"""
|
"""
|
||||||
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
|
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
|
||||||
@ -79,7 +163,7 @@ def co2_emissions_year(countries, opts, year):
|
|||||||
co2_emissions = co2_totals.loc[countries, sectors].sum().sum()
|
co2_emissions = co2_totals.loc[countries, sectors].sum().sum()
|
||||||
|
|
||||||
# convert MtCO2 to GtCO2
|
# convert MtCO2 to GtCO2
|
||||||
co2_emissions *= 0.001
|
co2_emissions *= 0.001
|
||||||
|
|
||||||
return co2_emissions
|
return co2_emissions
|
||||||
|
|
||||||
@ -106,17 +190,14 @@ def build_carbon_budget(o, fn):
|
|||||||
|
|
||||||
#emissions at the beginning of the path (last year available 2018)
|
#emissions at the beginning of the path (last year available 2018)
|
||||||
e_0 = co2_emissions_year(countries, opts, year=2018)
|
e_0 = co2_emissions_year(countries, opts, year=2018)
|
||||||
|
|
||||||
#emissions in 2019 and 2020 assumed equal to 2018 and substracted
|
|
||||||
carbon_budget -= 2 * e_0
|
|
||||||
|
|
||||||
planning_horizons = snakemake.config['scenario']['planning_horizons']
|
planning_horizons = snakemake.config['scenario']['planning_horizons']
|
||||||
t_0 = planning_horizons[0]
|
t_0 = planning_horizons[0]
|
||||||
|
|
||||||
if "be" in o:
|
if "be" in o:
|
||||||
|
|
||||||
# final year in the path
|
# final year in the path
|
||||||
t_f = t_0 + (2 * carbon_budget / e_0).round(0)
|
t_f = t_0 + (2 * carbon_budget / e_0).round(0)
|
||||||
|
|
||||||
def beta_decay(t):
|
def beta_decay(t):
|
||||||
cdf_term = (t - t_0) / (t_f - t_0)
|
cdf_term = (t - t_0) / (t_f - t_0)
|
||||||
@ -148,6 +229,53 @@ def add_lifetime_wind_solar(n, costs):
|
|||||||
n.generators.loc[gen_i, "lifetime"] = costs.at[carrier, 'lifetime']
|
n.generators.loc[gen_i, "lifetime"] = costs.at[carrier, 'lifetime']
|
||||||
|
|
||||||
|
|
||||||
|
def create_network_topology(n, prefix, connector=" -> ", bidirectional=True):
|
||||||
|
"""
|
||||||
|
Create a network topology like the power transmission network.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
n : pypsa.Network
|
||||||
|
prefix : str
|
||||||
|
connector : str
|
||||||
|
bidirectional : bool, default True
|
||||||
|
True: one link for each connection
|
||||||
|
False: one link for each connection and direction (back and forth)
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pd.DataFrame with columns bus0, bus1 and length
|
||||||
|
"""
|
||||||
|
|
||||||
|
ln_attrs = ["bus0", "bus1", "length"]
|
||||||
|
lk_attrs = ["bus0", "bus1", "length", "underwater_fraction"]
|
||||||
|
|
||||||
|
candidates = pd.concat([
|
||||||
|
n.lines[ln_attrs],
|
||||||
|
n.links.loc[n.links.carrier == "DC", lk_attrs]
|
||||||
|
]).fillna(0)
|
||||||
|
|
||||||
|
positive_order = candidates.bus0 < candidates.bus1
|
||||||
|
candidates_p = candidates[positive_order]
|
||||||
|
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||||
|
candidates_n = candidates[~positive_order].rename(columns=swap_buses)
|
||||||
|
candidates = pd.concat([candidates_p, candidates_n])
|
||||||
|
|
||||||
|
def make_index(c):
|
||||||
|
return prefix + c.bus0 + connector + c.bus1
|
||||||
|
|
||||||
|
topo = candidates.groupby(["bus0", "bus1"], as_index=False).mean()
|
||||||
|
topo.index = topo.apply(make_index, axis=1)
|
||||||
|
|
||||||
|
if not bidirectional:
|
||||||
|
topo_reverse = topo.copy()
|
||||||
|
topo_reverse.rename(columns=swap_buses, inplace=True)
|
||||||
|
topo_reverse.index = topo_reverse.apply(make_index, axis=1)
|
||||||
|
topo = topo.append(topo_reverse)
|
||||||
|
|
||||||
|
return topo
|
||||||
|
|
||||||
|
|
||||||
# TODO merge issue with PyPSA-Eur
|
# TODO merge issue with PyPSA-Eur
|
||||||
def update_wind_solar_costs(n, costs):
|
def update_wind_solar_costs(n, costs):
|
||||||
"""
|
"""
|
||||||
@ -277,6 +405,9 @@ def patch_electricity_network(n):
|
|||||||
update_wind_solar_costs(n, costs)
|
update_wind_solar_costs(n, costs)
|
||||||
n.loads["carrier"] = "electricity"
|
n.loads["carrier"] = "electricity"
|
||||||
n.buses["location"] = n.buses.index
|
n.buses["location"] = n.buses.index
|
||||||
|
# remove trailing white space of load index until new PyPSA version after v0.18.
|
||||||
|
n.loads.rename(lambda x: x.strip(), inplace=True)
|
||||||
|
n.loads_t.p_set.rename(lambda x: x.strip(), axis=1, inplace=True)
|
||||||
|
|
||||||
|
|
||||||
def add_co2_tracking(n, options):
|
def add_co2_tracking(n, options):
|
||||||
@ -303,26 +434,26 @@ def add_co2_tracking(n, options):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# this tracks CO2 stored, e.g. underground
|
# this tracks CO2 stored, e.g. underground
|
||||||
n.add("Bus",
|
n.madd("Bus",
|
||||||
"co2 stored",
|
spatial.co2.nodes,
|
||||||
location="EU",
|
location=spatial.co2.locations,
|
||||||
carrier="co2 stored"
|
carrier="co2 stored"
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Store",
|
n.madd("Store",
|
||||||
"co2 stored",
|
spatial.co2.nodes,
|
||||||
e_nom_extendable=True,
|
e_nom_extendable=True,
|
||||||
e_nom_max=options['co2_sequestration_potential'] * 1e6,
|
e_nom_max=np.inf,
|
||||||
capital_cost=options['co2_sequestration_cost'],
|
capital_cost=options['co2_sequestration_cost'],
|
||||||
carrier="co2 stored",
|
carrier="co2 stored",
|
||||||
bus="co2 stored"
|
bus=spatial.co2.nodes
|
||||||
)
|
)
|
||||||
|
|
||||||
if options['co2_vent']:
|
if options['co2_vent']:
|
||||||
|
|
||||||
n.add("Link",
|
n.madd("Link",
|
||||||
"co2 vent",
|
spatial.co2.vents,
|
||||||
bus0="co2 stored",
|
bus0=spatial.co2.nodes,
|
||||||
bus1="co2 atmosphere",
|
bus1="co2 atmosphere",
|
||||||
carrier="co2 vent",
|
carrier="co2 vent",
|
||||||
efficiency=1.,
|
efficiency=1.,
|
||||||
@ -330,6 +461,28 @@ def add_co2_tracking(n, options):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def add_co2_network(n, costs):
|
||||||
|
|
||||||
|
logger.info("Adding CO2 network.")
|
||||||
|
co2_links = create_network_topology(n, "CO2 pipeline ")
|
||||||
|
|
||||||
|
cost_onshore = (1 - co2_links.underwater_fraction) * costs.at['CO2 pipeline', 'fixed'] * co2_links.length
|
||||||
|
cost_submarine = co2_links.underwater_fraction * costs.at['CO2 submarine pipeline', 'fixed'] * co2_links.length
|
||||||
|
capital_cost = cost_onshore + cost_submarine
|
||||||
|
|
||||||
|
n.madd("Link",
|
||||||
|
co2_links.index,
|
||||||
|
bus0=co2_links.bus0.values + " co2 stored",
|
||||||
|
bus1=co2_links.bus1.values + " co2 stored",
|
||||||
|
p_min_pu=-1,
|
||||||
|
p_nom_extendable=True,
|
||||||
|
length=co2_links.length.values,
|
||||||
|
capital_cost=capital_cost.values,
|
||||||
|
carrier="CO2 pipeline",
|
||||||
|
lifetime=costs.at['CO2 pipeline', 'lifetime']
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def add_dac(n, costs):
|
def add_dac(n, costs):
|
||||||
|
|
||||||
heat_carriers = ["urban central heat", "services urban decentral heat"]
|
heat_carriers = ["urban central heat", "services urban decentral heat"]
|
||||||
@ -340,10 +493,9 @@ def add_dac(n, costs):
|
|||||||
efficiency3 = -(costs.at['direct air capture', 'heat-input'] - costs.at['direct air capture', 'compression-heat-output'])
|
efficiency3 = -(costs.at['direct air capture', 'heat-input'] - costs.at['direct air capture', 'compression-heat-output'])
|
||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
locations,
|
heat_buses.str.replace(" heat", " DAC"),
|
||||||
suffix=" DAC",
|
|
||||||
bus0="co2 atmosphere",
|
bus0="co2 atmosphere",
|
||||||
bus1="co2 stored",
|
bus1=spatial.co2.df.loc[locations, "nodes"].values,
|
||||||
bus2=locations.values,
|
bus2=locations.values,
|
||||||
bus3=heat_buses,
|
bus3=heat_buses,
|
||||||
carrier="DAC",
|
carrier="DAC",
|
||||||
@ -487,6 +639,8 @@ def prepare_data(n):
|
|||||||
|
|
||||||
nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.)
|
nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.)
|
||||||
nodal_energy_totals.index = pop_layout.index
|
nodal_energy_totals.index = pop_layout.index
|
||||||
|
# district heat share not weighted by population
|
||||||
|
district_heat_share = nodal_energy_totals["district heat share"].round(2)
|
||||||
nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction, axis=0)
|
nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction, axis=0)
|
||||||
|
|
||||||
# copy forward the daily average heat demand into each hour, so it can be multipled by the intraday profile
|
# copy forward the daily average heat demand into each hour, so it can be multipled by the intraday profile
|
||||||
@ -609,7 +763,7 @@ def prepare_data(n):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
return nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, nodal_transport_data
|
return nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, nodal_transport_data, district_heat_share
|
||||||
|
|
||||||
|
|
||||||
# TODO checkout PyPSA-Eur script
|
# TODO checkout PyPSA-Eur script
|
||||||
@ -775,7 +929,8 @@ def insert_electricity_distribution_grid(n, costs):
|
|||||||
marginal_cost=n.generators.loc[solar, 'marginal_cost'],
|
marginal_cost=n.generators.loc[solar, 'marginal_cost'],
|
||||||
capital_cost=costs.at['solar-rooftop', 'fixed'],
|
capital_cost=costs.at['solar-rooftop', 'fixed'],
|
||||||
efficiency=n.generators.loc[solar, 'efficiency'],
|
efficiency=n.generators.loc[solar, 'efficiency'],
|
||||||
p_max_pu=n.generators_t.p_max_pu[solar]
|
p_max_pu=n.generators_t.p_max_pu[solar],
|
||||||
|
lifetime=costs.at['solar-rooftop', 'lifetime']
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Carrier", "home battery")
|
n.add("Carrier", "home battery")
|
||||||
@ -823,7 +978,7 @@ def insert_gas_distribution_costs(n, costs):
|
|||||||
# TODO options?
|
# TODO options?
|
||||||
|
|
||||||
f_costs = options['gas_distribution_grid_cost_factor']
|
f_costs = options['gas_distribution_grid_cost_factor']
|
||||||
|
|
||||||
print("Inserting gas distribution grid with investment cost factor of", f_costs)
|
print("Inserting gas distribution grid with investment cost factor of", f_costs)
|
||||||
|
|
||||||
capital_cost = costs.loc['electricity distribution grid']["fixed"] * f_costs
|
capital_cost = costs.loc['electricity distribution grid']["fixed"] * f_costs
|
||||||
@ -832,7 +987,7 @@ def insert_gas_distribution_costs(n, costs):
|
|||||||
gas_b = n.links.index[n.links.carrier.str.contains("gas boiler") &
|
gas_b = n.links.index[n.links.carrier.str.contains("gas boiler") &
|
||||||
(~n.links.carrier.str.contains("urban central"))]
|
(~n.links.carrier.str.contains("urban central"))]
|
||||||
n.links.loc[gas_b, "capital_cost"] += capital_cost
|
n.links.loc[gas_b, "capital_cost"] += capital_cost
|
||||||
|
|
||||||
# micro CHPs
|
# micro CHPs
|
||||||
mchp = n.links.index[n.links.carrier.str.contains("micro gas")]
|
mchp = n.links.index[n.links.carrier.str.contains("micro gas")]
|
||||||
n.links.loc[mchp, "capital_cost"] += capital_cost
|
n.links.loc[mchp, "capital_cost"] += capital_cost
|
||||||
@ -994,10 +1149,11 @@ def add_storage(n, costs):
|
|||||||
if options['methanation']:
|
if options['methanation']:
|
||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
nodes + " Sabatier",
|
spatial.nodes,
|
||||||
|
suffix=" Sabatier",
|
||||||
bus0=nodes + " H2",
|
bus0=nodes + " H2",
|
||||||
bus1="EU gas",
|
bus1="EU gas",
|
||||||
bus2="co2 stored",
|
bus2=spatial.co2.nodes,
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
carrier="Sabatier",
|
carrier="Sabatier",
|
||||||
efficiency=costs.at["methanation", "efficiency"],
|
efficiency=costs.at["methanation", "efficiency"],
|
||||||
@ -1009,10 +1165,11 @@ def add_storage(n, costs):
|
|||||||
if options['helmeth']:
|
if options['helmeth']:
|
||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
nodes + " helmeth",
|
spatial.nodes,
|
||||||
|
suffix=" helmeth",
|
||||||
bus0=nodes,
|
bus0=nodes,
|
||||||
bus1="EU gas",
|
bus1="EU gas",
|
||||||
bus2="co2 stored",
|
bus2=spatial.co2.nodes,
|
||||||
carrier="helmeth",
|
carrier="helmeth",
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
efficiency=costs.at["helmeth", "efficiency"],
|
efficiency=costs.at["helmeth", "efficiency"],
|
||||||
@ -1025,11 +1182,12 @@ def add_storage(n, costs):
|
|||||||
if options['SMR']:
|
if options['SMR']:
|
||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
nodes + " SMR CC",
|
spatial.nodes,
|
||||||
|
suffix=" SMR CC",
|
||||||
bus0="EU gas",
|
bus0="EU gas",
|
||||||
bus1=nodes + " H2",
|
bus1=nodes + " H2",
|
||||||
bus2="co2 atmosphere",
|
bus2="co2 atmosphere",
|
||||||
bus3="co2 stored",
|
bus3=spatial.co2.nodes,
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
carrier="SMR CC",
|
carrier="SMR CC",
|
||||||
efficiency=costs.at["SMR CC", "efficiency"],
|
efficiency=costs.at["SMR CC", "efficiency"],
|
||||||
@ -1080,7 +1238,7 @@ def add_land_transport(n, costs):
|
|||||||
suffix=" EV battery",
|
suffix=" EV battery",
|
||||||
carrier="Li ion"
|
carrier="Li ion"
|
||||||
)
|
)
|
||||||
|
|
||||||
p_set = electric_share * (transport[nodes] + cycling_shift(transport[nodes], 1) + cycling_shift(transport[nodes], 2)) / 3
|
p_set = electric_share * (transport[nodes] + cycling_shift(transport[nodes], 1) + cycling_shift(transport[nodes], 2)) / 3
|
||||||
|
|
||||||
n.madd("Load",
|
n.madd("Load",
|
||||||
@ -1091,8 +1249,8 @@ def add_land_transport(n, costs):
|
|||||||
p_set=p_set
|
p_set=p_set
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
p_nom = nodal_transport_data["number cars"] * options.get("bev_charge_rate", 0.011) * electric_share
|
p_nom = nodal_transport_data["number cars"] * options.get("bev_charge_rate", 0.011) * electric_share
|
||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
nodes,
|
nodes,
|
||||||
@ -1124,7 +1282,7 @@ def add_land_transport(n, costs):
|
|||||||
|
|
||||||
if electric_share > 0 and options["bev_dsm"]:
|
if electric_share > 0 and options["bev_dsm"]:
|
||||||
|
|
||||||
e_nom = nodal_transport_data["number cars"] * options.get("bev_energy", 0.05) * options["bev_availability"] * electric_share
|
e_nom = nodal_transport_data["number cars"] * options.get("bev_energy", 0.05) * options["bev_availability"] * electric_share
|
||||||
|
|
||||||
n.madd("Store",
|
n.madd("Store",
|
||||||
nodes,
|
nodes,
|
||||||
@ -1184,12 +1342,11 @@ def add_heat(n, costs):
|
|||||||
|
|
||||||
sectors = ["residential", "services"]
|
sectors = ["residential", "services"]
|
||||||
|
|
||||||
nodes = create_nodes_for_heat_sector()
|
|
||||||
|
nodes, dist_fraction, urban_fraction = create_nodes_for_heat_sector()
|
||||||
|
|
||||||
#NB: must add costs of central heating afterwards (EUR 400 / kWpeak, 50a, 1% FOM from Fraunhofer ISE)
|
#NB: must add costs of central heating afterwards (EUR 400 / kWpeak, 50a, 1% FOM from Fraunhofer ISE)
|
||||||
|
|
||||||
urban_fraction = options['central_fraction'] * pop_layout["urban"] / pop_layout[["urban", "rural"]].sum(axis=1)
|
|
||||||
|
|
||||||
# exogenously reduce space heat demand
|
# exogenously reduce space heat demand
|
||||||
if options["reduce_space_heat_exogenously"]:
|
if options["reduce_space_heat_exogenously"]:
|
||||||
dE = get(options["reduce_space_heat_exogenously_factor"], investment_year)
|
dE = get(options["reduce_space_heat_exogenously_factor"], investment_year)
|
||||||
@ -1204,7 +1361,7 @@ def add_heat(n, costs):
|
|||||||
"services urban decentral",
|
"services urban decentral",
|
||||||
"urban central"
|
"urban central"
|
||||||
]
|
]
|
||||||
|
|
||||||
for name in heat_systems:
|
for name in heat_systems:
|
||||||
|
|
||||||
name_type = "central" if name == "urban central" else "decentral"
|
name_type = "central" if name == "urban central" else "decentral"
|
||||||
@ -1220,15 +1377,22 @@ def add_heat(n, costs):
|
|||||||
## Add heat load
|
## Add heat load
|
||||||
|
|
||||||
for sector in sectors:
|
for sector in sectors:
|
||||||
|
# heat demand weighting
|
||||||
if "rural" in name:
|
if "rural" in name:
|
||||||
factor = 1 - urban_fraction[nodes[name]]
|
factor = 1 - urban_fraction[nodes[name]]
|
||||||
elif "urban" in name:
|
elif "urban central" in name:
|
||||||
factor = urban_fraction[nodes[name]]
|
factor = dist_fraction[nodes[name]]
|
||||||
|
elif "urban decentral" in name:
|
||||||
|
factor = urban_fraction[nodes[name]] - \
|
||||||
|
dist_fraction[nodes[name]]
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f" {name} not in " f"heat systems: {heat_systems}")
|
||||||
|
|
||||||
if sector in name:
|
if sector in name:
|
||||||
heat_load = heat_demand[[sector + " water",sector + " space"]].groupby(level=1,axis=1).sum()[nodes[name]].multiply(factor)
|
heat_load = heat_demand[[sector + " water",sector + " space"]].groupby(level=1,axis=1).sum()[nodes[name]].multiply(factor)
|
||||||
|
|
||||||
if name == "urban central":
|
if name == "urban central":
|
||||||
heat_load = heat_demand.groupby(level=1,axis=1).sum()[nodes[name]].multiply(urban_fraction[nodes[name]] * (1 + options['district_heating_loss']))
|
heat_load = heat_demand.groupby(level=1,axis=1).sum()[nodes[name]].multiply(factor * (1 + options['district_heating']['district_heating_loss']))
|
||||||
|
|
||||||
n.madd("Load",
|
n.madd("Load",
|
||||||
nodes[name],
|
nodes[name],
|
||||||
@ -1286,16 +1450,16 @@ def add_heat(n, costs):
|
|||||||
p_nom_extendable=True
|
p_nom_extendable=True
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
if isinstance(options["tes_tau"], dict):
|
if isinstance(options["tes_tau"], dict):
|
||||||
tes_time_constant_days = options["tes_tau"][name_type]
|
tes_time_constant_days = options["tes_tau"][name_type]
|
||||||
else:
|
else:
|
||||||
logger.warning("Deprecated: a future version will require you to specify 'tes_tau' ",
|
logger.warning("Deprecated: a future version will require you to specify 'tes_tau' ",
|
||||||
"for 'decentral' and 'central' separately.")
|
"for 'decentral' and 'central' separately.")
|
||||||
tes_time_constant_days = options["tes_tau"] if name_type == "decentral" else 180.
|
tes_time_constant_days = options["tes_tau"] if name_type == "decentral" else 180.
|
||||||
|
|
||||||
# conversion from EUR/m^3 to EUR/MWh for 40 K diff and 1.17 kWh/m^3/K
|
# conversion from EUR/m^3 to EUR/MWh for 40 K diff and 1.17 kWh/m^3/K
|
||||||
capital_cost = costs.at[name_type + ' water tank storage', 'fixed'] / 0.00117 / 40
|
capital_cost = costs.at[name_type + ' water tank storage', 'fixed'] / 0.00117 / 40
|
||||||
|
|
||||||
n.madd("Store",
|
n.madd("Store",
|
||||||
nodes[name] + f" {name} water tanks",
|
nodes[name] + f" {name} water tanks",
|
||||||
@ -1378,7 +1542,7 @@ def add_heat(n, costs):
|
|||||||
bus1=nodes[name],
|
bus1=nodes[name],
|
||||||
bus2=nodes[name] + " urban central heat",
|
bus2=nodes[name] + " urban central heat",
|
||||||
bus3="co2 atmosphere",
|
bus3="co2 atmosphere",
|
||||||
bus4="co2 stored",
|
bus4=spatial.co2.df.loc[nodes[name], "nodes"].values,
|
||||||
carrier="urban central gas CHP CC",
|
carrier="urban central gas CHP CC",
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
capital_cost=costs.at['central gas CHP', 'fixed']*costs.at['central gas CHP', 'efficiency'] + costs.at['biomass CHP capture', 'fixed']*costs.at['gas', 'CO2 intensity'],
|
capital_cost=costs.at['central gas CHP', 'fixed']*costs.at['central gas CHP', 'efficiency'] + costs.at['biomass CHP capture', 'fixed']*costs.at['gas', 'CO2 intensity'],
|
||||||
@ -1508,37 +1672,54 @@ def create_nodes_for_heat_sector():
|
|||||||
# rural are areas with low heating density and individual heating
|
# rural are areas with low heating density and individual heating
|
||||||
# urban are areas with high heating density
|
# urban are areas with high heating density
|
||||||
# urban can be split into district heating (central) and individual heating (decentral)
|
# urban can be split into district heating (central) and individual heating (decentral)
|
||||||
|
|
||||||
|
ct_urban = pop_layout.urban.groupby(pop_layout.ct).sum()
|
||||||
|
# distribution of urban population within a country
|
||||||
|
pop_layout["urban_ct_fraction"] = pop_layout.urban / pop_layout.ct.map(ct_urban.get)
|
||||||
|
|
||||||
sectors = ["residential", "services"]
|
sectors = ["residential", "services"]
|
||||||
|
|
||||||
nodes = {}
|
nodes = {}
|
||||||
|
urban_fraction = pop_layout.urban / pop_layout[["rural", "urban"]].sum(axis=1)
|
||||||
|
|
||||||
for sector in sectors:
|
for sector in sectors:
|
||||||
nodes[sector + " rural"] = pop_layout.index
|
nodes[sector + " rural"] = pop_layout.index
|
||||||
|
nodes[sector + " urban decentral"] = pop_layout.index
|
||||||
|
|
||||||
if options["central"]:
|
# maximum potential of urban demand covered by district heating
|
||||||
# TODO: this looks hardcoded, move to config
|
central_fraction = options['district_heating']["potential"]
|
||||||
urban_decentral_ct = pd.Index(["ES", "GR", "PT", "IT", "BG"])
|
# district heating share at each node
|
||||||
nodes[sector + " urban decentral"] = pop_layout.index[pop_layout.ct.isin(urban_decentral_ct)]
|
dist_fraction_node = district_heat_share * pop_layout["urban_ct_fraction"] / pop_layout["fraction"]
|
||||||
else:
|
nodes["urban central"] = dist_fraction_node.index
|
||||||
nodes[sector + " urban decentral"] = pop_layout.index
|
# if district heating share larger than urban fraction -> set urban
|
||||||
|
# fraction to district heating share
|
||||||
# for central nodes, residential and services are aggregated
|
urban_fraction = pd.concat([urban_fraction, dist_fraction_node],
|
||||||
nodes["urban central"] = pop_layout.index.symmetric_difference(nodes["residential urban decentral"])
|
axis=1).max(axis=1)
|
||||||
|
# difference of max potential and today's share of district heating
|
||||||
return nodes
|
diff = (urban_fraction * central_fraction) - dist_fraction_node
|
||||||
|
progress = get(options["district_heating"]["potential"], investment_year)
|
||||||
|
dist_fraction_node += diff * progress
|
||||||
|
print(
|
||||||
|
"The current district heating share compared to the maximum",
|
||||||
|
f"possible is increased by a progress factor of\n{progress}",
|
||||||
|
f"resulting in a district heating share of\n{dist_fraction_node}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return nodes, dist_fraction_node, urban_fraction
|
||||||
|
|
||||||
|
|
||||||
def add_biomass(n, costs):
|
def add_biomass(n, costs):
|
||||||
|
|
||||||
print("adding biomass")
|
print("adding biomass")
|
||||||
|
|
||||||
# biomass distributed at country level - i.e. transport within country allowed
|
|
||||||
countries = n.buses.country.dropna().unique()
|
|
||||||
|
|
||||||
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0)
|
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0)
|
||||||
|
|
||||||
n.add("Carrier", "biogas")
|
if options["biomass_transport"]:
|
||||||
|
biomass_potentials_spatial = biomass_potentials.rename(index=lambda x: x + " solid biomass")
|
||||||
|
else:
|
||||||
|
biomass_potentials_spatial = biomass_potentials.sum()
|
||||||
|
|
||||||
|
n.add("Carrier", "biogas")
|
||||||
n.add("Carrier", "solid biomass")
|
n.add("Carrier", "solid biomass")
|
||||||
|
|
||||||
n.add("Bus",
|
n.add("Bus",
|
||||||
@ -1547,9 +1728,9 @@ def add_biomass(n, costs):
|
|||||||
carrier="biogas"
|
carrier="biogas"
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Bus",
|
n.madd("Bus",
|
||||||
"EU solid biomass",
|
spatial.biomass.nodes,
|
||||||
location="EU",
|
location=spatial.biomass.locations,
|
||||||
carrier="solid biomass"
|
carrier="solid biomass"
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -1557,18 +1738,18 @@ def add_biomass(n, costs):
|
|||||||
"EU biogas",
|
"EU biogas",
|
||||||
bus="EU biogas",
|
bus="EU biogas",
|
||||||
carrier="biogas",
|
carrier="biogas",
|
||||||
e_nom=biomass_potentials.loc[countries, "biogas"].sum(),
|
e_nom=biomass_potentials["biogas"].sum(),
|
||||||
marginal_cost=costs.at['biogas', 'fuel'],
|
marginal_cost=costs.at['biogas', 'fuel'],
|
||||||
e_initial=biomass_potentials.loc[countries, "biogas"].sum()
|
e_initial=biomass_potentials["biogas"].sum()
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Store",
|
n.madd("Store",
|
||||||
"EU solid biomass",
|
spatial.biomass.nodes,
|
||||||
bus="EU solid biomass",
|
bus=spatial.biomass.nodes,
|
||||||
carrier="solid biomass",
|
carrier="solid biomass",
|
||||||
e_nom=biomass_potentials.loc[countries, "solid biomass"].sum(),
|
e_nom=biomass_potentials_spatial["solid biomass"],
|
||||||
marginal_cost=costs.at['solid biomass', 'fuel'],
|
marginal_cost=costs.at['solid biomass', 'fuel'],
|
||||||
e_initial=biomass_potentials.loc[countries, "solid biomass"].sum()
|
e_initial=biomass_potentials_spatial["solid biomass"]
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Link",
|
n.add("Link",
|
||||||
@ -1583,6 +1764,32 @@ def add_biomass(n, costs):
|
|||||||
p_nom_extendable=True
|
p_nom_extendable=True
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if options["biomass_transport"]:
|
||||||
|
|
||||||
|
transport_costs = pd.read_csv(
|
||||||
|
snakemake.input.biomass_transport_costs,
|
||||||
|
index_col=0,
|
||||||
|
squeeze=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# add biomass transport
|
||||||
|
biomass_transport = create_network_topology(n, "biomass transport ", bidirectional=False)
|
||||||
|
|
||||||
|
# costs
|
||||||
|
bus0_costs = biomass_transport.bus0.apply(lambda x: transport_costs[x[:2]])
|
||||||
|
bus1_costs = biomass_transport.bus1.apply(lambda x: transport_costs[x[:2]])
|
||||||
|
biomass_transport["costs"] = pd.concat([bus0_costs, bus1_costs], axis=1).mean(axis=1)
|
||||||
|
|
||||||
|
n.madd("Link",
|
||||||
|
biomass_transport.index,
|
||||||
|
bus0=biomass_transport.bus0 + " solid biomass",
|
||||||
|
bus1=biomass_transport.bus1 + " solid biomass",
|
||||||
|
p_nom_extendable=True,
|
||||||
|
length=biomass_transport.length.values,
|
||||||
|
marginal_cost=biomass_transport.costs * biomass_transport.length.values,
|
||||||
|
capital_cost=1,
|
||||||
|
carrier="solid biomass transport"
|
||||||
|
)
|
||||||
|
|
||||||
#AC buses with district heating
|
#AC buses with district heating
|
||||||
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
||||||
@ -1593,7 +1800,7 @@ def add_biomass(n, costs):
|
|||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
urban_central + " urban central solid biomass CHP",
|
urban_central + " urban central solid biomass CHP",
|
||||||
bus0="EU solid biomass",
|
bus0=spatial.biomass.df.loc[urban_central, "nodes"].values,
|
||||||
bus1=urban_central,
|
bus1=urban_central,
|
||||||
bus2=urban_central + " urban central heat",
|
bus2=urban_central + " urban central heat",
|
||||||
carrier="urban central solid biomass CHP",
|
carrier="urban central solid biomass CHP",
|
||||||
@ -1607,11 +1814,11 @@ def add_biomass(n, costs):
|
|||||||
|
|
||||||
n.madd("Link",
|
n.madd("Link",
|
||||||
urban_central + " urban central solid biomass CHP CC",
|
urban_central + " urban central solid biomass CHP CC",
|
||||||
bus0="EU solid biomass",
|
bus0=spatial.biomass.df.loc[urban_central, "nodes"].values,
|
||||||
bus1=urban_central,
|
bus1=urban_central,
|
||||||
bus2=urban_central + " urban central heat",
|
bus2=urban_central + " urban central heat",
|
||||||
bus3="co2 atmosphere",
|
bus3="co2 atmosphere",
|
||||||
bus4="co2 stored",
|
bus4=spatial.co2.df.loc[urban_central, "nodes"].values,
|
||||||
carrier="urban central solid biomass CHP CC",
|
carrier="urban central solid biomass CHP CC",
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
capital_cost=costs.at[key, 'fixed'] * costs.at[key, 'efficiency'] + costs.at['biomass CHP capture', 'fixed'] * costs.at['solid biomass', 'CO2 intensity'],
|
capital_cost=costs.at[key, 'fixed'] * costs.at[key, 'efficiency'] + costs.at['biomass CHP capture', 'fixed'] * costs.at['solid biomass', 'CO2 intensity'],
|
||||||
@ -1633,36 +1840,39 @@ def add_industry(n, costs):
|
|||||||
# 1e6 to convert TWh to MWh
|
# 1e6 to convert TWh to MWh
|
||||||
industrial_demand = pd.read_csv(snakemake.input.industrial_demand, index_col=0) * 1e6
|
industrial_demand = pd.read_csv(snakemake.input.industrial_demand, index_col=0) * 1e6
|
||||||
|
|
||||||
solid_biomass_by_country = industrial_demand["solid biomass"].groupby(pop_layout.ct).sum()
|
n.madd("Bus",
|
||||||
|
spatial.biomass.industry,
|
||||||
n.add("Bus",
|
location=spatial.biomass.locations,
|
||||||
"solid biomass for industry",
|
|
||||||
location="EU",
|
|
||||||
carrier="solid biomass for industry"
|
carrier="solid biomass for industry"
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Load",
|
if options["biomass_transport"]:
|
||||||
"solid biomass for industry",
|
p_set = industrial_demand.loc[spatial.biomass.locations, "solid biomass"].rename(index=lambda x: x + " solid biomass for industry") / 8760
|
||||||
bus="solid biomass for industry",
|
else:
|
||||||
|
p_set = industrial_demand["solid biomass"].sum() / 8760
|
||||||
|
|
||||||
|
n.madd("Load",
|
||||||
|
spatial.biomass.industry,
|
||||||
|
bus=spatial.biomass.industry,
|
||||||
carrier="solid biomass for industry",
|
carrier="solid biomass for industry",
|
||||||
p_set=solid_biomass_by_country.sum() / 8760
|
p_set=p_set
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Link",
|
n.madd("Link",
|
||||||
"solid biomass for industry",
|
spatial.biomass.industry,
|
||||||
bus0="EU solid biomass",
|
bus0=spatial.biomass.nodes,
|
||||||
bus1="solid biomass for industry",
|
bus1=spatial.biomass.industry,
|
||||||
carrier="solid biomass for industry",
|
carrier="solid biomass for industry",
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
efficiency=1.
|
efficiency=1.
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Link",
|
n.madd("Link",
|
||||||
"solid biomass for industry CC",
|
spatial.biomass.industry_cc,
|
||||||
bus0="EU solid biomass",
|
bus0=spatial.biomass.nodes,
|
||||||
bus1="solid biomass for industry",
|
bus1=spatial.biomass.industry,
|
||||||
bus2="co2 atmosphere",
|
bus2="co2 atmosphere",
|
||||||
bus3="co2 stored",
|
bus3=spatial.co2.nodes,
|
||||||
carrier="solid biomass for industry CC",
|
carrier="solid biomass for industry CC",
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
capital_cost=costs.at["cement capture", "fixed"] * costs.at['solid biomass', 'CO2 intensity'],
|
capital_cost=costs.at["cement capture", "fixed"] * costs.at['solid biomass', 'CO2 intensity'],
|
||||||
@ -1695,12 +1905,13 @@ def add_industry(n, costs):
|
|||||||
efficiency2=costs.at['gas', 'CO2 intensity']
|
efficiency2=costs.at['gas', 'CO2 intensity']
|
||||||
)
|
)
|
||||||
|
|
||||||
n.add("Link",
|
n.madd("Link",
|
||||||
"gas for industry CC",
|
spatial.co2.locations,
|
||||||
|
suffix=" gas for industry CC",
|
||||||
bus0="EU gas",
|
bus0="EU gas",
|
||||||
bus1="gas for industry",
|
bus1="gas for industry",
|
||||||
bus2="co2 atmosphere",
|
bus2="co2 atmosphere",
|
||||||
bus3="co2 stored",
|
bus3=spatial.co2.nodes,
|
||||||
carrier="gas for industry CC",
|
carrier="gas for industry CC",
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
capital_cost=costs.at["cement capture", "fixed"] * costs.at['gas', 'CO2 intensity'],
|
capital_cost=costs.at["cement capture", "fixed"] * costs.at['gas', 'CO2 intensity'],
|
||||||
@ -1759,9 +1970,9 @@ def add_industry(n, costs):
|
|||||||
if shipping_hydrogen_share < 1:
|
if shipping_hydrogen_share < 1:
|
||||||
|
|
||||||
shipping_oil_share = 1 - shipping_hydrogen_share
|
shipping_oil_share = 1 - shipping_hydrogen_share
|
||||||
|
|
||||||
p_set = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum(axis=1) * 1e6 / 8760.
|
p_set = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum(axis=1) * 1e6 / 8760.
|
||||||
|
|
||||||
n.madd("Load",
|
n.madd("Load",
|
||||||
nodes,
|
nodes,
|
||||||
suffix=" shipping oil",
|
suffix=" shipping oil",
|
||||||
@ -1769,7 +1980,7 @@ def add_industry(n, costs):
|
|||||||
carrier="shipping oil",
|
carrier="shipping oil",
|
||||||
p_set=p_set
|
p_set=p_set
|
||||||
)
|
)
|
||||||
|
|
||||||
co2 = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum().sum() * 1e6 / 8760 * costs.at["oil", "CO2 intensity"]
|
co2 = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum().sum() * 1e6 / 8760 * costs.at["oil", "CO2 intensity"]
|
||||||
|
|
||||||
n.add("Load",
|
n.add("Load",
|
||||||
@ -1788,7 +1999,7 @@ def add_industry(n, costs):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if "EU oil Store" not in n.stores.index:
|
if "EU oil Store" not in n.stores.index:
|
||||||
|
|
||||||
#could correct to e.g. 0.001 EUR/kWh * annuity and O&M
|
#could correct to e.g. 0.001 EUR/kWh * annuity and O&M
|
||||||
n.add("Store",
|
n.add("Store",
|
||||||
"EU oil Store",
|
"EU oil Store",
|
||||||
@ -1810,7 +2021,7 @@ def add_industry(n, costs):
|
|||||||
|
|
||||||
if options["oil_boilers"]:
|
if options["oil_boilers"]:
|
||||||
|
|
||||||
nodes_heat = create_nodes_for_heat_sector()
|
nodes_heat = create_nodes_for_heat_sector()[0]
|
||||||
|
|
||||||
for name in ["residential rural", "services rural", "residential urban decentral", "services urban decentral"]:
|
for name in ["residential rural", "services rural", "residential urban decentral", "services urban decentral"]:
|
||||||
|
|
||||||
@ -1831,7 +2042,7 @@ def add_industry(n, costs):
|
|||||||
nodes + " Fischer-Tropsch",
|
nodes + " Fischer-Tropsch",
|
||||||
bus0=nodes + " H2",
|
bus0=nodes + " H2",
|
||||||
bus1="EU oil",
|
bus1="EU oil",
|
||||||
bus2="co2 stored",
|
bus2=spatial.co2.nodes,
|
||||||
carrier="Fischer-Tropsch",
|
carrier="Fischer-Tropsch",
|
||||||
efficiency=costs.at["Fischer-Tropsch", 'efficiency'],
|
efficiency=costs.at["Fischer-Tropsch", 'efficiency'],
|
||||||
capital_cost=costs.at["Fischer-Tropsch", 'fixed'],
|
capital_cost=costs.at["Fischer-Tropsch", 'fixed'],
|
||||||
@ -1920,11 +2131,12 @@ def add_industry(n, costs):
|
|||||||
)
|
)
|
||||||
|
|
||||||
#assume enough local waste heat for CC
|
#assume enough local waste heat for CC
|
||||||
n.add("Link",
|
n.madd("Link",
|
||||||
"process emissions CC",
|
spatial.co2.locations,
|
||||||
|
suffix=" process emissions CC",
|
||||||
bus0="process emissions",
|
bus0="process emissions",
|
||||||
bus1="co2 atmosphere",
|
bus1="co2 atmosphere",
|
||||||
bus2="co2 stored",
|
bus2=spatial.co2.nodes,
|
||||||
carrier="process emissions CC",
|
carrier="process emissions CC",
|
||||||
p_nom_extendable=True,
|
p_nom_extendable=True,
|
||||||
capital_cost=costs.at["cement capture", "fixed"],
|
capital_cost=costs.at["cement capture", "fixed"],
|
||||||
@ -2020,7 +2232,7 @@ def add_agriculture(n, costs):
|
|||||||
|
|
||||||
|
|
||||||
def decentral(n):
|
def decentral(n):
|
||||||
"""Removes the electricity transmission system."""
|
"""Removes the electricity transmission system."""
|
||||||
n.lines.drop(n.lines.index, inplace=True)
|
n.lines.drop(n.lines.index, inplace=True)
|
||||||
n.links.drop(n.links.index[n.links.carrier.isin(["DC", "B2B"])], inplace=True)
|
n.links.drop(n.links.index[n.links.carrier.isin(["DC", "B2B"])], inplace=True)
|
||||||
|
|
||||||
@ -2053,7 +2265,7 @@ def maybe_adjust_costs_and_potentials(n, opts):
|
|||||||
if attr == 'p_nom_max':
|
if attr == 'p_nom_max':
|
||||||
comps = {"Generator", "Link", "StorageUnit"}
|
comps = {"Generator", "Link", "StorageUnit"}
|
||||||
elif attr == 'e_nom_max':
|
elif attr == 'e_nom_max':
|
||||||
comps = {"Store"}
|
comps = {"Store"}
|
||||||
else:
|
else:
|
||||||
comps = {"Generator", "Link", "StorageUnit", "Store"}
|
comps = {"Generator", "Link", "StorageUnit", "Store"}
|
||||||
for c in n.iterate_components(comps):
|
for c in n.iterate_components(comps):
|
||||||
@ -2072,17 +2284,18 @@ def limit_individual_line_extension(n, maxext):
|
|||||||
hvdc = n.links.index[n.links.carrier == 'DC']
|
hvdc = n.links.index[n.links.carrier == 'DC']
|
||||||
n.links.loc[hvdc, 'p_nom_max'] = n.links.loc[hvdc, 'p_nom'] + maxext
|
n.links.loc[hvdc, 'p_nom_max'] = n.links.loc[hvdc, 'p_nom'] + maxext
|
||||||
|
|
||||||
|
#%%
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
if 'snakemake' not in globals():
|
if 'snakemake' not in globals():
|
||||||
from helper import mock_snakemake
|
from helper import mock_snakemake
|
||||||
snakemake = mock_snakemake(
|
snakemake = mock_snakemake(
|
||||||
'prepare_sector_network',
|
'prepare_sector_network',
|
||||||
simpl='',
|
simpl='',
|
||||||
clusters=48,
|
opts="",
|
||||||
|
clusters="37",
|
||||||
lv=1.0,
|
lv=1.0,
|
||||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||||
planning_horizons=2020,
|
planning_horizons="2020",
|
||||||
)
|
)
|
||||||
|
|
||||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||||
@ -2107,8 +2320,10 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
patch_electricity_network(n)
|
patch_electricity_network(n)
|
||||||
|
|
||||||
|
define_spatial(pop_layout.index)
|
||||||
|
|
||||||
if snakemake.config["foresight"] == 'myopic':
|
if snakemake.config["foresight"] == 'myopic':
|
||||||
|
|
||||||
add_lifetime_wind_solar(n, costs)
|
add_lifetime_wind_solar(n, costs)
|
||||||
|
|
||||||
conventional = snakemake.config['existing_capacities']['conventional_carriers']
|
conventional = snakemake.config['existing_capacities']['conventional_carriers']
|
||||||
@ -2129,11 +2344,13 @@ if __name__ == "__main__":
|
|||||||
if o[:4] == "dist":
|
if o[:4] == "dist":
|
||||||
options['electricity_distribution_grid'] = True
|
options['electricity_distribution_grid'] = True
|
||||||
options['electricity_distribution_grid_cost_factor'] = float(o[4:].replace("p", ".").replace("m", "-"))
|
options['electricity_distribution_grid_cost_factor'] = float(o[4:].replace("p", ".").replace("m", "-"))
|
||||||
|
if o == "biomasstransport":
|
||||||
|
options["biomass_transport"] = True
|
||||||
|
|
||||||
nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, nodal_transport_data = prepare_data(n)
|
nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, nodal_transport_data, district_heat_share = prepare_data(n)
|
||||||
|
|
||||||
if "nodistrict" in opts:
|
if "nodistrict" in opts:
|
||||||
options["central"] = False
|
options["district_heating"]["progress"] = 0.0
|
||||||
|
|
||||||
if "T" in opts:
|
if "T" in opts:
|
||||||
add_land_transport(n, costs)
|
add_land_transport(n, costs)
|
||||||
@ -2162,6 +2379,9 @@ if __name__ == "__main__":
|
|||||||
if "noH2network" in opts:
|
if "noH2network" in opts:
|
||||||
remove_h2_network(n)
|
remove_h2_network(n)
|
||||||
|
|
||||||
|
if options["co2_network"]:
|
||||||
|
add_co2_network(n, costs)
|
||||||
|
|
||||||
for o in opts:
|
for o in opts:
|
||||||
m = re.match(r'^\d+h$', o, re.IGNORECASE)
|
m = re.match(r'^\d+h$', o, re.IGNORECASE)
|
||||||
if m is not None:
|
if m is not None:
|
||||||
|
@ -3,6 +3,7 @@
|
|||||||
import pypsa
|
import pypsa
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
from pypsa.linopt import get_var, linexpr, define_constraints
|
from pypsa.linopt import get_var, linexpr, define_constraints
|
||||||
|
|
||||||
@ -19,12 +20,47 @@ pypsa.pf.logger.setLevel(logging.WARNING)
|
|||||||
|
|
||||||
def add_land_use_constraint(n):
|
def add_land_use_constraint(n):
|
||||||
|
|
||||||
#warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
if 'm' in snakemake.wildcards.clusters:
|
||||||
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
|
_add_land_use_constraint_m(n)
|
||||||
existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"].groupby(n.generators.bus.map(n.buses.location)).sum()
|
else:
|
||||||
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
_add_land_use_constraint(n)
|
||||||
n.generators.loc[existing.index, "p_nom_max"] -= existing
|
|
||||||
|
|
||||||
|
|
||||||
|
def _add_land_use_constraint(n):
|
||||||
|
#warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
||||||
|
|
||||||
|
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
|
||||||
|
existing = n.generators.loc[n.generators.carrier==carrier,"p_nom"].groupby(n.generators.bus.map(n.buses.location)).sum()
|
||||||
|
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
||||||
|
n.generators.loc[existing.index,"p_nom_max"] -= existing
|
||||||
|
|
||||||
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
||||||
|
|
||||||
|
|
||||||
|
def _add_land_use_constraint_m(n):
|
||||||
|
# if generators clustering is lower than network clustering, land_use accounting is at generators clusters
|
||||||
|
|
||||||
|
planning_horizons = snakemake.config["scenario"]["planning_horizons"]
|
||||||
|
grouping_years = snakemake.config["existing_capacities"]["grouping_years"]
|
||||||
|
current_horizon = snakemake.wildcards.planning_horizons
|
||||||
|
|
||||||
|
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
|
||||||
|
|
||||||
|
existing = n.generators.loc[n.generators.carrier==carrier,"p_nom"]
|
||||||
|
ind = list(set([i.split(sep=" ")[0] + ' ' + i.split(sep=" ")[1] for i in existing.index]))
|
||||||
|
|
||||||
|
previous_years = [
|
||||||
|
str(y) for y in
|
||||||
|
planning_horizons + grouping_years
|
||||||
|
if y < int(snakemake.wildcards.planning_horizons)
|
||||||
|
]
|
||||||
|
|
||||||
|
for p_year in previous_years:
|
||||||
|
ind2 = [i for i in ind if i + " " + carrier + "-" + p_year in existing.index]
|
||||||
|
sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2]
|
||||||
|
sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2]
|
||||||
|
n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[sel_p_year].rename(lambda x: x[:-4] + current_horizon)
|
||||||
|
|
||||||
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
||||||
|
|
||||||
|
|
||||||
@ -150,8 +186,26 @@ def add_chp_constraints(n):
|
|||||||
define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure')
|
define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure')
|
||||||
|
|
||||||
|
|
||||||
|
def add_co2_sequestration_limit(n, sns):
|
||||||
|
|
||||||
|
co2_stores = n.stores.loc[n.stores.carrier=='co2 stored'].index
|
||||||
|
|
||||||
|
if co2_stores.empty or ('Store', 'e') not in n.variables.index:
|
||||||
|
return
|
||||||
|
|
||||||
|
vars_final_co2_stored = get_var(n, 'Store', 'e').loc[sns[-1], co2_stores]
|
||||||
|
|
||||||
|
lhs = linexpr((1, vars_final_co2_stored)).sum()
|
||||||
|
rhs = n.config["sector"].get("co2_sequestration_potential", 200) * 1e6
|
||||||
|
|
||||||
|
name = 'co2_sequestration_limit'
|
||||||
|
define_constraints(n, lhs, "<=", rhs, 'GlobalConstraint',
|
||||||
|
'mu', axes=pd.Index([name]), spec=name)
|
||||||
|
|
||||||
|
|
||||||
def extra_functionality(n, snapshots):
|
def extra_functionality(n, snapshots):
|
||||||
add_battery_constraints(n)
|
add_battery_constraints(n)
|
||||||
|
add_co2_sequestration_limit(n, snapshots)
|
||||||
|
|
||||||
|
|
||||||
def solve_network(n, config, opts='', **kwargs):
|
def solve_network(n, config, opts='', **kwargs):
|
||||||
|
Loading…
Reference in New Issue
Block a user