Merge branch 'master' into bus-regions
This commit is contained in:
commit
234f2f247c
1
.gitignore
vendored
1
.gitignore
vendored
@ -24,6 +24,7 @@ gurobi.log
|
||||
doc/_build
|
||||
|
||||
config.yaml
|
||||
config/config.yaml
|
||||
|
||||
dconf
|
||||
/data/links_p_nom.csv
|
||||
|
10
Snakefile
10
Snakefile
@ -2,8 +2,8 @@
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
from os.path import normpath, exists
|
||||
from shutil import copyfile, move, rmtree
|
||||
from os.path import normpath
|
||||
from shutil import move, rmtree
|
||||
|
||||
from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider
|
||||
|
||||
@ -13,12 +13,8 @@ from snakemake.utils import min_version
|
||||
|
||||
min_version("7.7")
|
||||
|
||||
conf_file = os.path.join(workflow.current_basedir, "config/config.yaml")
|
||||
conf_default_file = os.path.join(workflow.current_basedir, "config/config.default.yaml")
|
||||
if not exists(conf_file) and exists(conf_default_file):
|
||||
copyfile(conf_default_file, conf_file)
|
||||
|
||||
|
||||
configfile: "config/config.default.yaml"
|
||||
configfile: "config/config.yaml"
|
||||
|
||||
|
||||
|
8
config/config.yaml
Normal file
8
config/config.yaml
Normal file
@ -0,0 +1,8 @@
|
||||
# SPDX-FileCopyrightText: : 2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: CC0-1.0
|
||||
# add your own configuration overrides here, for instance
|
||||
|
||||
version: 0.9.0
|
||||
# enable:
|
||||
# retrieve: false
|
@ -1,5 +1,4 @@
|
||||
,Unit,Values,Description
|
||||
power_statistics,bool,"{true, false}",Whether to load the electricity consumption data of the ENTSOE power statistics (only for files from 2019 and before) or from the ENTSOE transparency data (only has load data from 2015 onwards).
|
||||
interpolate_limit,hours,integer,"Maximum gap size (consecutive nans) which interpolated linearly."
|
||||
time_shift_for_large_gaps,string,string,"Periods which are used for copying time-slices in order to fill large gaps of nans. Have to be valid ``pandas`` period strings."
|
||||
manual_adjustments,bool,"{true, false}","Whether to adjust the load data manually according to the function in :func:`manual_adjustment`."
|
||||
|
|
@ -9,7 +9,7 @@
|
||||
Configuration
|
||||
##########################################
|
||||
|
||||
PyPSA-Eur has several configuration options which are documented in this section and are collected in a ``config/config.yaml`` file located in the root directory. Users should copy the provided default configuration (``config/config.default.yaml``) and amend their own modifications and assumptions in the user-specific configuration file (``config/config.yaml``); confer installation instructions at :ref:`defaultconfig`.
|
||||
PyPSA-Eur has several configuration options which are documented in this section and are collected in a ``config/config.yaml`` file. This file defines deviations from the default configuration (``config/config.default.yaml``); confer installation instructions at :ref:`defaultconfig`.
|
||||
|
||||
.. _toplevel_cf:
|
||||
|
||||
|
@ -118,11 +118,10 @@ Nevertheless, you can still use open-source solvers for smaller problems.
|
||||
Handling Configuration Files
|
||||
============================
|
||||
|
||||
PyPSA-Eur has several configuration options that must be specified in a
|
||||
``config/config.yaml`` file located in the root directory. An example configuration
|
||||
``config/config.default.yaml`` is maintained in the repository, which will be used to
|
||||
automatically create your customisable ``config/config.yaml`` on first use. More
|
||||
details on the configuration options are in :ref:`config`.
|
||||
PyPSA-Eur has several configuration options that users can specify in a
|
||||
``config/config.yaml`` file. The default configuration
|
||||
``config/config.default.yaml`` is maintained in the repository. More details on
|
||||
the configuration options are in :ref:`config`.
|
||||
|
||||
You can also use ``snakemake`` to specify another file, e.g.
|
||||
``config/config.mymodifications.yaml``, to update the settings of the ``config/config.yaml``.
|
||||
@ -130,8 +129,3 @@ You can also use ``snakemake`` to specify another file, e.g.
|
||||
.. code:: bash
|
||||
|
||||
.../pypsa-eur % snakemake -call --configfile config/config.mymodifications.yaml
|
||||
|
||||
.. warning::
|
||||
Users are advised to regularly check their own ``config/config.yaml`` against changes
|
||||
in the ``config/config.default.yaml`` when pulling a new version from the remote
|
||||
repository.
|
||||
|
@ -74,7 +74,7 @@ what data to retrieve and what files to produce. Details are explained in
|
||||
:ref:`wildcards` and :ref:`scenario`.
|
||||
|
||||
The model also has several further configuration options collected in the
|
||||
``config/config.yaml`` file located in the root directory, which that are not part of
|
||||
``config/config.default.yaml`` file located in the root directory, which that are not part of
|
||||
the scenarios. Options are explained in :ref:`config`.
|
||||
|
||||
Folder Structure
|
||||
|
@ -10,6 +10,14 @@ Release Notes
|
||||
Upcoming Release
|
||||
================
|
||||
|
||||
* The default configuration ``config/config.default.yaml`` is now automatically
|
||||
used as a base configuration file and no longer copied to
|
||||
``config/config.yaml`` on first use. The file ``config/config.yaml`` should be
|
||||
used to define deviations from the default configuration.
|
||||
|
||||
* Merged two OPSD time series data versions into such that the option ``load:
|
||||
power_statistics:`` becomes superfluous and was hence removed.
|
||||
|
||||
* Add new default to overdimension heating in individual buildings. This allows
|
||||
them to cover heat demand peaks e.g. 10% higher than those in the data. The
|
||||
disadvantage of manipulating the costs is that the capacity is then not quite
|
||||
|
@ -91,7 +91,7 @@ None.
|
||||
|
||||
**Outputs**
|
||||
|
||||
- ``resources/load_raw.csv``
|
||||
- ``resources/electricity_demand.csv``
|
||||
|
||||
|
||||
Rule ``retrieve_cost_data``
|
||||
|
@ -24,9 +24,9 @@ rule build_electricity_demand:
|
||||
countries=config["countries"],
|
||||
load=config["load"],
|
||||
input:
|
||||
ancient(RESOURCES + "load_raw.csv"),
|
||||
ancient("data/electricity_demand_raw.csv"),
|
||||
output:
|
||||
RESOURCES + "load.csv",
|
||||
RESOURCES + "electricity_demand.csv",
|
||||
log:
|
||||
LOGS + "build_electricity_demand.log",
|
||||
resources:
|
||||
@ -417,7 +417,7 @@ rule add_electricity:
|
||||
if config["conventional"]["dynamic_fuel_price"]
|
||||
else []
|
||||
),
|
||||
load=RESOURCES + "load.csv",
|
||||
load=RESOURCES + "electricity_demand.csv",
|
||||
nuts3_shapes=RESOURCES + "nuts3_shapes.geojson",
|
||||
ua_md_gdp="data/GDP_PPP_30arcsec_v3_mapped_default.csv",
|
||||
output:
|
||||
|
@ -4,11 +4,8 @@
|
||||
|
||||
import os, sys, glob
|
||||
|
||||
helper_source_path = [match for match in glob.glob("**/_helpers.py", recursive=True)]
|
||||
|
||||
for path in helper_source_path:
|
||||
path = os.path.dirname(os.path.abspath(path))
|
||||
sys.path.insert(0, os.path.abspath(path))
|
||||
path = workflow.source_path("../scripts/_helpers.py")
|
||||
sys.path.insert(0, os.path.dirname(path))
|
||||
|
||||
from _helpers import validate_checksum
|
||||
|
||||
|
@ -188,27 +188,17 @@ if config["enable"]["retrieve"]:
|
||||
if config["enable"]["retrieve"]:
|
||||
|
||||
rule retrieve_electricity_demand:
|
||||
input:
|
||||
HTTP.remote(
|
||||
"data.open-power-system-data.org/time_series/{version}/time_series_60min_singleindex.csv".format(
|
||||
version=(
|
||||
"2019-06-05"
|
||||
if config["snapshots"]["end"] < "2019"
|
||||
else "2020-10-06"
|
||||
)
|
||||
),
|
||||
keep_local=True,
|
||||
static=True,
|
||||
),
|
||||
params:
|
||||
versions=["2019-06-05", "2020-10-06"],
|
||||
output:
|
||||
RESOURCES + "load_raw.csv",
|
||||
"data/electricity_demand_raw.csv",
|
||||
log:
|
||||
LOGS + "retrieve_electricity_demand.log",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
retries: 2
|
||||
run:
|
||||
move(input[0], output[0])
|
||||
script:
|
||||
"../scripts/retrieve_electricity_demand.py"
|
||||
|
||||
|
||||
if config["enable"]["retrieve"]:
|
||||
|
@ -264,7 +264,6 @@ def mock_snakemake(
|
||||
import os
|
||||
|
||||
import snakemake as sm
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.descriptors import Dict
|
||||
from snakemake.script import Snakemake
|
||||
|
||||
@ -290,13 +289,12 @@ def mock_snakemake(
|
||||
if os.path.exists(p):
|
||||
snakefile = p
|
||||
break
|
||||
kwargs = (
|
||||
dict(rerun_triggers=[]) if parse(sm.__version__) > Version("7.7.0") else {}
|
||||
)
|
||||
if isinstance(configfiles, str):
|
||||
configfiles = [configfiles]
|
||||
|
||||
workflow = sm.Workflow(snakefile, overwrite_configfiles=configfiles, **kwargs)
|
||||
workflow = sm.Workflow(
|
||||
snakefile, overwrite_configfiles=configfiles, rerun_triggers=[]
|
||||
)
|
||||
workflow.include(snakefile)
|
||||
|
||||
if configfiles:
|
||||
|
@ -52,7 +52,7 @@ Inputs
|
||||
:scale: 34 %
|
||||
|
||||
- ``data/geth2015_hydro_capacities.csv``: alternative to capacities above; not currently used!
|
||||
- ``resources/load.csv`` Hourly per-country load profiles.
|
||||
- ``resources/electricity_demand.csv`` Hourly per-country electricity demand profiles.
|
||||
- ``resources/regions_onshore.geojson``: confer :ref:`busregions`
|
||||
- ``resources/nuts3_shapes.geojson``: confer :ref:`shapes`
|
||||
- ``resources/powerplants.csv``: confer :ref:`powerplants`
|
||||
|
@ -78,10 +78,13 @@ import shapely.prepared
|
||||
import shapely.wkt
|
||||
import yaml
|
||||
from _helpers import configure_logging
|
||||
from packaging.version import Version, parse
|
||||
from scipy import spatial
|
||||
from scipy.sparse import csgraph
|
||||
from shapely.geometry import LineString, Point
|
||||
|
||||
PD_GE_2_2 = parse(pd.__version__) >= Version("2.2")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -524,12 +527,13 @@ def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
|
||||
)
|
||||
return pd.Series(key, index)
|
||||
|
||||
compat_kws = dict(include_groups=False) if PD_GE_2_2 else {}
|
||||
gb = buses.loc[substation_b].groupby(
|
||||
["x", "y"], as_index=False, group_keys=False, sort=False
|
||||
)
|
||||
bus_map_low = gb.apply(prefer_voltage, "min", include_groups=False)
|
||||
bus_map_low = gb.apply(prefer_voltage, "min", **compat_kws)
|
||||
lv_b = (bus_map_low == bus_map_low.index).reindex(buses.index, fill_value=False)
|
||||
bus_map_high = gb.apply(prefer_voltage, "max", include_groups=False)
|
||||
bus_map_high = gb.apply(prefer_voltage, "max", **compat_kws)
|
||||
hv_b = (bus_map_high == bus_map_high.index).reindex(buses.index, fill_value=False)
|
||||
|
||||
onshore_b = pd.Series(False, buses.index)
|
||||
|
@ -1,15 +1,13 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020 @JanFrederickUnnewehr, The PyPSA-Eur Authors
|
||||
# SPDX-FileCopyrightText: : 2020 @JanFrederickUnnewehr, 2020-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
This rule downloads the load data from `Open Power System Data Time series.
|
||||
|
||||
This rule downloads the load data from `Open Power System Data Time series
|
||||
<https://data.open-power-system-data.org/time_series/>`_. For all countries in
|
||||
the network, the per country load timeseries with suffix
|
||||
``_load_actual_entsoe_transparency`` are extracted from the dataset. After
|
||||
filling small gaps linearly and large gaps by copying time-slice of a given
|
||||
period, the load data is exported to a ``.csv`` file.
|
||||
the network, the per country load timeseries are extracted from the dataset.
|
||||
After filling small gaps linearly and large gaps by copying time-slice of a
|
||||
given period, the load data is exported to a ``.csv`` file.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -19,9 +17,7 @@ Relevant Settings
|
||||
snapshots:
|
||||
|
||||
load:
|
||||
interpolate_limit:
|
||||
time_shift_for_large_gaps:
|
||||
manual_adjustments:
|
||||
interpolate_limit: time_shift_for_large_gaps: manual_adjustments:
|
||||
|
||||
|
||||
.. seealso::
|
||||
@ -31,12 +27,12 @@ Relevant Settings
|
||||
Inputs
|
||||
------
|
||||
|
||||
- ``resources/load_raw.csv``:
|
||||
- ``data/electricity_demand_raw.csv``:
|
||||
|
||||
Outputs
|
||||
-------
|
||||
|
||||
- ``resources/load.csv``:
|
||||
- ``resources/electricity_demand.csv``:
|
||||
"""
|
||||
|
||||
import logging
|
||||
@ -49,7 +45,7 @@ from pandas import Timedelta as Delta
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def load_timeseries(fn, years, countries, powerstatistics=True):
|
||||
def load_timeseries(fn, years, countries):
|
||||
"""
|
||||
Read load data from OPSD time-series package version 2020-10-06.
|
||||
|
||||
@ -62,29 +58,15 @@ def load_timeseries(fn, years, countries, powerstatistics=True):
|
||||
File name or url location (file format .csv)
|
||||
countries : listlike
|
||||
Countries for which to read load data.
|
||||
powerstatistics: bool
|
||||
Whether the electricity consumption data of the ENTSOE power
|
||||
statistics (if true) or of the ENTSOE transparency map (if false)
|
||||
should be parsed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
load : pd.DataFrame
|
||||
Load time-series with UTC timestamps x ISO-2 countries
|
||||
"""
|
||||
logger.info(f"Retrieving load data from '{fn}'.")
|
||||
|
||||
pattern = "power_statistics" if powerstatistics else "transparency"
|
||||
pattern = f"_load_actual_entsoe_{pattern}"
|
||||
|
||||
def rename(s):
|
||||
return s[: -len(pattern)]
|
||||
|
||||
return (
|
||||
pd.read_csv(fn, index_col=0, parse_dates=[0], date_format="%Y-%m-%dT%H:%M:%SZ")
|
||||
.tz_localize(None)
|
||||
.filter(like=pattern)
|
||||
.rename(columns=rename)
|
||||
.dropna(how="all", axis=0)
|
||||
.rename(columns={"GB_UKM": "GB"})
|
||||
.filter(items=countries)
|
||||
@ -149,17 +131,18 @@ def copy_timeslice(load, cntry, start, stop, delta, fn_load=None):
|
||||
].values
|
||||
elif fn_load is not None:
|
||||
duration = pd.date_range(freq="h", start=start - delta, end=stop - delta)
|
||||
load_raw = load_timeseries(fn_load, duration, [cntry], powerstatistics)
|
||||
load_raw = load_timeseries(fn_load, duration, [cntry])
|
||||
load.loc[start:stop, cntry] = load_raw.loc[
|
||||
start - delta : stop - delta, cntry
|
||||
].values
|
||||
|
||||
|
||||
def manual_adjustment(load, fn_load, powerstatistics, countries):
|
||||
def manual_adjustment(load, fn_load, countries):
|
||||
"""
|
||||
Adjust gaps manual for load data from OPSD time-series package.
|
||||
|
||||
1. For the ENTSOE power statistics load data (if powerstatistics is True)
|
||||
1. For years later than 2015 for which the load data is mainly taken from the
|
||||
ENTSOE power statistics
|
||||
|
||||
Kosovo (KV) and Albania (AL) do not exist in the data set. Kosovo gets the
|
||||
same load curve as Serbia and Albania the same as Macdedonia, both scaled
|
||||
@ -167,7 +150,8 @@ def manual_adjustment(load, fn_load, powerstatistics, countries):
|
||||
IEA Data browser [0] for the year 2013.
|
||||
|
||||
|
||||
2. For the ENTSOE transparency load data (if powerstatistics is False)
|
||||
2. For years earlier than 2015 for which the load data is mainly taken from the
|
||||
ENTSOE transparency platforms
|
||||
|
||||
Albania (AL) and Macedonia (MK) do not exist in the data set. Both get the
|
||||
same load curve as Montenegro, scaled by the corresponding ratio of total energy
|
||||
@ -183,9 +167,6 @@ def manual_adjustment(load, fn_load, powerstatistics, countries):
|
||||
----------
|
||||
load : pd.DataFrame
|
||||
Load time-series with UTC timestamps x ISO-2 countries
|
||||
powerstatistics: bool
|
||||
Whether argument load comprises the electricity consumption data of
|
||||
the ENTSOE power statistics or of the ENTSOE transparency map
|
||||
load_fn: str
|
||||
File name or url location (file format .csv)
|
||||
|
||||
@ -195,88 +176,72 @@ def manual_adjustment(load, fn_load, powerstatistics, countries):
|
||||
Manual adjusted and interpolated load time-series with UTC
|
||||
timestamps x ISO-2 countries
|
||||
"""
|
||||
if powerstatistics:
|
||||
if "MK" in load.columns:
|
||||
if "AL" not in load.columns or load.AL.isnull().values.all():
|
||||
load["AL"] = load["MK"] * (4.1 / 7.4)
|
||||
if "RS" in load.columns:
|
||||
if "KV" not in load.columns or load.KV.isnull().values.all():
|
||||
load["KV"] = load["RS"] * (4.8 / 27.0)
|
||||
|
||||
copy_timeslice(
|
||||
load, "GR", "2015-08-11 21:00", "2015-08-15 20:00", Delta(weeks=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "AT", "2018-12-31 22:00", "2019-01-01 22:00", Delta(days=2)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-01-19 07:00", "2010-01-19 22:00", Delta(days=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-03-28 00:00", "2010-03-28 21:00", Delta(days=1)
|
||||
)
|
||||
# is a WE, so take WE before
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-10-08 13:00", "2010-10-10 21:00", Delta(weeks=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-11-04 04:00", "2010-11-04 22:00", Delta(days=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "NO", "2010-12-09 11:00", "2010-12-09 18:00", Delta(days=1)
|
||||
)
|
||||
# whole january missing
|
||||
copy_timeslice(
|
||||
load,
|
||||
"GB",
|
||||
"2010-01-01 00:00",
|
||||
"2010-01-31 23:00",
|
||||
Delta(days=-365),
|
||||
fn_load,
|
||||
)
|
||||
# 1.1. at midnight gets special treatment
|
||||
copy_timeslice(
|
||||
load,
|
||||
"IE",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"PT",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"GB",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
|
||||
else:
|
||||
if "AL" not in load and "AL" in countries:
|
||||
if "ME" in load:
|
||||
if "AL" not in load and "AL" in countries:
|
||||
load["AL"] = load.ME * (5.7 / 2.9)
|
||||
if "MK" not in load and "MK" in countries:
|
||||
load["AL"] = load.ME * (5.7 / 2.9)
|
||||
elif "MK" in load:
|
||||
load["AL"] = load["MK"] * (4.1 / 7.4)
|
||||
|
||||
if "MK" in countries:
|
||||
if "MK" not in load or load.MK.isnull().sum() > len(load) / 2:
|
||||
if "ME" in load:
|
||||
load["MK"] = load.ME * (6.7 / 2.9)
|
||||
if "BA" not in load and "BA" in countries:
|
||||
load["BA"] = load.HR * (11.0 / 16.2)
|
||||
copy_timeslice(
|
||||
load, "BG", "2018-10-27 21:00", "2018-10-28 22:00", Delta(weeks=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "LU", "2019-01-02 11:00", "2019-01-05 05:00", Delta(weeks=-1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "LU", "2019-02-05 20:00", "2019-02-06 19:00", Delta(weeks=-1)
|
||||
)
|
||||
|
||||
if "BA" not in load and "BA" in countries:
|
||||
if "ME" in load:
|
||||
load["BA"] = load.HR * (11.0 / 16.2)
|
||||
|
||||
if "KV" not in load or load.KV.isnull().values.all():
|
||||
if "RS" in load:
|
||||
load["KV"] = load["RS"] * (4.8 / 27.0)
|
||||
|
||||
copy_timeslice(load, "GR", "2015-08-11 21:00", "2015-08-15 20:00", Delta(weeks=1))
|
||||
copy_timeslice(load, "AT", "2018-12-31 22:00", "2019-01-01 22:00", Delta(days=2))
|
||||
copy_timeslice(load, "CH", "2010-01-19 07:00", "2010-01-19 22:00", Delta(days=1))
|
||||
copy_timeslice(load, "CH", "2010-03-28 00:00", "2010-03-28 21:00", Delta(days=1))
|
||||
# is a WE, so take WE before
|
||||
copy_timeslice(load, "CH", "2010-10-08 13:00", "2010-10-10 21:00", Delta(weeks=1))
|
||||
copy_timeslice(load, "CH", "2010-11-04 04:00", "2010-11-04 22:00", Delta(days=1))
|
||||
copy_timeslice(load, "NO", "2010-12-09 11:00", "2010-12-09 18:00", Delta(days=1))
|
||||
# whole january missing
|
||||
copy_timeslice(
|
||||
load,
|
||||
"GB",
|
||||
"2010-01-01 00:00",
|
||||
"2010-01-31 23:00",
|
||||
Delta(days=-365),
|
||||
fn_load,
|
||||
)
|
||||
# 1.1. at midnight gets special treatment
|
||||
copy_timeslice(
|
||||
load,
|
||||
"IE",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"PT",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"GB",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
|
||||
copy_timeslice(load, "BG", "2018-10-27 21:00", "2018-10-28 22:00", Delta(weeks=1))
|
||||
copy_timeslice(load, "LU", "2019-01-02 11:00", "2019-01-05 05:00", Delta(weeks=-1))
|
||||
copy_timeslice(load, "LU", "2019-02-05 20:00", "2019-02-06 19:00", Delta(weeks=-1))
|
||||
|
||||
if "UA" in countries:
|
||||
copy_timeslice(
|
||||
@ -297,14 +262,13 @@ if __name__ == "__main__":
|
||||
|
||||
configure_logging(snakemake)
|
||||
|
||||
powerstatistics = snakemake.params.load["power_statistics"]
|
||||
interpolate_limit = snakemake.params.load["interpolate_limit"]
|
||||
countries = snakemake.params.countries
|
||||
snapshots = pd.date_range(freq="h", **snakemake.params.snapshots)
|
||||
years = slice(snapshots[0], snapshots[-1])
|
||||
time_shift = snakemake.params.load["time_shift_for_large_gaps"]
|
||||
|
||||
load = load_timeseries(snakemake.input[0], years, countries, powerstatistics)
|
||||
load = load_timeseries(snakemake.input[0], years, countries)
|
||||
|
||||
if "UA" in countries:
|
||||
# attach load of UA (best data only for entsoe transparency)
|
||||
@ -321,7 +285,7 @@ if __name__ == "__main__":
|
||||
load["MD"] = 6.2e6 * (load_ua / load_ua.sum())
|
||||
|
||||
if snakemake.params.load["manual_adjustments"]:
|
||||
load = manual_adjustment(load, snakemake.input[0], powerstatistics, countries)
|
||||
load = manual_adjustment(load, snakemake.input[0], countries)
|
||||
|
||||
if load.empty:
|
||||
logger.warning("Build electricity demand time series is empty.")
|
||||
|
@ -13,7 +13,6 @@ from itertools import product
|
||||
import country_converter as coco
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from packaging.version import Version, parse
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
cc = coco.CountryConverter()
|
||||
@ -84,12 +83,7 @@ def prepare_hotmaps_database(regions):
|
||||
|
||||
gdf = gpd.GeoDataFrame(df, geometry="coordinates", crs="EPSG:4326")
|
||||
|
||||
kws = (
|
||||
dict(op="within")
|
||||
if parse(gpd.__version__) < Version("0.10")
|
||||
else dict(predicate="within")
|
||||
)
|
||||
gdf = gpd.sjoin(gdf, regions, how="inner", **kws)
|
||||
gdf = gpd.sjoin(gdf, regions, how="inner", predicate="within")
|
||||
|
||||
gdf.rename(columns={"index_right": "bus"}, inplace=True)
|
||||
gdf["country"] = gdf.bus.str[:2]
|
||||
|
@ -158,7 +158,7 @@ def country_cover(country_shapes, eez_shapes=None):
|
||||
shapes = pd.concat([shapes, eez_shapes])
|
||||
europe_shape = shapes.unary_union
|
||||
if isinstance(europe_shape, MultiPolygon):
|
||||
europe_shape = max(europe_shape, key=attrgetter("area"))
|
||||
europe_shape = max(europe_shape.geoms, key=attrgetter("area"))
|
||||
return Polygon(shell=europe_shape.exterior)
|
||||
|
||||
|
||||
|
@ -10,7 +10,6 @@ import logging
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.geo import haversine_pts
|
||||
from shapely import wkt
|
||||
|
||||
@ -41,12 +40,9 @@ def build_clustered_gas_network(df, bus_regions, length_factor=1.25):
|
||||
for i in [0, 1]:
|
||||
gdf = gpd.GeoDataFrame(geometry=df[f"point{i}"], crs="EPSG:4326")
|
||||
|
||||
kws = (
|
||||
dict(op="within")
|
||||
if parse(gpd.__version__) < Version("0.10")
|
||||
else dict(predicate="within")
|
||||
)
|
||||
bus_mapping = gpd.sjoin(gdf, bus_regions, how="left", **kws).index_right
|
||||
bus_mapping = gpd.sjoin(
|
||||
gdf, bus_regions, how="left", predicate="within"
|
||||
).index_right
|
||||
bus_mapping = bus_mapping.groupby(bus_mapping.index).first()
|
||||
|
||||
df[f"bus{i}"] = bus_mapping
|
||||
|
@ -135,6 +135,7 @@ import pypsa
|
||||
import seaborn as sns
|
||||
from _helpers import configure_logging, update_p_nom_max
|
||||
from add_electricity import load_costs
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.clustering.spatial import (
|
||||
busmap_by_greedy_modularity,
|
||||
busmap_by_hac,
|
||||
@ -142,6 +143,8 @@ from pypsa.clustering.spatial import (
|
||||
get_clustering_from_busmap,
|
||||
)
|
||||
|
||||
PD_GE_2_2 = parse(pd.__version__) >= Version("2.2")
|
||||
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning)
|
||||
idx = pd.IndexSlice
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -362,9 +365,11 @@ def busmap_for_n_clusters(
|
||||
f"`algorithm` must be one of 'kmeans' or 'hac'. Is {algorithm}."
|
||||
)
|
||||
|
||||
compat_kws = dict(include_groups=False) if PD_GE_2_2 else {}
|
||||
|
||||
return (
|
||||
n.buses.groupby(["country", "sub_network"], group_keys=False)
|
||||
.apply(busmap_for_country, include_groups=False)
|
||||
.apply(busmap_for_country, **compat_kws)
|
||||
.squeeze()
|
||||
.rename("busmap")
|
||||
)
|
||||
|
@ -23,15 +23,12 @@ from add_electricity import calculate_annuity, sanitize_carriers, sanitize_locat
|
||||
from build_energy_totals import build_co2_totals, build_eea_co2, build_eurostat_co2
|
||||
from networkx.algorithms import complement
|
||||
from networkx.algorithms.connectivity.edge_augmentation import k_edge_augmentation
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.geo import haversine_pts
|
||||
from pypsa.io import import_components_from_dataframe
|
||||
from scipy.stats import beta
|
||||
|
||||
spatial = SimpleNamespace()
|
||||
logger = logging.getLogger(__name__)
|
||||
pd_version = parse(pd.__version__)
|
||||
agg_group_kwargs = dict(numeric_only=False) if pd_version >= Version("1.3") else {}
|
||||
|
||||
|
||||
def define_spatial(nodes, options):
|
||||
@ -1853,16 +1850,7 @@ def add_heat(n, costs):
|
||||
p_nom_extendable=True,
|
||||
)
|
||||
|
||||
if isinstance(options["tes_tau"], dict):
|
||||
tes_time_constant_days = options["tes_tau"][name_type]
|
||||
else:
|
||||
logger.warning(
|
||||
"Deprecated: a future version will require you to specify 'tes_tau' ",
|
||||
"for 'decentral' and 'central' separately.",
|
||||
)
|
||||
tes_time_constant_days = (
|
||||
options["tes_tau"] if name_type == "decentral" else 180.0
|
||||
)
|
||||
tes_time_constant_days = options["tes_tau"][name_type]
|
||||
|
||||
n.madd(
|
||||
"Store",
|
||||
@ -3404,7 +3392,7 @@ def cluster_heat_buses(n):
|
||||
# cluster heat nodes
|
||||
# static dataframe
|
||||
agg = define_clustering(df.columns, aggregate_dict)
|
||||
df = df.groupby(level=0).agg(agg, **agg_group_kwargs)
|
||||
df = df.groupby(level=0).agg(agg, numeric_only=False)
|
||||
# time-varying data
|
||||
pnl = c.pnl
|
||||
agg = define_clustering(pd.Index(pnl.keys()), aggregate_dict)
|
||||
@ -3413,7 +3401,7 @@ def cluster_heat_buses(n):
|
||||
def renamer(s):
|
||||
return s.replace("residential ", "").replace("services ", "")
|
||||
|
||||
pnl[k] = pnl[k].T.groupby(renamer).agg(agg[k], **agg_group_kwargs).T
|
||||
pnl[k] = pnl[k].T.groupby(renamer).agg(agg[k], numeric_only=False).T
|
||||
|
||||
# remove unclustered assets of service/residential
|
||||
to_drop = c.df.index.difference(df.index)
|
||||
|
46
scripts/retrieve_electricity_demand.py
Normal file
46
scripts/retrieve_electricity_demand.py
Normal file
@ -0,0 +1,46 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: 2023-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Retrieve electricity prices from OPSD.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import pandas as pd
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from _helpers import configure_logging
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("retrieve_electricity_demand")
|
||||
rootpath = ".."
|
||||
else:
|
||||
rootpath = "."
|
||||
configure_logging(snakemake)
|
||||
|
||||
url = "https://data.open-power-system-data.org/time_series/{version}/time_series_60min_singleindex.csv"
|
||||
|
||||
df1, df2 = [
|
||||
pd.read_csv(url.format(version=version), index_col=0)
|
||||
for version in snakemake.params.versions
|
||||
]
|
||||
combined = pd.concat([df1, df2[df2.index > df1.index[-1]]])
|
||||
|
||||
pattern = "_load_actual_entsoe_transparency"
|
||||
transparency = combined.filter(like=pattern).rename(
|
||||
columns=lambda x: x.replace(pattern, "")
|
||||
)
|
||||
pattern = "_load_actual_entsoe_power_statistics"
|
||||
powerstatistics = combined.filter(like=pattern).rename(
|
||||
columns=lambda x: x.replace(pattern, "")
|
||||
)
|
||||
|
||||
res = transparency.fillna(powerstatistics)
|
||||
|
||||
res.to_csv(snakemake.output[0])
|
Loading…
Reference in New Issue
Block a user