spatially-explicit biomass potentials from ENSPRESO (NUTS2)

This commit is contained in:
Fabian Neumann 2021-07-11 17:52:32 +02:00
parent 3a6a1f90ab
commit 2563d1277a
4 changed files with 186 additions and 71 deletions

View File

@ -1,4 +1,7 @@
from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider
HTTP = HTTPRemoteProvider()
configfile: "config.yaml" configfile: "config.yaml"
@ -170,13 +173,19 @@ rule build_energy_totals:
rule build_biomass_potentials: rule build_biomass_potentials:
input: input:
jrc_potentials="data/biomass/JRC Biomass Potentials.xlsx" enspreso_biomass=HTTP.remote("https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/ENSPRESO/ENSPRESO_BIOMASS.xlsx", keep_local=True),
nuts2="data/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson"),
nuts3_population=pypsaeur("data/bundle/nama_10r_3popgdp.tsv.gz"),
swiss_cantons=pypsaeur("data/bundle/ch_cantons.csv"),
swiss_population=pypsaeur("data/bundle/je-e-21.03.02.xls"),
country_shapes=pypsaeur('resources/country_shapes.geojson')
output: output:
biomass_potentials_all='resources/biomass_potentials_all.csv', biomass_potentials_all='resources/biomass_potentials_all_s{simpl}_{clusters}.csv',
biomass_potentials='resources/biomass_potentials.csv' biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv'
threads: 1 threads: 1
resources: mem_mb=1000 resources: mem_mb=1000
benchmark: "benchmarks/build_biomass_potentials" benchmark: "benchmarks/build_biomass_potentials_s{simpl}_{clusters}"
script: 'scripts/build_biomass_potentials.py' script: 'scripts/build_biomass_potentials.py'
@ -323,7 +332,7 @@ rule prepare_sector_network:
transport_name='resources/transport_data.csv', transport_name='resources/transport_data.csv',
traffic_data_KFZ = "data/emobility/KFZ__count", traffic_data_KFZ = "data/emobility/KFZ__count",
traffic_data_Pkw = "data/emobility/Pkw__count", traffic_data_Pkw = "data/emobility/Pkw__count",
biomass_potentials='resources/biomass_potentials.csv', biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv',
heat_profile="data/heat_load_profile_BDEW.csv", heat_profile="data/heat_load_profile_BDEW.csv",
costs=CDIR + "costs_{planning_horizons}.csv", costs=CDIR + "costs_{planning_horizons}.csv",
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"), profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),

View File

@ -99,28 +99,28 @@ energy:
biomass: biomass:
year: 2030 year: 2030
scenario: Med scenario: ENS_Med
classes: classes:
solid biomass: solid biomass:
- Primary agricultural residues - Argicultural waste
- Forestry energy residue
- Secondary forestry residues
- Secondary Forestry residues sawdust
- Forestry residues from landscape care biomass
- Municipal waste - Municipal waste
- Residues from landscape care
- Sawdust
- Secondary Forestry residues - woodchips
not included: not included:
- Bioethanol sugar beet biomass - Bioethanol barley, wheat, grain maize, oats, other cereals and rye
- Rapeseeds for biodiesel - Fuelwood residues
- sunflower and soya for Biodiesel - C&P_RW
- Starchy crops biomass - FuelwoodRW
- Grassy crops biomass - Rape seed
- Willow biomass - Sugar from sugar beet
- Poplar biomass potential - Miscanthus, switchgrass, RCG
- Roundwood fuelwood - "Sunflower, soya seed "
- Roundwood Chips & Pellets - Poplar
- Willow
biogas: biogas:
- Manure biomass potential - Manure solid, liquid
- Sludge biomass - Sludge
solar_thermal: solar_thermal:

View File

@ -1,55 +1,148 @@
import pandas as pd import pandas as pd
import geopandas as gpd
rename = {"UK" : "GB", "BH" : "BA"}
def build_biomass_potentials(): def build_nuts_population_data(year=2013):
config = snakemake.config['biomass'] pop = pd.read_csv(
year = config["year"] snakemake.input.nuts3_population,
scenario = config["scenario"] sep=r'\,| \t|\t',
engine='python',
na_values=[":"],
index_col=1
)[str(year)]
# only countries
pop.drop("EU28", inplace=True)
df = pd.read_excel(snakemake.input.jrc_potentials, # mapping from Cantons to NUTS3
"Potentials (PJ)", cantons = pd.read_csv(snakemake.input.swiss_cantons)
index_col=[0,1]) cantons = cantons.set_index(cantons.HASC.str[3:]).NUTS
cantons = cantons.str.pad(5, side='right', fillchar='0')
df.rename(columns={"Unnamed: 18": "Municipal waste"}, inplace=True) # get population by NUTS3
df.drop(columns="Total", inplace=True) swiss = pd.read_excel(snakemake.input.swiss_population, skiprows=3, index_col=0).loc["Residents in 1000"]
df.replace("-", 0., inplace=True) swiss = swiss.rename(cantons).filter(like="CH")
column = df.iloc[:,0] # aggregate also to higher order NUTS levels
countries = column.where(column.str.isalpha()).pad() swiss = [swiss.groupby(swiss.index.str[:i]).sum() for i in range(2, 6)]
countries = [rename.get(ct, ct) for ct in countries]
countries_i = pd.Index(countries, name='country')
df.set_index(countries_i, append=True, inplace=True)
df.drop(index='MS', level=0, inplace=True) # merge Europe + Switzerland
pop = pd.DataFrame(pop.append(swiss), columns=["total"])
# add missing manually
pop["AL"] = 2893
pop["BA"] = 3871
pop["RS"] = 7210
pop["ct"] = pop.index.str[:2]
return pop
# convert from PJ to MWh
df = df / 3.6 * 1e6
df.to_csv(snakemake.output.biomass_potentials_all) def enspreso_biomass_potentials(year=2020, scenario="ENS_Low"):
glossary = pd.read_excel(
snakemake.input.enspreso_biomass,
sheet_name="Glossary",
usecols="B:D",
skiprows=1,
index_col=0
)
df = pd.read_excel(
snakemake.input.enspreso_biomass,
sheet_name="ENER - NUTS2 BioCom E",
usecols="A:H"
)
# solid biomass includes: df["group"] = df["E-Comm"].map(glossary.group)
# Primary agricultural residues (MINBIOAGRW1), df["commodity"] = df["E-Comm"].map(glossary.description)
# Forestry energy residue (MINBIOFRSF1),
# Secondary forestry residues (MINBIOWOOW1),
# Secondary Forestry residues sawdust (MINBIOWOO1a)',
# Forestry residues from landscape care biomass (MINBIOFRSF1a),
# Municipal waste (MINBIOMUN1)',
# biogas includes: to_rename = {
# Manure biomass potential (MINBIOGAS1), "NUTS2 Potential available by Bio Commodity": "potential",
# Sludge biomass (MINBIOSLU1), "NUST2": "NUTS2",
}
df.rename(columns=to_rename, inplace=True)
# fill up with NUTS0 if NUTS2 is not given
df.NUTS2 = df.apply(lambda x: x.NUTS0 if x.NUTS2 == '-' else x.NUTS2, axis=1)
df = df.loc[year, scenario, :] # convert PJ to TWh
df.potential /= 3.6
df.Unit = "TWh/a"
grouper = {v: k for k, vv in config["classes"].items() for v in vv} dff = df.query("Year == @year and Scenario == @scenario")
df = df.groupby(grouper, axis=1).sum()
df.index.name = "MWh/a" bio = dff.groupby(["NUTS2", "commodity"]).potential.sum().unstack()
# currently Serbia and Kosovo not split, so aggregate
bio.loc["RS"] += bio.loc["XK"]
bio.drop("XK", inplace=True)
return bio
df.to_csv(snakemake.output.biomass_potentials)
def disaggregate_nuts0(bio):
pop = build_nuts_population_data()
# get population in nuts2
pop_nuts2 = pop.loc[pop.index.str.len() == 4]
by_country = pop_nuts2.total.groupby(pop_nuts2.ct).sum()
pop_nuts2["fraction"] = pop_nuts2.total / pop_nuts2.ct.map(by_country)
# distribute nuts0 data to nuts2 by population
bio_nodal = bio.loc[pop_nuts2.ct]
bio_nodal.index = pop_nuts2.index
bio_nodal = bio_nodal.mul(pop_nuts2.fraction, axis=0)
# update inplace
bio.update(bio_nodal)
return bio
def build_nuts2_shapes():
"""
- load NUTS2 geometries
- add RS, AL, BA country shapes (not covered in NUTS 2013)
- consistently name ME, MK
"""
nuts2 = gpd.GeoDataFrame(gpd.read_file(snakemake.input.nuts2).set_index('id').geometry)
countries = gpd.read_file(snakemake.input.country_shapes).set_index('name')
missing = countries.loc[["AL", "RS", "BA"]]
nuts2.rename(index={"ME00": "ME", "MK00": "MK"}, inplace=True)
return nuts2.append(missing)
def area(gdf):
"""Returns area of GeoDataFrame geometries in square kilometers."""
return gdf.to_crs(epsg=3035).area.div(1e6)
def convert_nuts2_to_regions(bio_nuts2, regions):
# calculate area of nuts2 regions
bio_nuts2["area_nuts2"] = area(bio_nuts2)
overlay = gpd.overlay(regions, bio_nuts2)
# calculate share of nuts2 area inside region
overlay["share"] = area(overlay) / overlay["area_nuts2"]
# multiply all nuts2-level values with share of nuts2 inside region
adjust_cols = overlay.columns.difference({"name", "area_nuts2", "geometry", "share"})
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
bio_regions = overlay.groupby("name").sum()
bio_regions.drop(["area_nuts2", "share"], axis=1, inplace=True)
return bio_regions
if __name__ == "__main__": if __name__ == "__main__":
@ -57,12 +150,28 @@ if __name__ == "__main__":
from helper import mock_snakemake from helper import mock_snakemake
snakemake = mock_snakemake('build_biomass_potentials') snakemake = mock_snakemake('build_biomass_potentials')
config = snakemake.config['biomass']
year = config["year"]
scenario = config["scenario"]
# This is a hack, to be replaced once snakemake is unicode-conform enspreso = enspreso_biomass_potentials(year, scenario)
solid_biomass = snakemake.config['biomass']['classes']['solid biomass'] enspreso = disaggregate_nuts0(enspreso)
if 'Secondary Forestry residues sawdust' in solid_biomass:
solid_biomass.remove('Secondary Forestry residues sawdust')
solid_biomass.append('Secondary Forestry residues sawdust')
build_biomass_potentials() nuts2 = build_nuts2_shapes()
df_nuts2 = gpd.GeoDataFrame(nuts2.geometry).join(enspreso)
regions = gpd.read_file(snakemake.input.regions_onshore)
df = convert_nuts2_to_regions(df_nuts2, regions)
df.to_csv(snakemake.output.biomass_potentials_all)
grouper = {v: k for k, vv in config["classes"].items() for v in vv}
df = df.groupby(grouper, axis=1).sum()
df *= 1e6 # TWh/a to MWh/a
df.index.name = "MWh/a"
df.to_csv(snakemake.output.biomass_potentials)

View File

@ -1527,9 +1527,6 @@ def add_biomass(n, costs):
print("adding biomass") print("adding biomass")
# biomass distributed at country level - i.e. transport within country allowed
countries = n.buses.country.dropna().unique()
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0) biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0)
n.add("Carrier", "biogas") n.add("Carrier", "biogas")
@ -1552,18 +1549,18 @@ def add_biomass(n, costs):
"EU biogas", "EU biogas",
bus="EU biogas", bus="EU biogas",
carrier="biogas", carrier="biogas",
e_nom=biomass_potentials.loc[countries, "biogas"].sum(), e_nom=biomass_potentials["biogas"].sum(),
marginal_cost=costs.at['biogas', 'fuel'], marginal_cost=costs.at['biogas', 'fuel'],
e_initial=biomass_potentials.loc[countries, "biogas"].sum() e_initial=biomass_potentials["biogas"].sum()
) )
n.add("Store", n.add("Store",
"EU solid biomass", "EU solid biomass",
bus="EU solid biomass", bus="EU solid biomass",
carrier="solid biomass", carrier="solid biomass",
e_nom=biomass_potentials.loc[countries, "solid biomass"].sum(), e_nom=biomass_potentials["solid biomass"].sum(),
marginal_cost=costs.at['solid biomass', 'fuel'], marginal_cost=costs.at['solid biomass', 'fuel'],
e_initial=biomass_potentials.loc[countries, "solid biomass"].sum() e_initial=biomass_potentials["solid biomass"].sum()
) )
n.add("Link", n.add("Link",