merge master
2
.github/workflows/ci.yaml
vendored
@ -19,7 +19,7 @@ on:
|
||||
- cron: "0 5 * * TUE"
|
||||
|
||||
env:
|
||||
DATA_CACHE_NUMBER: 1
|
||||
DATA_CACHE_NUMBER: 2
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
14
.gitignore
vendored
@ -37,18 +37,16 @@ dconf
|
||||
/data/links_p_nom.csv
|
||||
/data/*totals.csv
|
||||
/data/biomass*
|
||||
/data/bundle-sector/emobility/
|
||||
/data/bundle-sector/eea*
|
||||
/data/bundle-sector/jrc*
|
||||
/data/bundle/emobility/
|
||||
/data/bundle/eea*
|
||||
/data/bundle/jrc*
|
||||
/data/heating/
|
||||
/data/bundle-sector/eurostat*
|
||||
/data/bundle/eurostat*
|
||||
/data/odyssee/
|
||||
/data/transport_data.csv
|
||||
/data/bundle-sector/switzerland*
|
||||
/data/.nfs*
|
||||
/data/bundle-sector/Industrial_Database.csv
|
||||
/data/retro/tabula-calculator-calcsetbuilding.csv
|
||||
/data/bundle-sector/nuts*
|
||||
/data/retro/*
|
||||
/data/bundle/nuts*
|
||||
data/gas_network/scigrid-gas/
|
||||
data/costs_*.csv
|
||||
|
||||
|
@ -51,7 +51,7 @@ repos:
|
||||
|
||||
# Formatting with "black" coding style
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 24.4.0
|
||||
rev: 24.4.2
|
||||
hooks:
|
||||
# Format Python files
|
||||
- id: black
|
||||
@ -74,7 +74,7 @@ repos:
|
||||
|
||||
# Format Snakemake rule / workflow files
|
||||
- repo: https://github.com/snakemake/snakefmt
|
||||
rev: v0.10.1
|
||||
rev: v0.10.2
|
||||
hooks:
|
||||
- id: snakefmt
|
||||
|
||||
|
@ -30,7 +30,3 @@ License: CC0-1.0
|
||||
Files: borg-it
|
||||
Copyright: 2017-2024 The PyPSA-Eur Authors
|
||||
License: CC0-1.0
|
||||
|
||||
Files: graphics/*
|
||||
Copyright: 2017-2024 The PyPSA-Eur Authors
|
||||
License: CC-BY-4.0
|
||||
|
@ -80,7 +80,7 @@ all greenhouse gas emitters except waste management and land use.
|
||||
This diagram gives an overview of the sectors and the links between
|
||||
them:
|
||||
|
||||
![sector diagram](graphics/multisector_figure.png)
|
||||
![sector diagram](doc/img/multisector_figure.png)
|
||||
|
||||
Each of these sectors is built up on the transmission network nodes
|
||||
from [PyPSA-Eur](https://github.com/PyPSA/pypsa-eur):
|
||||
|
@ -24,9 +24,11 @@ run = config["run"]
|
||||
scenarios = get_scenarios(run)
|
||||
RDIR = get_rdir(run)
|
||||
|
||||
logs = path_provider("logs/", RDIR, run["shared_resources"])
|
||||
benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"])
|
||||
resources = path_provider("resources/", RDIR, run["shared_resources"])
|
||||
shared_resources = run["shared_resources"]["policy"]
|
||||
exclude_from_shared = run["shared_resources"]["exclude"]
|
||||
logs = path_provider("logs/", RDIR, shared_resources, exclude_from_shared)
|
||||
benchmarks = path_provider("benchmarks/", RDIR, shared_resources, exclude_from_shared)
|
||||
resources = path_provider("resources/", RDIR, shared_resources, exclude_from_shared)
|
||||
|
||||
CDIR = "" if run["shared_cutouts"] else RDIR
|
||||
RESULTS = "results/" + RDIR
|
||||
|
@ -26,7 +26,9 @@ run:
|
||||
enable: false
|
||||
file: config/scenarios.yaml
|
||||
disable_progressbar: false
|
||||
shared_resources: false
|
||||
shared_resources:
|
||||
policy: false
|
||||
exclude: []
|
||||
shared_cutouts: true
|
||||
|
||||
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight
|
||||
@ -38,17 +40,15 @@ scenario:
|
||||
simpl:
|
||||
- ''
|
||||
ll:
|
||||
- v1.5
|
||||
- vopt
|
||||
clusters:
|
||||
- 37
|
||||
- 128
|
||||
- 256
|
||||
- 512
|
||||
- 1024
|
||||
opts:
|
||||
- ''
|
||||
sector_opts:
|
||||
- Co2L0-3H-T-H-B-I-A-dist1
|
||||
- ''
|
||||
planning_horizons:
|
||||
# - 2020
|
||||
# - 2030
|
||||
@ -69,13 +69,9 @@ enable:
|
||||
retrieve: auto
|
||||
prepare_links_p_nom: false
|
||||
retrieve_databundle: true
|
||||
retrieve_sector_databundle: true
|
||||
retrieve_cost_data: true
|
||||
build_cutout: false
|
||||
retrieve_irena: false
|
||||
retrieve_cutout: true
|
||||
build_natura_raster: false
|
||||
retrieve_natura_raster: true
|
||||
custom_busmap: false
|
||||
drop_leap_day: true
|
||||
|
||||
@ -111,7 +107,7 @@ electricity:
|
||||
H2: 168
|
||||
|
||||
extendable_carriers:
|
||||
Generator: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, OCGT]
|
||||
Generator: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float, OCGT]
|
||||
StorageUnit: [] # battery, H2
|
||||
Store: [battery, H2]
|
||||
Link: [] # H2 pipeline
|
||||
@ -129,7 +125,7 @@ electricity:
|
||||
year: 2020
|
||||
expansion_limit: false
|
||||
technology_mapping:
|
||||
Offshore: [offwind-ac, offwind-dc]
|
||||
Offshore: [offwind-ac, offwind-dc, offwind-float]
|
||||
Onshore: [onwind]
|
||||
PV: [solar]
|
||||
|
||||
@ -197,7 +193,7 @@ renewable:
|
||||
luisa: false # [0, 5230]
|
||||
natura: true
|
||||
ship_threshold: 400
|
||||
max_depth: 50
|
||||
max_depth: 60
|
||||
max_shore_distance: 30000
|
||||
excluder_resolution: 200
|
||||
clip_p_max_pu: 1.e-2
|
||||
@ -213,10 +209,28 @@ renewable:
|
||||
luisa: false # [0, 5230]
|
||||
natura: true
|
||||
ship_threshold: 400
|
||||
max_depth: 50
|
||||
max_depth: 60
|
||||
min_shore_distance: 30000
|
||||
excluder_resolution: 200
|
||||
clip_p_max_pu: 1.e-2
|
||||
offwind-float:
|
||||
cutout: europe-2013-era5
|
||||
resource:
|
||||
method: wind
|
||||
turbine: NREL_ReferenceTurbine_5MW_offshore
|
||||
# ScholzPhd Tab 4.3.1: 10MW/km^2
|
||||
capacity_per_sqkm: 2
|
||||
correction_factor: 0.8855
|
||||
# proxy for wake losses
|
||||
# from 10.1016/j.energy.2018.08.153
|
||||
# until done more rigorously in #153
|
||||
corine: [44, 255]
|
||||
natura: true
|
||||
ship_threshold: 400
|
||||
excluder_resolution: 200
|
||||
min_depth: 60
|
||||
max_depth: 1000
|
||||
clip_p_max_pu: 1.e-2
|
||||
solar:
|
||||
cutout: europe-2013-sarah
|
||||
resource:
|
||||
@ -279,7 +293,7 @@ lines:
|
||||
max_extension: 20000 #MW
|
||||
length_factor: 1.25
|
||||
reconnect_crimea: true
|
||||
under_construction: 'zero' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity
|
||||
under_construction: 'keep' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity
|
||||
dynamic_line_rating:
|
||||
activate: false
|
||||
cutout: europe-2013-era5
|
||||
@ -326,7 +340,6 @@ pypsa_eur:
|
||||
- offwind-ac
|
||||
- offwind-dc
|
||||
- solar
|
||||
- solar-hsat
|
||||
- ror
|
||||
- nuclear
|
||||
StorageUnit:
|
||||
@ -554,7 +567,7 @@ sector:
|
||||
- nearshore # within 50 km of sea
|
||||
# - offshore
|
||||
ammonia: false
|
||||
min_part_load_fischer_tropsch: 0.7
|
||||
min_part_load_fischer_tropsch: 0.5
|
||||
min_part_load_methanolisation: 0.3
|
||||
min_part_load_methanation: 0.3
|
||||
use_fischer_tropsch_waste_heat: true
|
||||
@ -671,6 +684,9 @@ industry:
|
||||
2040: 0.12
|
||||
2045: 0.16
|
||||
2050: 0.20
|
||||
HVC_environment_sequestration_fraction: 0.
|
||||
waste_to_energy: false
|
||||
waste_to_energy_cc: false
|
||||
sector_ratios_fraction_future:
|
||||
2020: 0.0
|
||||
2025: 0.1
|
||||
@ -696,7 +712,7 @@ industry:
|
||||
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#costs
|
||||
costs:
|
||||
year: 2030
|
||||
version: v0.8.1
|
||||
version: v0.9.0
|
||||
rooftop_share: 0.14 # based on the potentials, assuming (0.1 kW/m2 and 10 m2/person)
|
||||
social_discountrate: 0.02
|
||||
fill_values:
|
||||
@ -872,6 +888,7 @@ plotting:
|
||||
CCGT: "Combined-Cycle Gas"
|
||||
offwind-ac: "Offshore Wind (AC)"
|
||||
offwind-dc: "Offshore Wind (DC)"
|
||||
offwind-float: "Offshore Wind (Floating)"
|
||||
onwind: "Onshore Wind"
|
||||
solar: "Solar"
|
||||
PHS: "Pumped Hydro Storage"
|
||||
@ -896,6 +913,9 @@ plotting:
|
||||
offwind-dc: "#74c6f2"
|
||||
offshore wind (DC): "#74c6f2"
|
||||
offshore wind dc: "#74c6f2"
|
||||
offwind-float: "#b5e2fa"
|
||||
offshore wind (Float): "#b5e2fa"
|
||||
offshore wind float: "#b5e2fa"
|
||||
# water
|
||||
hydro: '#298c81'
|
||||
hydro reservoir: '#298c81'
|
||||
@ -1152,3 +1172,4 @@ plotting:
|
||||
DC-DC: "#8a1caf"
|
||||
DC link: "#8a1caf"
|
||||
load: "#dd2e23"
|
||||
HVC to air: 'k'
|
||||
|
@ -5,7 +5,8 @@
|
||||
run:
|
||||
name: "entsoe-all"
|
||||
disable_progressbar: true
|
||||
shared_resources: false
|
||||
shared_resources:
|
||||
policy: false
|
||||
shared_cutouts: true
|
||||
|
||||
scenario:
|
||||
@ -38,6 +39,5 @@ lines:
|
||||
enable:
|
||||
retrieve: true
|
||||
retrieve_databundle: true
|
||||
retrieve_sector_databundle: false
|
||||
retrieve_cost_data: true
|
||||
retrieve_cutout: true
|
||||
|
@ -8,14 +8,15 @@ tutorial: true
|
||||
run:
|
||||
name: "test-elec" # use this to keep track of runs with different settings
|
||||
disable_progressbar: true
|
||||
shared_resources: "test"
|
||||
shared_resources:
|
||||
policy: "test"
|
||||
shared_cutouts: true
|
||||
|
||||
scenario:
|
||||
clusters:
|
||||
- 5
|
||||
opts:
|
||||
- Co2L-24h
|
||||
- ''
|
||||
|
||||
countries: ['BE']
|
||||
|
||||
@ -24,6 +25,7 @@ snapshots:
|
||||
end: "2013-03-08"
|
||||
|
||||
electricity:
|
||||
co2limit_enable: true
|
||||
co2limit: 100.e+6
|
||||
|
||||
extendable_carriers:
|
||||
@ -32,8 +34,7 @@ electricity:
|
||||
Store: [H2]
|
||||
Link: [H2 pipeline]
|
||||
|
||||
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc]
|
||||
|
||||
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
|
||||
|
||||
|
||||
atlite:
|
||||
@ -54,12 +55,20 @@ renewable:
|
||||
offwind-dc:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
offwind-float:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
min_depth: false
|
||||
solar:
|
||||
cutout: be-03-2013-era5
|
||||
solar-hsat:
|
||||
cutout: be-03-2013-era5
|
||||
|
||||
|
||||
clustering:
|
||||
exclude_carriers: ["OCGT", "offwind-ac", "coal"]
|
||||
temporal:
|
||||
resolution_elec: 24h
|
||||
|
||||
lines:
|
||||
dynamic_line_rating:
|
||||
|
@ -7,7 +7,8 @@ tutorial: true
|
||||
run:
|
||||
name: "test-sector-myopic"
|
||||
disable_progressbar: true
|
||||
shared_resources: "test"
|
||||
shared_resources:
|
||||
policy: "test"
|
||||
shared_cutouts: true
|
||||
|
||||
foresight: myopic
|
||||
@ -18,7 +19,7 @@ scenario:
|
||||
clusters:
|
||||
- 5
|
||||
sector_opts:
|
||||
- 24h-T-H-B-I-A-dist1
|
||||
- ''
|
||||
planning_horizons:
|
||||
- 2030
|
||||
- 2040
|
||||
@ -34,7 +35,6 @@ sector:
|
||||
central_heat_vent: true
|
||||
|
||||
electricity:
|
||||
co2limit: 100.e+6
|
||||
|
||||
extendable_carriers:
|
||||
Generator: [OCGT]
|
||||
@ -42,7 +42,7 @@ electricity:
|
||||
Store: [H2]
|
||||
Link: [H2 pipeline]
|
||||
|
||||
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc]
|
||||
renewable_carriers: [solar,solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
|
||||
|
||||
atlite:
|
||||
default_cutout: be-03-2013-era5
|
||||
@ -62,8 +62,18 @@ renewable:
|
||||
offwind-dc:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
offwind-float:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
min_depth: false
|
||||
solar:
|
||||
cutout: be-03-2013-era5
|
||||
solar-hsat:
|
||||
cutout: be-03-2013-era5
|
||||
|
||||
clustering:
|
||||
temporal:
|
||||
resolution_sector: 24h
|
||||
|
||||
industry:
|
||||
St_primary_fraction:
|
||||
|
@ -7,7 +7,8 @@ tutorial: true
|
||||
run:
|
||||
name: "test-sector-overnight"
|
||||
disable_progressbar: true
|
||||
shared_resources: "test"
|
||||
shared_resources:
|
||||
policy: "test"
|
||||
shared_cutouts: true
|
||||
|
||||
|
||||
@ -17,7 +18,7 @@ scenario:
|
||||
clusters:
|
||||
- 5
|
||||
sector_opts:
|
||||
- CO2L0-24h-T-H-B-I-A-dist1
|
||||
- ''
|
||||
planning_horizons:
|
||||
- 2030
|
||||
|
||||
@ -28,7 +29,6 @@ snapshots:
|
||||
end: "2013-03-08"
|
||||
|
||||
electricity:
|
||||
co2limit: 100.e+6
|
||||
|
||||
extendable_carriers:
|
||||
Generator: [OCGT]
|
||||
@ -36,7 +36,7 @@ electricity:
|
||||
Store: [H2]
|
||||
Link: [H2 pipeline]
|
||||
|
||||
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc]
|
||||
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
|
||||
|
||||
atlite:
|
||||
default_cutout: be-03-2013-era5
|
||||
@ -56,13 +56,28 @@ renewable:
|
||||
offwind-dc:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
offwind-float:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
min_depth: false
|
||||
solar:
|
||||
cutout: be-03-2013-era5
|
||||
solar-hsat:
|
||||
cutout: be-03-2013-era5
|
||||
|
||||
clustering:
|
||||
temporal:
|
||||
resolution_sector: 24h
|
||||
|
||||
sector:
|
||||
gas_network: true
|
||||
H2_retrofit: true
|
||||
|
||||
industry:
|
||||
HVC_environment_sequestration_fraction: 0.5
|
||||
waste_to_energy: true
|
||||
waste_to_energy_cc: true
|
||||
|
||||
solving:
|
||||
solver:
|
||||
name: glpk
|
||||
|
@ -7,7 +7,8 @@ tutorial: true
|
||||
run:
|
||||
name: "test-sector-perfect"
|
||||
disable_progressbar: true
|
||||
shared_resources: "test"
|
||||
shared_resources:
|
||||
policy: "test"
|
||||
shared_cutouts: true
|
||||
|
||||
foresight: perfect
|
||||
@ -18,7 +19,7 @@ scenario:
|
||||
clusters:
|
||||
- 5
|
||||
sector_opts:
|
||||
- 8760h-T-H-B-I-A-dist1
|
||||
- ''
|
||||
planning_horizons:
|
||||
- 2030
|
||||
- 2040
|
||||
@ -31,7 +32,6 @@ snapshots:
|
||||
end: "2013-03-08"
|
||||
|
||||
electricity:
|
||||
co2limit: 100.e+6
|
||||
|
||||
extendable_carriers:
|
||||
Generator: [OCGT]
|
||||
@ -39,7 +39,7 @@ electricity:
|
||||
Store: [H2]
|
||||
Link: [H2 pipeline]
|
||||
|
||||
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc]
|
||||
renewable_carriers: [solar, solar-hsat, onwind, offwind-ac, offwind-dc, offwind-float]
|
||||
|
||||
sector:
|
||||
min_part_load_fischer_tropsch: 0
|
||||
@ -63,8 +63,18 @@ renewable:
|
||||
offwind-dc:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
offwind-float:
|
||||
cutout: be-03-2013-era5
|
||||
max_depth: false
|
||||
min_depth: false
|
||||
solar:
|
||||
cutout: be-03-2013-era5
|
||||
solar-hsat:
|
||||
cutout: be-03-2013-era5
|
||||
|
||||
clustering:
|
||||
temporal:
|
||||
resolution_sector: 8760h
|
||||
|
||||
industry:
|
||||
St_primary_fraction:
|
||||
|
@ -12,14 +12,15 @@ run:
|
||||
enable: true
|
||||
file: "config/test/scenarios.yaml"
|
||||
disable_progressbar: true
|
||||
shared_resources: base
|
||||
shared_resources:
|
||||
policy: base
|
||||
shared_cutouts: true
|
||||
|
||||
scenario:
|
||||
clusters:
|
||||
- 5
|
||||
opts:
|
||||
- Co2L-24H
|
||||
- ''
|
||||
|
||||
countries: ['BE']
|
||||
|
||||
|
27
data/ch_cantons.csv
Normal file
@ -0,0 +1,27 @@
|
||||
Canton,HASC,NUTS
|
||||
Aargau,CH.AG,CH033
|
||||
Appenzell Inner Rhodes,CH.AI,CH054
|
||||
Appenzell Outer Rhodes,CH.AR,CH053
|
||||
Basel-Landschaft,CH.BL,CH032
|
||||
Basel-Stadt,CH.BS,CH031
|
||||
Bern,CH.BE,CH021
|
||||
Fribourg,CH.FR,CH022
|
||||
Geneva,CH.GE,CH013
|
||||
Glarus,CH.GL,CH051
|
||||
Graubünden,CH.GR,CH056
|
||||
Jura,CH.JU,CH025
|
||||
Lucerne,CH.LU,CH061
|
||||
Neuchâtel,CH.NE,CH024
|
||||
Nidwalden,CH.NW,CH065
|
||||
Obwalden,CH.OW,CH064
|
||||
Sankt Gallen,CH.SG,CH055
|
||||
Schaffhausen,CH.SH,CH052
|
||||
Schwyz,CH.SZ,CH063
|
||||
Solothurn,CH.SO,CH023
|
||||
Thurgau,CH.TG,CH057
|
||||
Ticino,CH.TI,CH07
|
||||
Uri,CH.UR,CH062
|
||||
Valais,CH.VS,CH012
|
||||
Vaud,CH.VD,CH011
|
||||
Zug,CH.ZG,CH066
|
||||
Zurich,CH.ZH,CH04
|
|
@ -1,34 +0,0 @@
|
||||
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
|
||||
Albania,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Austria,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Belgium,,,,,,,,,,31.5,196.5,196.5,381.0,707.7,707.7,712.0,712.2,877.2,1185.9,1555.5,2261.8,2261.8,2261.8
|
||||
Bosnia Herzg,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Bulgaria,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Croatia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Czechia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Denmark,49.95,49.95,213.95,423.35,423.35,423.35,423.35,423.35,423.35,660.85,867.85,871.45,921.85,1271.05,1271.05,1271.05,1271.05,1263.8,1700.8,1700.8,1700.8,2305.6,2305.6
|
||||
Estonia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Finland,,,,,,,,,24.0,24.0,26.3,26.3,26.3,26.3,26.3,32.0,32.0,72.7,72.7,73.0,73.0,73.0,73.0
|
||||
France,,,,,,,,,,,,,,,,,,2.0,2.0,2.0,2.0,2.0,482.0
|
||||
Germany,,,,,,,,,,35.0,80.0,188.0,268.0,508.0,994.0,3283.0,4132.0,5406.0,6393.0,7555.0,7787.0,7787.0,8129.0
|
||||
Greece,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Hungary,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Ireland,,,,,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2
|
||||
Italy,,,,,,,,,,,,,,,,,,,,,,,30.0
|
||||
Latvia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Lithuania,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Luxembourg,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Montenegro,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Netherlands,,,,,,,108.0,108.0,228.0,228.0,228.0,228.0,228.0,228.0,228.0,357.0,957.0,957.0,957.0,957.0,2459.5,2459.5,2571.0
|
||||
North Macedonia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Norway,,,,,,,,,,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,6.3,66.3
|
||||
Poland,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Portugal,,,,,,,,,,,,1.86,2.0,2.0,2.0,2.0,,,,,25.0,25.0,25.0
|
||||
Romania,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Serbia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Slovakia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Slovenia,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Spain,,,,,,,,,,,,,,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0
|
||||
Sweden,13.0,22.0,22.0,22.0,22.0,22.0,22.0,131.0,133.0,163.0,163.0,163.0,163.0,212.0,213.0,213.0,203.0,203.0,203.0,203.0,203.0,193.0,193.0
|
||||
Switzerland,,,,,,,,,,,,,,,,,,,,,,,
|
||||
UK,4.0,4.0,4.0,64.0,124.0,214.0,304.0,394.0,596.2,951.0,1341.0,1838.0,2995.0,3696.0,4501.0,5093.0,5293.0,6988.0,8181.0,9888.0,10383.0,11255.0,13928.0
|
|
@ -1,34 +0,0 @@
|
||||
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
|
||||
Albania,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Austria,50.0,67.0,109.0,322.0,581.0,825.22,968.27,991.16,991.97,1000.99,1015.83,1105.97,1337.15,1674.54,2110.28,2488.73,2730.0,2886.7,3132.71,3224.12,3225.98,3407.81,3735.81
|
||||
Belgium,14.0,26.0,31.0,67.0,96.0,167.0,212.0,276.0,324.0,576.5,715.5,872.5,985.9,1061.3,1225.0,1469.3,1621.6,1902.2,2119.0,2308.0,2410.9,2686.6,2989.6
|
||||
Bosnia Herzg,,,,,,,,,,,,0.3,0.3,0.3,0.3,0.3,0.3,0.3,51.0,87.0,87.0,135.0,135.0
|
||||
Bulgaria,,,,,1.0,8.0,27.0,30.0,114.0,333.0,488.0,541.0,677.0,683.0,699.0,699.0,699.0,698.39,698.92,703.12,702.8,704.38,704.38
|
||||
Croatia,,,,,6.0,6.0,17.0,17.0,17.0,70.0,79.0,130.0,180.0,254.0,339.0,418.0,483.0,576.1,586.3,646.3,801.3,986.9,1042.9
|
||||
Czechia,2.0,,6.4,10.6,16.5,22.0,43.5,113.8,150.0,193.0,213.0,213.0,258.0,262.0,278.0,281.0,282.0,308.21,316.2,339.41,339.42,339.41,339.41
|
||||
Denmark,2340.07,2447.2,2680.58,2696.57,2700.36,2704.49,2712.35,2700.86,2739.52,2821.24,2933.98,3080.53,3240.09,3547.87,3615.35,3805.92,3974.09,4225.15,4421.86,4409.74,4566.23,4715.24,4782.24
|
||||
Estonia,,,1.0,3.0,7.0,31.0,31.0,50.0,77.0,104.0,108.0,180.0,266.0,248.0,275.0,300.0,310.0,311.8,310.0,316.0,317.0,315.0,315.0
|
||||
Finland,38.0,39.0,43.0,52.0,82.0,82.0,86.0,110.0,119.0,123.0,170.7,172.7,230.7,420.7,600.7,973.0,1533.0,1971.3,1968.3,2211.0,2513.0,3184.0,5541.0
|
||||
France,38.0,66.0,138.0,218.0,358.0,690.0,1412.0,2223.0,3403.0,4582.0,5912.0,6758.02,7607.5,8155.96,9201.42,10298.18,11566.56,13497.35,14898.14,16424.85,17512.0,18737.98,20637.98
|
||||
Germany,6095.0,8754.0,12001.0,14381.0,16419.0,18248.0,20474.0,22116.0,22794.0,25697.0,26823.0,28524.0,30711.0,32969.0,37620.0,41297.0,45303.0,50174.0,52328.0,53187.0,54414.0,56046.0,58165.0
|
||||
Greece,226.0,270.0,287.0,371.0,470.0,491.0,749.0,846.0,1022.0,1171.0,1298.0,1640.0,1753.0,1809.0,1978.0,2091.0,2370.0,2624.0,2877.5,3589.0,4119.25,4649.13,4879.13
|
||||
Hungary,,1.0,1.0,3.0,3.0,17.0,33.0,61.0,134.0,203.0,293.0,331.0,325.0,329.0,329.0,329.0,329.0,329.0,329.0,323.0,323.0,324.0,324.0
|
||||
Ireland,116.5,122.9,134.8,210.3,311.2,468.1,651.3,715.3,917.1,1226.1,1365.2,1559.4,1679.15,1898.1,2258.05,2425.95,2776.45,3293.95,3648.65,4101.25,4281.5,4313.84,4593.84
|
||||
Italy,363.0,664.0,780.0,874.0,1127.0,1635.0,1902.0,2702.0,3525.0,4879.0,5794.0,6918.0,8102.0,8542.0,8683.0,9137.0,9384.0,9736.58,10230.25,10679.46,10870.62,11253.73,11749.73
|
||||
Latvia,2.0,2.0,22.0,26.0,26.0,26.0,26.0,26.0,28.0,29.0,30.0,36.0,59.0,65.89,68.92,68.17,69.91,77.11,78.17,78.07,78.07,77.13,136.13
|
||||
Lithuania,,,,,1.0,1.0,31.0,47.0,54.0,98.0,133.0,202.0,275.0,279.0,288.0,436.0,509.0,518.0,533.0,534.0,540.0,671.0,814.0
|
||||
Luxembourg,14.0,13.9,13.9,20.5,34.9,34.9,34.9,34.9,42.92,42.93,43.73,44.53,58.33,58.33,58.34,63.79,119.69,119.69,122.89,135.79,152.74,136.44,165.44
|
||||
Montenegro,,,,,,,,,,,,,,,,,,72.0,72.0,118.0,118.0,118.0,118.0
|
||||
Netherlands,447.0,486.0,672.0,905.0,1075.0,1224.0,1453.0,1641.0,1921.0,1994.0,2009.0,2088.0,2205.0,2485.0,2637.0,3033.84,3300.12,3245.0,3436.11,3527.16,4188.38,5309.87,6176.0
|
||||
North Macedonia,,,,,,,,,,,,,,,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0
|
||||
Norway,13.0,13.0,97.0,97.0,152.0,265.0,284.0,348.0,395.0,420.7,422.7,509.7,702.7,815.7,856.7,864.7,880.7,1204.7,1707.7,2911.7,4027.7,5042.7,5067.7
|
||||
Poland,4.0,19.0,32.0,35.0,40.0,121.0,172.0,306.0,526.0,709.0,1108.0,1800.0,2564.0,3429.0,3836.0,4886.0,5747.0,5759.36,5766.08,5837.76,6298.25,6967.34,7987.34
|
||||
Portugal,83.0,125.0,190.0,268.0,553.0,1064.0,1681.0,2201.0,2857.0,3326.0,3796.0,4254.35,4409.55,4607.95,4854.56,4934.84,5124.1,5124.1,5172.36,5222.75,5097.26,5402.33,5430.33
|
||||
Romania,,,,,,1.0,1.0,3.0,5.0,15.0,389.0,988.0,1822.0,2773.0,3244.0,3130.0,3025.0,3029.8,3032.26,3037.52,3012.53,3014.96,3014.96
|
||||
Serbia,,,,,,,,,,,,,0.5,0.5,0.5,10.4,17.0,25.0,227.0,398.0,398.0,398.0,398.0
|
||||
Slovakia,,,,3.0,3.0,5.0,5.0,5.0,5.0,3.0,3.0,3.0,3.0,5.0,3.0,3.0,3.0,4.0,3.0,4.0,4.0,4.0,4.0
|
||||
Slovenia,,,,,,,,,,,,,2.0,2.0,3.0,3.0,3.0,3.3,3.3,3.3,3.3,3.33,3.33
|
||||
Spain,2206.0,3397.0,4891.0,5945.0,8317.0,9918.0,11722.0,14820.0,16555.0,19176.0,20693.0,21529.0,22789.0,22953.0,22920.0,22938.0,22985.0,23119.48,23400.06,25585.08,26814.19,27902.65,29302.84
|
||||
Sweden,196.0,273.0,335.0,395.0,453.0,500.0,563.0,692.0,956.0,1312.0,1854.0,2601.0,3443.0,3982.0,4875.0,5606.0,6232.0,6408.0,7097.0,8478.0,9773.0,11923.0,14364.0
|
||||
Switzerland,3.0,5.0,5.0,5.0,9.0,12.0,12.0,12.0,14.0,18.0,42.0,46.0,49.0,60.0,60.0,60.0,75.0,75.0,75.0,75.0,87.0,87.0,87.0
|
||||
UK,431.0,490.0,531.0,678.0,809.0,1351.0,1651.0,2083.0,2849.8,3468.0,4080.0,4758.0,6035.0,7586.0,8573.0,9212.0,10833.0,12597.0,13425.0,13999.0,14075.0,14492.0,14832.0
|
|
@ -1,34 +0,0 @@
|
||||
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
|
||||
Albania,,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.4,0.56,0.68,0.76,0.87,1.05,1.0,1.0,1.0,14.0,21.0,23.0,28.6
|
||||
Austria,5.0,7.0,9.0,23.0,27.0,18.49,19.61,21.42,27.0,45.56,85.27,169.88,333.09,620.78,779.76,931.56,1089.53,1262.01,1447.94,1694.4,2034.74,2773.91,3538.91
|
||||
Belgium,,,1.0,1.0,1.0,2.0,2.0,20.0,62.0,386.0,1006.6,1978.6,2646.6,2901.6,3015.0,3131.6,3328.8,3620.6,4000.0,4636.6,5572.8,6012.4,6898.4
|
||||
Bosnia Herzg,,,,0.1,0.2,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.35,1.34,7.17,8.17,14.12,16.0,18.15,22.35,34.89,56.51,107.47
|
||||
Bulgaria,,,,,,,,0.03,0.1,2.0,25.0,154.0,921.99,1038.54,1028.92,1027.89,1029.89,1030.7,1033.06,1044.39,1100.21,1274.71,1948.36
|
||||
Croatia,,,,,,,,,,0.3,0.3,0.3,4.0,19.0,33.0,47.8,55.8,60.0,67.7,84.8,108.5,138.3,182.3
|
||||
Czechia,0.1,0.1,0.2,0.3,0.4,0.59,0.84,3.96,39.5,464.6,1727.0,1913.0,2022.0,2063.5,2067.4,2074.9,2067.9,2075.44,2081.05,2110.67,2171.96,2246.09,2627.09
|
||||
Denmark,1.0,1.0,2.0,2.0,2.0,3.0,3.0,3.0,3.0,5.0,7.0,17.0,402.0,571.0,607.0,782.11,850.95,906.35,998.0,1080.0,1304.29,1704.04,3122.04
|
||||
Estonia,,,,,,,,,,0.1,0.1,0.2,0.38,1.5,3.34,6.5,10.0,15.0,31.9,120.6,207.67,394.77,534.77
|
||||
Finland,2.0,3.0,3.0,3.0,4.0,4.0,5.0,5.0,6.0,6.0,7.0,7.0,8.0,9.0,11.0,17.0,39.0,82.0,140.0,222.0,318.0,425.0,590.6
|
||||
France,7.0,7.0,8.0,9.0,11.0,13.0,15.0,26.0,80.0,277.0,1044.0,3003.57,4358.75,5277.29,6034.42,7137.52,7702.08,8610.44,9638.88,10738.39,11812.2,14436.97,17036.97
|
||||
Germany,114.0,195.0,260.0,435.0,1105.0,2056.0,2899.0,4170.0,6120.0,10564.0,18004.0,25914.0,34075.0,36708.0,37898.0,39222.0,40677.0,42291.0,45156.0,48912.0,53669.0,59371.0,66662.0
|
||||
Greece,,1.0,1.0,1.0,1.0,1.0,5.0,9.0,12.0,46.0,202.0,612.0,1536.0,2579.0,2596.0,2604.0,2604.0,2605.53,2651.57,2833.79,3287.72,4277.42,5557.42
|
||||
Hungary,,,,,,,,0.4,1.0,1.0,2.0,4.0,12.0,35.0,89.0,172.0,235.0,344.0,728.0,1400.0,2131.0,2968.0,2988.0
|
||||
Ireland,,,,,,,,,,,,,,,,,,,,,,,
|
||||
Italy,19.0,20.0,22.0,26.0,31.0,34.0,45.0,110.0,483.0,1264.0,3592.0,13131.0,16785.0,18185.0,18594.0,18901.0,19283.0,19682.29,20107.59,20865.28,21650.04,22594.26,25076.56
|
||||
Latvia,,,,,,,,,,,,,,,,,0.69,0.69,1.96,3.3,5.1,7.16,56.16
|
||||
Lithuania,,,,,,,,,0.1,0.1,0.1,0.3,7.0,68.0,69.0,69.0,70.0,70.08,72.0,73.0,80.0,84.0,397.0
|
||||
Luxembourg,,0.16,1.59,14.17,23.56,23.58,23.7,23.93,24.56,26.36,29.45,40.67,74.65,95.02,109.93,116.27,121.9,128.1,130.62,159.74,186.64,277.16,319.16
|
||||
Montenegro,,,,,,,,,,,,,,,,,,,,,2.57,2.57,22.2
|
||||
Netherlands,13.0,21.0,26.0,46.0,50.0,51.0,53.0,54.0,59.0,69.0,90.0,149.0,287.0,650.0,1007.0,1526.26,2135.02,2910.89,4608.0,7226.0,11108.43,14910.69,18848.69
|
||||
North Macedonia,,,,,,,,,,,,2.0,4.0,7.0,15.0,17.0,16.7,16.7,16.7,16.71,84.93,84.93,84.93
|
||||
Norway,6.0,6.0,6.0,7.0,7.0,7.0,8.0,8.0,8.3,8.7,9.1,9.5,10.0,11.0,13.0,15.0,26.7,44.9,53.11,102.53,141.53,186.53,302.53
|
||||
Poland,,,,,,,,,,,,1.11,1.3,2.39,27.15,107.78,187.25,287.09,561.98,1539.26,3954.96,7415.52,11166.52
|
||||
Portugal,1.0,1.0,1.0,2.0,2.0,2.0,3.0,24.0,59.0,115.0,134.0,169.6,235.6,293.6,412.6,441.75,493.05,539.42,617.85,832.74,1010.07,1474.78,2364.78
|
||||
Romania,,,,,,,,,0.1,0.1,0.1,1.0,41.0,761.0,1293.0,1326.0,1372.0,1374.13,1385.82,1397.71,1382.54,1393.92,1413.92
|
||||
Serbia,,,,,,0.1,0.2,0.4,0.9,1.2,1.3,1.5,3.1,4.7,6.0,9.0,11.0,10.0,11.0,11.0,11.5,11.94,11.94
|
||||
Slovakia,,,,,,,,,,,19.0,496.0,513.0,533.0,533.0,533.0,533.0,528.0,472.0,590.0,535.0,537.0,537.0
|
||||
Slovenia,1.0,1.0,,,,0.05,0.19,0.59,1.0,4.0,12.0,57.0,142.0,187.0,223.0,238.0,233.0,246.8,246.8,277.88,369.78,461.16,632.16
|
||||
Spain,1.0,3.0,6.0,10.0,19.0,37.0,113.0,476.0,3365.0,3403.0,3851.0,4260.0,4545.0,4665.0,4672.0,4677.0,4687.0,4696.0,4730.7,8772.02,10100.42,13678.4,18176.73
|
||||
Sweden,3.0,3.0,3.0,4.0,4.0,4.0,5.0,6.0,8.0,9.0,11.0,12.0,24.0,43.0,60.0,104.0,153.0,231.0,411.0,698.0,1090.0,1587.0,2587.0
|
||||
Switzerland,16.0,18.0,20.0,22.0,24.0,28.0,30.0,37.0,49.0,79.0,125.0,223.0,437.0,756.0,1061.0,1394.0,1664.0,1906.0,2173.0,2498.0,2973.0,3655.0,4339.92
|
||||
UK,2.0,3.0,4.0,6.0,8.0,11.0,14.0,18.0,23.0,27.0,95.0,1000.0,1753.0,2937.0,5528.0,9601.0,11914.0,12760.0,13059.0,13345.0,13579.0,13965.0,14660.0
|
|
31
data/hydro_capacities.csv
Normal file
@ -0,0 +1,31 @@
|
||||
Country,p_nom_discharge[GW],p_nom_store[GW],E_store[TWh],InflowHourlyAvg[GWh]
|
||||
AT,13.08,3.8,3.2,4.02
|
||||
BE,1.42,1.31,0,0.04
|
||||
BA,2.05,0.62,2.5,0.71
|
||||
BG,3.13,0.86,4,0.53
|
||||
HR,2,0.61,2.8,0.57
|
||||
CZ,2.21,0.68,1.5,0.24
|
||||
DK,0.01,0,0,0
|
||||
EE,0.01,0,0,0
|
||||
FI,3.2,0,5.5,1.59
|
||||
FR,25.37,6.99,9.8,7.82
|
||||
DE,11.26,6.8,0.3,1.93
|
||||
GB,4.43,2.74,0,0.46
|
||||
GR,3.24,0.7,2.3,0.26
|
||||
HU,0.06,0,0.1,0.02
|
||||
IE,0.53,0.29,0,0.08
|
||||
IT,21.88,7.55,7.9,5.19
|
||||
LV,1.58,0,1.8,0.3
|
||||
LT,0.88,0.76,0.2,0.05
|
||||
LU,1.13,1.29,0,0
|
||||
NL,0.04,0,0,0.01
|
||||
NO,30.51,1.35,84.4,14
|
||||
PL,2.35,1.4,1.6,0.23
|
||||
PT,5.72,1.03,2.6,1.37
|
||||
RO,6.55,0.09,12.1,1.95
|
||||
RS,2.14,0.61,0,1.18
|
||||
SK,2.52,0.92,2.2,0.49
|
||||
SI,1.25,0.18,2.2,0.36
|
||||
ES,18.55,2.75,18.4,2.61
|
||||
SE,16.41,0.1,33.8,7.8
|
||||
CH,13.3,4.03,8.4,4.29
|
|
@ -2,7 +2,7 @@
|
||||
voltages,kV,"Any subset of {220., 300., 380.}",Voltage levels to consider
|
||||
gaslimit_enable,bool,true or false,Add an overall absolute gas limit configured in ``electricity: gaslimit``.
|
||||
gaslimit,MWhth,float or false,Global gas usage limit
|
||||
co2limit_enable,bool,true or false,Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``.
|
||||
co2limit_enable,bool,true or false,Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit`` in :mod:`prepare_network`. **Warning:** This option should currently only be used with electricity-only networks, not for sector-coupled networks..
|
||||
co2limit,:math:`t_{CO_2-eq}/a`,float,Cap on total annual system carbon dioxide emissions
|
||||
co2base,:math:`t_{CO_2-eq}/a`,float,Reference value of total annual system carbon dioxide emissions if relative emission reduction target is specified in ``{opts}`` wildcard.
|
||||
agg_p_nom_limits,file,path,Reference to ``.csv`` file specifying per carrier generator nominal capacity constraints for individual countries if ``'CCL'`` is in ``{opts}`` wildcard. Defaults to ``data/agg_p_nom_minmax.csv``.
|
||||
@ -28,14 +28,14 @@ everywhere_powerplants,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignit
|
||||
,,,
|
||||
conventional_carriers,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass}","List of conventional power plants to include in the model from ``resources/powerplants.csv``. If an included carrier is also listed in ``extendable_carriers``, the capacity is taken as a lower bound."
|
||||
,,,
|
||||
renewable_carriers,--,"Any subset of {solar, onwind, offwind-ac, offwind-dc, hydro}",List of renewable generators to include in the model.
|
||||
renewable_carriers,--,"Any subset of {solar, onwind, offwind-ac, offwind-dc, offwind-float, hydro}",List of renewable generators to include in the model.
|
||||
estimate_renewable_capacities,,,
|
||||
-- enable,,bool,Activate routine to estimate renewable capacities
|
||||
-- from_opsd,--,bool,Add renewable capacities from `OPSD database <https://data.open-power-system-data.org/renewable_power_plants/2020-08-25>`_. The value is depreciated but still can be used.
|
||||
-- year,--,bool,Renewable capacities are based on existing capacities reported by IRENA (IRENASTAT) for the specified year
|
||||
-- expansion_limit,--,float or false,"Artificially limit maximum IRENA capacities to a factor. For example, an ``expansion_limit: 1.1`` means 110% of capacities . If false are chosen, the estimated renewable potentials determine by the workflow are used."
|
||||
-- technology_mapping,,,Mapping between PyPSA-Eur and powerplantmatching technology names
|
||||
-- -- Offshore,--,"Any subset of {offwind-ac, offwind-dc}","List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) onshore technology."
|
||||
-- -- Offshore,--,"Any subset of {offwind-ac, offwind-dc, offwind-float}","List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) onshore technology."
|
||||
-- -- Offshore,--,{onwind},"List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) offshore technology."
|
||||
-- -- PV,--,{solar},"List of PyPSA-Eur carriers that is considered as (IRENA, OPSD) PV technology."
|
||||
autarky,,,
|
||||
|
Can't render this file because it has a wrong number of fields in line 5.
|
@ -2,12 +2,8 @@
|
||||
enable,str or bool,"{auto, true, false}","Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection."
|
||||
prepare_links_p_nom,bool,"{true, false}","Switch to retrieve current HVDC projects from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_"
|
||||
retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder."
|
||||
retrieve_sector_databundle,bool,"{true, false}","Switch to retrieve sector databundle from zenodo via the rule :mod:`retrieve_sector_databundle` or whether to keep a custom databundle located in the corresponding folder."
|
||||
retrieve_cost_data,bool,"{true, false}","Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_."
|
||||
build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`."
|
||||
retrieve_irena,bool,"{true, false}",Switch to enable the retrieval of ``existing_capacities`` from IRENASTAT with :mod:`retrieve_irena`.
|
||||
retrieve_cutout,bool,"{true, false}","Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`."
|
||||
build_natura_raster,bool,"{true, false}","Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`."
|
||||
retrieve_natura_raster,bool,"{true, false}","Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`."
|
||||
custom_busmap,bool,"{true, false}","Switch to enable the use of custom busmaps in rule :mod:`cluster_network`. If activated the rule looks for provided busmaps at ``data/custom_busmap_elec_s{simpl}_{clusters}.csv`` which should have the same format as ``resources/busmap_elec_s{simpl}_{clusters}.csv``, i.e. the index should contain the buses of ``networks/elec_s{simpl}.nc``."
|
||||
drop_leap_day,bool,"{true, false}","Switch to drop February 29 from all time-dependent data in leap years"
|
||||
|
|
@ -16,6 +16,9 @@ petrochemical_process _emissions,MtCO2/a,float,The emission of petrochemical pro
|
||||
HVC_primary_fraction,--,float,The fraction of high value chemicals (HVC) produced via primary route
|
||||
HVC_mechanical_recycling _fraction,--,float,The fraction of high value chemicals (HVC) produced using mechanical recycling
|
||||
HVC_chemical_recycling _fraction,--,float,The fraction of high value chemicals (HVC) produced using chemical recycling
|
||||
HVC_environment_sequestration_fraction,--,float,The fraction of high value chemicals (HVC) put into landfill resulting in additional carbon sequestration. The default value is 0.
|
||||
waste_to_energy,--,bool,Switch to enable expansion of waste to energy CHPs for conversion of plastics. Default is false.
|
||||
waste_to_energy_cc,--,bool,Switch to enable expansion of waste to energy CHPs for conversion of plastics with carbon capture. Default is false.
|
||||
,,,
|
||||
sector_ratios_fraction_future,--,Dictionary with planning horizons as keys.,The fraction of total progress in fuel and process switching achieved in the industry sector.
|
||||
basic_chemicals_without_NH3_production_today,Mt/a,float,"The amount of basic chemicals produced without ammonia (= 86 Mtethylene-equiv - 17 MtNH3)."
|
||||
|
|
@ -5,10 +5,8 @@
|
||||
"naturalearth/*",,,,,http://www.naturalearthdata.com/about/terms-of-use/
|
||||
"NUTS_2013 _60M_SH/*","x","x",,"x",https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units
|
||||
"cantons.csv","x",,"x",,https://en.wikipedia.org/wiki/Data_codes_for_Switzerland
|
||||
"eia_hydro_annual_generation.csv","x",,,,https://www.eia.gov/about/copyrights_reuse.php
|
||||
"GEBCO_2014_2D.nc","x",,,,https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf
|
||||
"gebco/GEBCO_2014_2D.nc","x",,,,https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014_historic.pdf
|
||||
"hydro_capacities.csv","x",,,,
|
||||
"je-e-21.03.02.xls","x","x",,,https://www.bfs.admin.ch/bfs/en/home/fso/swiss-federal-statistical-office/terms-of-use.html
|
||||
"nama_10r_3 gdp.tsv.gz","x",,,"x",https://ec.europa.eu/eurostat/about/policies/copyright
|
||||
"nama_10r_3 popgdp.tsv.gz","x",,,"x",https://ec.europa.eu/eurostat/about/policies/copyright
|
||||
"time_series_60min _singleindex_filtered.csv","x",,,,https://data.open-power-system-data.org/time_series/2019-06-05/README.md
|
||||
|
|
@ -4,4 +4,4 @@ time_shift_for_large_gaps,string,string,"Periods which are used for copying time
|
||||
manual_adjustments,bool,"{true, false}","Whether to adjust the load data manually according to the function in :func:`manual_adjustment`."
|
||||
scaling_factor,--,float,"Global correction factor for the load time series."
|
||||
fixed_year,--,Year or False,"To specify a fixed year for the load time series that deviates from the snapshots' year"
|
||||
supplement_synthetic,bool,"{true, false}","Whether to supplement missing data for selected time period should be supplemented by synthetic data from https://zenodo.org/record/10820928."
|
||||
supplement_synthetic,bool,"{true, false}","Whether to supplement missing data for selected time period should be supplemented by synthetic data from https://zenodo.org/records/10820928."
|
||||
|
|
@ -5,5 +5,7 @@ scenarios,,,
|
||||
-- enable,bool,"{true, false}","Switch to select whether workflow should generate scenarios based on ``file``."
|
||||
-- file,str,,"Path to the scenario yaml file. The scenario file contains config overrides for each scenario. In order to be taken account, ``run: scenarios`` has to be set to ``true`` and ``run: name`` has to be a subset of top level keys given in the scenario file. In order to automatically create a `scenario.yaml` file based on a combination of settings, alter and use the ``config/create_scenarios.py`` script in the ``config`` directory."
|
||||
disable_progressbar,bool,"{true, false}","Switch to select whether progressbar should be disabled."
|
||||
shared_resources,bool/str,,"Switch to select whether resources should be shared across runs. If a string is passed, this is used as a subdirectory name for shared resources. If set to 'base', only resources before creating the elec.nc file are shared."
|
||||
shared_resources,,,
|
||||
-- policy,bool/str,,"Boolean switch to select whether resources should be shared across runs. If a string is passed, this is used as a subdirectory name for shared resources. If set to 'base', only resources before creating the elec.nc file are shared."
|
||||
-- exclude,str,"For the case shared_resources=base, specify additional files that should not be shared across runs."
|
||||
shared_cutouts,bool,"{true, false}","Switch to select whether cutouts should be shared across runs."
|
||||
|
Can't render this file because it has a wrong number of fields in line 10.
|
@ -1,5 +1,5 @@
|
||||
Trigger, Description, Definition, Status
|
||||
``nH``, i.e. ``2H``-``6H``, "Resample the time-resolution by averaging over every ``n`` snapshots, ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`__)", In active use
|
||||
``nH``, i.e. ``2h``-``6h``, "Resample the time-resolution by averaging over every ``n`` snapshots, ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`__)", In active use
|
||||
``Co2L``, Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``. If a float is appended an overall emission limit relative to the emission level given in ``electricity: co2base`` is added (e.g. ``Co2L0.05`` limits emissisions to 5% of what is given in ``electricity: co2base``), ``prepare_network``: `add_co2limit() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L19>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L154>`__, In active use
|
||||
``carrier+{c|p|m}factor``,"Alter the capital cost (``c``), installable potential (``p``) or marginal costs (``m``) of a carrier by a factor. Example: ``solar+c0.5`` reduces the capital cost of solar to 50\% of original values.", ``prepare_network``, In active use
|
||||
``T``,Add land transport sector,,In active use
|
||||
|
|
@ -31,7 +31,7 @@ Top-level configuration
|
||||
.. _run_cf:
|
||||
|
||||
``run``
|
||||
=======
|
||||
=============
|
||||
|
||||
It is common conduct to analyse energy system optimisation models for **multiple scenarios** for a variety of reasons,
|
||||
e.g. assessing their sensitivity towards changing the temporal and/or geographical resolution or investigating how
|
||||
@ -265,7 +265,7 @@ Define and specify the ``atlite.Cutout`` used for calculating renewable potentia
|
||||
.. literalinclude:: ../config/config.default.yaml
|
||||
:language: yaml
|
||||
:start-at: offwind-dc:
|
||||
:end-before: solar:
|
||||
:end-before: offwind-float:
|
||||
|
||||
.. csv-table::
|
||||
:header-rows: 1
|
||||
@ -273,9 +273,25 @@ Define and specify the ``atlite.Cutout`` used for calculating renewable potentia
|
||||
:file: configtables/offwind-dc.csv
|
||||
|
||||
.. note::
|
||||
both ``offwind-ac`` and ``offwind-dc`` have the same assumption on
|
||||
Both ``offwind-ac`` and ``offwind-dc`` have the same assumption on
|
||||
``capacity_per_sqkm`` and ``correction_factor``.
|
||||
|
||||
``offwind-float``
|
||||
---------------
|
||||
|
||||
.. literalinclude:: ../config/config.default.yaml
|
||||
:language: yaml
|
||||
:start-at: offwind-float:
|
||||
:end-before: solar:
|
||||
|
||||
.. csv-table::
|
||||
:header-rows: 1
|
||||
:widths: 22,7,22,33
|
||||
:file: configtables/offwind-float.csv
|
||||
|
||||
.. note::
|
||||
``offwind-ac``, ``offwind-dc`` , ``offwind-float`` have the same assumption on
|
||||
``capacity_per_sqkm`` and ``correction_factor``.
|
||||
``solar``
|
||||
---------------
|
||||
|
||||
|
Before Width: | Height: | Size: 98 KiB After Width: | Height: | Size: 98 KiB |
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 533 KiB After Width: | Height: | Size: 533 KiB |
Before Width: | Height: | Size: 269 KiB After Width: | Height: | Size: 269 KiB |
Before Width: | Height: | Size: 2.3 MiB After Width: | Height: | Size: 2.3 MiB |
Before Width: | Height: | Size: 227 KiB After Width: | Height: | Size: 208 KiB |
Before Width: | Height: | Size: 290 KiB After Width: | Height: | Size: 290 KiB |
Before Width: | Height: | Size: 110 KiB After Width: | Height: | Size: 110 KiB |
Before Width: | Height: | Size: 523 KiB After Width: | Height: | Size: 523 KiB |
Before Width: | Height: | Size: 99 KiB After Width: | Height: | Size: 99 KiB |
Before Width: | Height: | Size: 801 KiB After Width: | Height: | Size: 801 KiB |
BIN
doc/img/workflow.png
Normal file
After Width: | Height: | Size: 700 KiB |
@ -74,7 +74,7 @@ greenhouse gas emitters except waste management, agriculture, forestry and land
|
||||
use. The diagram below gives an overview of the sectors and the links between
|
||||
them:
|
||||
|
||||
.. image:: ../graphics/multisector_figure.png
|
||||
.. image:: img/multisector_figure.png
|
||||
:width: 70%
|
||||
:align: center
|
||||
|
||||
@ -135,7 +135,7 @@ as part of the `Stromnetze Research Initiative
|
||||
Workflow
|
||||
========
|
||||
|
||||
.. image:: ../graphics/workflow.png
|
||||
.. image:: img/workflow.png
|
||||
:class: full-width
|
||||
:align: center
|
||||
|
||||
|
@ -35,7 +35,7 @@ For instance, an invocation to
|
||||
|
||||
.. code:: bash
|
||||
|
||||
.../pypsa-eur % snakemake -call results/networks/elec_s_128_ec_lvopt_Co2L-3H.nc
|
||||
.../pypsa-eur % snakemake -call results/networks/elec_s_128_ec_lvopt_.nc
|
||||
|
||||
follows this dependency graph
|
||||
|
||||
@ -50,7 +50,7 @@ preceding rules which another rule takes as input data.
|
||||
|
||||
.. note::
|
||||
The dependency graph was generated using
|
||||
``snakemake --dag results/networks/elec_s_128_ec_lvopt_Co2L-3H.nc -F | sed -n "/digraph/,/}/p" | dot -Tpng -o doc/img/intro-workflow.png``
|
||||
``snakemake --dag results/networks/elec_s_128_ec_lvopt_.nc -F | sed -n "/digraph/,/}/p" | dot -Tpng -o doc/img/intro-workflow.png``
|
||||
|
||||
For the use of ``snakemake``, it makes sense to familiarize yourself quickly
|
||||
with the `basic tutorial
|
||||
|
@ -28,16 +28,13 @@ Electricity Systems Databundle
|
||||
More details are included in `the description of the
|
||||
data bundles on zenodo <https://zenodo.org/record/3517935#.XbGeXvzRZGo>`__.
|
||||
|
||||
.. csv-table::
|
||||
:header-rows: 1
|
||||
:file: configtables/licenses.csv
|
||||
|
||||
* BY: Attribute Source
|
||||
* NC: Non-Commercial Use Only
|
||||
* SA: Share Alike
|
||||
|
||||
Sector-Coupled Systems Databundle
|
||||
=================================
|
||||
.. csv-table::
|
||||
:header-rows: 1
|
||||
:file: configtables/licenses.csv
|
||||
|
||||
.. csv-table::
|
||||
:header-rows: 1
|
||||
|
@ -21,13 +21,11 @@ Having downloaded the necessary data,
|
||||
With these and the externally extracted ENTSO-E online map topology
|
||||
(``data/entsoegridkit``), it can build a base PyPSA network with the following rules:
|
||||
|
||||
- :mod:`base_network` builds and stores the base network with all buses, HVAC lines and HVDC links, while
|
||||
- :mod:`build_bus_regions` determines `Voronoi cells <https://en.wikipedia.org/wiki/Voronoi_diagram>`__ for all substations.
|
||||
- :mod:`base_network` builds and stores the base network with all buses, HVAC lines and HVDC links, and determines `Voronoi cells <https://en.wikipedia.org/wiki/Voronoi_diagram>`__ for all substations.
|
||||
|
||||
Then the process continues by calculating conventional power plant capacities, potentials, and per-unit availability time series for variable renewable energy carriers and hydro power plants with the following rules:
|
||||
|
||||
- :mod:`build_powerplants` for today's thermal power plant capacities using `powerplantmatching <https://github.com/FRESNA/powerplantmatching>`__ allocating these to the closest substation for each powerplant,
|
||||
- :mod:`build_natura_raster` for rasterising NATURA2000 natural protection areas,
|
||||
- :mod:`build_ship_raster` for building shipping traffic density,
|
||||
- :mod:`build_renewable_profiles` for the hourly capacity factors and installation potentials constrained by land-use in each substation's Voronoi cell for PV, onshore and offshore wind, and
|
||||
- :mod:`build_hydro_profile` for the hourly per-unit hydro power availability time series.
|
||||
@ -35,13 +33,6 @@ Then the process continues by calculating conventional power plant capacities, p
|
||||
The central rule :mod:`add_electricity` then ties all the different data inputs
|
||||
together into a detailed PyPSA network stored in ``networks/elec.nc``.
|
||||
|
||||
.. _busregions:
|
||||
|
||||
Rule ``build_bus_regions``
|
||||
=============================
|
||||
|
||||
.. automodule:: build_bus_regions
|
||||
|
||||
.. _cutout:
|
||||
|
||||
Rule ``build_cutout``
|
||||
@ -55,14 +46,6 @@ Rule ``prepare_links_p_nom``
|
||||
|
||||
.. automodule:: prepare_links_p_nom
|
||||
|
||||
.. _natura:
|
||||
|
||||
Rule ``build_natura_raster``
|
||||
===============================
|
||||
|
||||
.. automodule:: build_natura_raster
|
||||
|
||||
|
||||
.. _base:
|
||||
|
||||
Rule ``base_network``
|
||||
|
@ -9,8 +9,64 @@ Release Notes
|
||||
|
||||
Upcoming Release
|
||||
================
|
||||
|
||||
* The technology-data version was updated to v0.9.0.
|
||||
|
||||
* Bugfix to avoid duplicated offshore regions.
|
||||
|
||||
* Added option ``industry: HVC_environment_sequestration_fraction:`` to specify
|
||||
the fraction of carbon contained plastics that is permanently sequestered in
|
||||
landfill. The default assumption is that all carbon contained in plastics is
|
||||
eventually released to the atmosphere.
|
||||
|
||||
* Added option for building waste-to-energy plants with and without carbon
|
||||
capture to consume non-recycled and non-sequestered plastics. The config
|
||||
settings are ``industry: waste_to_energy:`` and ``industry:
|
||||
waste_to_energy_cc``. This does not include municipal solid waste.
|
||||
|
||||
* Bump minimum ``powerplantmatching`` version to v0.5.15.
|
||||
|
||||
* Add floating wind technology for water depths below 60m
|
||||
|
||||
* Add config ``run: shared_resources: exclude:`` to specify additional files
|
||||
that should be excluded from shared resources with the setting ``run:
|
||||
shared_resources: base``. The function ``_helpers/get_run_path()`` now takes
|
||||
an additional keyword argument ``exclude_from_shared`` with a list of files
|
||||
that should not be shared. This keyword argument accepts a list of strings
|
||||
where the string only needs to match the start of a filename (e.g.
|
||||
``"transport_data"`` would exclude both ``transport_data.csv`` and
|
||||
``transport_data_{simpl}_{clusters}.csv`` from being shared across scenarios.
|
||||
|
||||
* Move switch ``run: shared_resources:`` to ``run: shared_resources: policy:``.
|
||||
|
||||
* Add config land_transport_demand_factor to model growth in land transport demand for different time horizons.
|
||||
|
||||
* Allow dictionary for the config aviation_demand_factor.
|
||||
|
||||
* Group existing capacities to the earlier grouping_year for consistency with optimized capacities.
|
||||
|
||||
* Update data bundle:
|
||||
|
||||
- Merge electricity-only and sector-coupled data bundles into `one bundle
|
||||
<https://zenodo.org/records/10973944>`_. This means that the rule
|
||||
``retrieve_sector_databundle`` was removed.
|
||||
|
||||
- Include rasterised ``natura.tiff`` in data bundle and remove rule
|
||||
``retrieve_natura_raster``.
|
||||
|
||||
- Remove rule ``build_natura_raster`` as this rule is rarely run and increases
|
||||
the data bundle size considerably.
|
||||
|
||||
- Remove outdated files from data bundle (e.g., Eurostat energy balances)
|
||||
|
||||
- Reduce spatial scope of GEBCO bathymetry data to Europe to save space.
|
||||
|
||||
- Remove the use of a separate data bundle for tutorials.
|
||||
|
||||
- Directly download `Hotmaps Industrial Database
|
||||
<https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database/-/blob/master/data/Industrial_Database.csv>`__
|
||||
from source and remove ``Industrial_Database.csv`` from data bundle.
|
||||
|
||||
* bugfix: installed heating capacities were 5% lower than existing heating capacities
|
||||
|
||||
* Include gas and oil fields and saline aquifers in estimation of CO2 sequestration potential.
|
||||
@ -172,6 +228,10 @@ Upcoming Release
|
||||
|
||||
* Bugfix: allow modelling sector-coupled landlocked regions. (Fixed handling of offshore wind.)
|
||||
|
||||
* Bugfix: approximation of hydro power generation if Portugal or Spain are not included works now.
|
||||
|
||||
* Bugfix: copy_timeslice does not copy anymore, if country not present in load data.
|
||||
|
||||
* Adapt the disabling of transmission expansion in myopic foresight optimisations when limit is already reached to also handle cost limits.
|
||||
|
||||
* Fix duplicated years and grouping years reference in `add_land_use_constraint_m`.
|
||||
@ -184,12 +244,21 @@ Upcoming Release
|
||||
|
||||
* Fix custom busmap read in `cluster_network`.
|
||||
|
||||
* Added shapes to .nc file for different stages of the network object in `base_network`, `build_bus_regions`, and `cluster_network`.
|
||||
* Add `nodal_supply_energy` to `make_summary`.
|
||||
|
||||
* Data on existing renewable capacities is now consistently taken from powerplantmatching (instead of being retrieved separately); the dataset has also been updated to include 2023 values.
|
||||
|
||||
* Added shapes to .nc file for different stages of the network object in `base_network`, `simplify_network`, and `cluster_network`; the `build_bus_regions` rule is now integrated into the `base_network` rule.
|
||||
|
||||
* Fix p_nom_min of renewables generators for myopic approach and add check of existing capacities in `add_land_use_constraint_m`.
|
||||
|
||||
* Add documentation section for how to contribute documentation
|
||||
|
||||
* Clarify suffix usage in `add_existing_baseyear`.
|
||||
|
||||
* The ``{sector_opts}`` wildcard is now not used by default. All scenario definitions are now done in the ``config.yaml`` file.
|
||||
|
||||
* Fix gas network retrofitting in `add_brownfield`.
|
||||
|
||||
PyPSA-Eur 0.10.0 (19th February 2024)
|
||||
=====================================
|
||||
@ -1512,7 +1581,7 @@ This release is known to work with `PyPSA-Eur
|
||||
**Gas Transmission Network**
|
||||
|
||||
* New rule ``retrieve_gas_infrastructure_data`` that downloads and extracts the
|
||||
SciGRID_gas `IGGIELGN <https://zenodo.org/record/4767098>`__ dataset from
|
||||
SciGRID_gas `IGGIELGN <https://zenodo.org/records/4767098>`__ dataset from
|
||||
zenodo. It includes data on the transmission routes, pipe diameters,
|
||||
capacities, pressure, and whether the pipeline is bidirectional and carries
|
||||
H-Gas or L-Gas.
|
||||
@ -1672,7 +1741,7 @@ This release is known to work with `PyPSA-Eur
|
||||
PyPSA network.
|
||||
|
||||
* Updated `data bundle
|
||||
<https://zenodo.org/record/5824485/files/pypsa-eur-sec-data-bundle.tar.gz>`__
|
||||
<https://zenodo.org/records/5824485/files/pypsa-eur-sec-data-bundle.tar.gz>`__
|
||||
that includes the hydrogan salt cavern storage potentials.
|
||||
|
||||
* Updated and extended documentation in
|
||||
@ -2032,7 +2101,7 @@ PyPSA-Eur-Sec codebase in Version 0.2.0 above.
|
||||
|
||||
This model has `its own github repository
|
||||
<https://github.com/martavp/pypsa-eur-sec-30-path>`__ and is `archived
|
||||
on Zenodo <https://zenodo.org/record/4014807>`__.
|
||||
on Zenodo <https://zenodo.org/records/4014807>`__.
|
||||
|
||||
|
||||
|
||||
@ -2048,7 +2117,7 @@ European countries with one node per country. It includes demand and
|
||||
supply for electricity, space and water heating in buildings, and land
|
||||
transport.
|
||||
|
||||
It is `archived on Zenodo <https://zenodo.org/record/1146666>`__.
|
||||
It is `archived on Zenodo <https://zenodo.org/records/1146666>`__.
|
||||
|
||||
|
||||
Release Process
|
||||
|
@ -53,32 +53,6 @@ The :ref:`tutorial` uses a smaller cutout than required for the full model (30 M
|
||||
For details see :mod:`build_cutout` and read the `atlite documentation <https://atlite.readthedocs.io>`__.
|
||||
|
||||
|
||||
Rule ``retrieve_natura_raster``
|
||||
================================
|
||||
|
||||
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4706686.svg
|
||||
:target: https://doi.org/10.5281/zenodo.4706686
|
||||
|
||||
This rule, as a substitute for :mod:`build_natura_raster`, downloads an already rasterized version (`natura.tiff <https://zenodo.org/record/4706686/files/natura.tiff>`__) of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`__ natural protection areas to reduce computation times. The file is placed into the ``resources`` sub-directory.
|
||||
|
||||
**Relevant Settings**
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
enable:
|
||||
build_natura_raster:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config/config.yaml`` at
|
||||
:ref:`toplevel_cf`
|
||||
|
||||
**Outputs**
|
||||
|
||||
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`__ natural protection areas to reduce computation times.
|
||||
|
||||
.. seealso::
|
||||
For details see :mod:`build_natura_raster`.
|
||||
|
||||
|
||||
Rule ``retrieve_electricity_demand``
|
||||
====================================
|
||||
@ -118,11 +92,6 @@ This rule downloads techno-economic assumptions from the `technology-data reposi
|
||||
|
||||
- ``resources/costs.csv``
|
||||
|
||||
Rule ``retrieve_irena``
|
||||
================================
|
||||
|
||||
.. automodule:: retrieve_irena
|
||||
|
||||
Rule ``retrieve_ship_raster``
|
||||
================================
|
||||
|
||||
@ -135,14 +104,3 @@ None.
|
||||
**Outputs**
|
||||
|
||||
- ``data/shipdensity_global.zip``
|
||||
|
||||
|
||||
Rule ``retrieve_sector_databundle``
|
||||
====================================
|
||||
|
||||
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5546516.svg
|
||||
:target: https://doi.org/10.5281/zenodo.5546516
|
||||
|
||||
In addition to the databundle required for electricity-only studies,
|
||||
another databundle is required for modelling sector-coupled systems.
|
||||
The size of this data bundle is around 640 MB.
|
||||
|
@ -15,11 +15,11 @@ The total number of nodes for Europe is set in the ``config/config.yaml`` file u
|
||||
|
||||
Exemplary unsolved network clustered to 512 nodes:
|
||||
|
||||
.. image:: ../graphics/elec_s_512.png
|
||||
.. image:: img/elec_s_512.png
|
||||
|
||||
Exemplary unsolved network clustered to 37 nodes:
|
||||
|
||||
.. image:: ../graphics/elec_s_37.png
|
||||
.. image:: img/elec_s_37.png
|
||||
|
||||
The total number of nodes for Europe is set in the ``config/config.yaml`` file under `clusters <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L20>`__. The number of nodes can vary between 37, the number of independent countries/synchronous areas, and several hundred. With 200-300 nodes, the model needs 100-150 GB RAM to solve with a commercial solver like Gurobi.
|
||||
Not all of the sectors are at the full nodal resolution, and some demand for some sectors is distributed to nodes using heuristics that need to be corrected. Some networks are copper-plated to reduce computational times.
|
||||
|
@ -18,7 +18,7 @@ management, carbon capture and usage/sequestration, and gas networks.
|
||||
|
||||
The basic supply (left column) and demand (right column) options in the model are described in this figure:
|
||||
|
||||
.. image:: ../graphics/multisector_figure.png
|
||||
.. image:: img/multisector_figure.png
|
||||
|
||||
.. _Electricity supply and demand:
|
||||
|
||||
@ -72,11 +72,11 @@ For every country, heat demand is split between low and high population density
|
||||
|
||||
Cooling is electrified and is included in the electricity demand. Cooling demand is assumed to remain at current levels. An example of regional distribution of the total heat demand for network 181 regions is depicted below.
|
||||
|
||||
.. image:: ../graphics/demand-map-heat.png
|
||||
.. image:: img/demand-map-heat.png
|
||||
|
||||
As below figure shows, the current total heat demand in Europe is similar to the total electricity demand but features much more pronounced seasonal variations. The current total building heating demand in Europe adds up to 3084 TWh/a of which 78% occurs in urban areas.
|
||||
|
||||
.. image:: ../graphics/Heat_and_el_demand_timeseries.png
|
||||
.. image:: img/Heat_and_el_demand_timeseries.png
|
||||
|
||||
In practice, in PyPSA-Eur-Sec, there are heat demand buses to which the corresponding heat demands are added.
|
||||
|
||||
@ -269,7 +269,7 @@ The existing European gas transmission network is represented based on the SciGR
|
||||
|
||||
The following figure shows the unclustered European gas transmission network based on the SciGRID Gas IGGIELGN dataset. Pipelines are color-coded by estimated capacities. Markers indicate entry-points, sites of fossil resource extraction, and LNG terminals.
|
||||
|
||||
.. image:: ../graphics/gas_pipeline_figure.png
|
||||
.. image:: img/gas_pipeline_figure.png
|
||||
|
||||
.. _Biomass supply:
|
||||
|
||||
@ -374,7 +374,7 @@ Where process heat is required, our approach depends on the necessary temperatur
|
||||
|
||||
The following figure shows the final consumption of energy and non-energy feedstocks in industry today in comparison to the scenario in 2050 assumed in `Neumann et al <https://arxiv.org/abs/2207.05816>`__.
|
||||
|
||||
.. image:: ../graphics/fec_industry_today_tomorrow.png
|
||||
.. image:: img/fec_industry_today_tomorrow.png
|
||||
|
||||
|
||||
The following figure shows the process emissions in industry today (top bar) and in 2050 without
|
||||
@ -383,12 +383,12 @@ carbon capture (bottom bar) assumed in `Neumann et al <https://arxiv.org/abs/220
|
||||
|
||||
|
||||
|
||||
.. image:: ../graphics/process-emissions.png
|
||||
.. image:: img/process-emissions.png
|
||||
|
||||
|
||||
Inside each country the industrial demand is then distributed using the `Hotmaps Industrial Database <https://zenodo.org/record/4687147#.YvOaxhxBy5c>`__, which is illustrated in the figure below. This open database includes georeferenced industrial sites of energy-intensive industry sectors in EU28, including cement, basic chemicals, glass, iron and steel, non-ferrous metals, non-metallic minerals, paper, and refineries subsectors. The use of this spatial dataset enables the calculation of regional and process-specific energy demands. This approach assumes that there will be no significant migration of energy-intensive industries.
|
||||
Inside each country the industrial demand is then distributed using the `Hotmaps Industrial Database <https://zenodo.org/records/4687147#.YvOaxhxBy5c>`__, which is illustrated in the figure below. This open database includes georeferenced industrial sites of energy-intensive industry sectors in EU28, including cement, basic chemicals, glass, iron and steel, non-ferrous metals, non-metallic minerals, paper, and refineries subsectors. The use of this spatial dataset enables the calculation of regional and process-specific energy demands. This approach assumes that there will be no significant migration of energy-intensive industries.
|
||||
|
||||
.. image:: ../graphics/hotmaps.png
|
||||
.. image:: img/hotmaps.png
|
||||
|
||||
|
||||
.. _Iron and Steel:
|
||||
|
173
doc/tutorial.rst
@ -32,10 +32,9 @@ configuration, execute
|
||||
.. code:: bash
|
||||
:class: full-width
|
||||
|
||||
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_Co2L-24H.nc --configfile config/test/config.electricity.yaml
|
||||
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_.nc --configfile config/test/config.electricity.yaml
|
||||
|
||||
This configuration is set to download a reduced data set via the rules :mod:`retrieve_databundle`,
|
||||
:mod:`retrieve_natura_raster`, :mod:`retrieve_cutout`.
|
||||
This configuration is set to download a reduced cutout via the rule :mod:`retrieve_cutout`.
|
||||
For more information on the data dependencies of PyPSA-Eur, continue reading :ref:`data`.
|
||||
|
||||
How to configure runs?
|
||||
@ -115,9 +114,9 @@ clustered down to 6 buses and every 24 hours aggregated to one snapshot. The com
|
||||
|
||||
.. code:: bash
|
||||
|
||||
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_Co2L-24H.nc --configfile config/test/config.electricity.yaml
|
||||
snakemake -call results/test-elec/networks/elec_s_6_ec_lcopt_.nc --configfile config/test/config.electricity.yaml
|
||||
|
||||
orders ``snakemake`` to run the rule :mod:`solve_network` that produces the solved network and stores it in ``results/networks`` with the name ``elec_s_6_ec_lcopt_Co2L-24H.nc``:
|
||||
orders ``snakemake`` to run the rule :mod:`solve_network` that produces the solved network and stores it in ``results/networks`` with the name ``elec_s_6_ec_lcopt_.nc``:
|
||||
|
||||
.. literalinclude:: ../rules/solve_electricity.smk
|
||||
:start-at: rule solve_network:
|
||||
@ -133,89 +132,75 @@ This triggers a workflow of multiple preceding jobs that depend on each rule's i
|
||||
graph[bgcolor=white, margin=0];
|
||||
node[shape=box, style=rounded, fontname=sans, fontsize=10, penwidth=2];
|
||||
edge[penwidth=2, color=grey];
|
||||
0[label = "solve_network", color = "0.39 0.6 0.85", style="rounded"];
|
||||
1[label = "prepare_network\nll: copt\nopts: Co2L-24H", color = "0.29 0.6 0.85", style="rounded"];
|
||||
2[label = "add_extra_components", color = "0.28 0.6 0.85", style="rounded"];
|
||||
3[label = "cluster_network\nclusters: 6", color = "0.19 0.6 0.85", style="rounded"];
|
||||
4[label = "simplify_network\nsimpl: ", color = "0.01 0.6 0.85", style="rounded"];
|
||||
5[label = "add_electricity", color = "0.49 0.6 0.85", style="rounded"];
|
||||
6[label = "build_renewable_profiles\ntechnology: solar", color = "0.21 0.6 0.85", style="rounded"];
|
||||
7[label = "base_network", color = "0.27 0.6 0.85", style="rounded"];
|
||||
8[label = "build_shapes", color = "0.26 0.6 0.85", style="rounded"];
|
||||
9[label = "retrieve_databundle", color = "0.59 0.6 0.85", style="rounded"];
|
||||
10[label = "retrieve_natura_raster", color = "0.47 0.6 0.85", style="rounded"];
|
||||
11[label = "build_bus_regions", color = "0.13 0.6 0.85", style="rounded"];
|
||||
12[label = "retrieve_cutout\ncutout: be-03-2013-era5", color = "0.36 0.6 0.85", style="rounded,dashed"];
|
||||
13[label = "build_renewable_profiles\ntechnology: onwind", color = "0.21 0.6 0.85", style="rounded"];
|
||||
14[label = "build_renewable_profiles\ntechnology: offwind-ac", color = "0.21 0.6 0.85", style="rounded"];
|
||||
15[label = "build_ship_raster", color = "0.00 0.6 0.85", style="rounded"];
|
||||
16[label = "retrieve_ship_raster", color = "0.51 0.6 0.85", style="rounded,dashed"];
|
||||
17[label = "build_renewable_profiles\ntechnology: offwind-dc", color = "0.21 0.6 0.85", style="rounded"];
|
||||
18[label = "build_line_rating", color = "0.05 0.6 0.85", style="rounded"];
|
||||
19[label = "retrieve_cost_data\nyear: 2030", color = "0.15 0.6 0.85", style="rounded"];
|
||||
20[label = "build_powerplants", color = "0.54 0.6 0.85", style="rounded"];
|
||||
21[label = "build_electricity_demand", color = "0.52 0.6 0.85", style="rounded"];
|
||||
22[label = "retrieve_electricity_demand", color = "0.22 0.6 0.85", style="rounded"];
|
||||
23[label = "copy_config", color = "0.44 0.6 0.85", style="rounded"];
|
||||
0[label = "solve_network", color = "0.38 0.6 0.85", style="rounded"];
|
||||
1[label = "prepare_network\nll: copt", color = "0.53 0.6 0.85", style="rounded"];
|
||||
2[label = "add_extra_components", color = "0.01 0.6 0.85", style="rounded"];
|
||||
3[label = "cluster_network\nclusters: 6", color = "0.03 0.6 0.85", style="rounded"];
|
||||
4[label = "simplify_network\nsimpl: ", color = "0.42 0.6 0.85", style="rounded"];
|
||||
5[label = "add_electricity", color = "0.10 0.6 0.85", style="rounded"];
|
||||
6[label = "build_renewable_profiles\ntechnology: solar", color = "0.50 0.6 0.85", style="rounded"];
|
||||
7[label = "base_network", color = "0.22 0.6 0.85", style="rounded"];
|
||||
8[label = "build_shapes", color = "0.44 0.6 0.85", style="rounded"];
|
||||
9[label = "retrieve_databundle", color = "0.29 0.6 0.85", style="rounded"];
|
||||
10[label = "retrieve_cutout\ncutout: be-03-2013-era5", color = "0.49 0.6 0.85", style="rounded"];
|
||||
11[label = "build_renewable_profiles\ntechnology: onwind", color = "0.50 0.6 0.85", style="rounded"];
|
||||
12[label = "build_renewable_profiles\ntechnology: offwind-ac", color = "0.50 0.6 0.85", style="rounded"];
|
||||
13[label = "build_ship_raster", color = "0.19 0.6 0.85", style="rounded"];
|
||||
14[label = "retrieve_ship_raster", color = "0.35 0.6 0.85", style="rounded"];
|
||||
15[label = "build_renewable_profiles\ntechnology: offwind-dc", color = "0.50 0.6 0.85", style="rounded"];
|
||||
16[label = "build_line_rating", color = "0.60 0.6 0.85", style="rounded"];
|
||||
17[label = "retrieve_cost_data\nyear: 2030", color = "0.59 0.6 0.85", style="rounded"];
|
||||
18[label = "build_powerplants", color = "0.06 0.6 0.85", style="rounded"];
|
||||
19[label = "build_electricity_demand", color = "0.13 0.6 0.85", style="rounded"];
|
||||
20[label = "retrieve_electricity_demand", color = "0.49 0.6 0.85", style="rounded"];
|
||||
21[label = "retrieve_synthetic_electricity_demand", color = "0.41 0.6 0.85", style="rounded"];
|
||||
1 -> 0
|
||||
23 -> 0
|
||||
2 -> 1
|
||||
19 -> 1
|
||||
17 -> 1
|
||||
3 -> 2
|
||||
19 -> 2
|
||||
17 -> 2
|
||||
4 -> 3
|
||||
19 -> 3
|
||||
17 -> 3
|
||||
5 -> 4
|
||||
19 -> 4
|
||||
11 -> 4
|
||||
17 -> 4
|
||||
7 -> 4
|
||||
6 -> 5
|
||||
13 -> 5
|
||||
14 -> 5
|
||||
17 -> 5
|
||||
11 -> 5
|
||||
12 -> 5
|
||||
15 -> 5
|
||||
7 -> 5
|
||||
16 -> 5
|
||||
17 -> 5
|
||||
18 -> 5
|
||||
19 -> 5
|
||||
11 -> 5
|
||||
20 -> 5
|
||||
9 -> 5
|
||||
21 -> 5
|
||||
8 -> 5
|
||||
7 -> 6
|
||||
9 -> 6
|
||||
10 -> 6
|
||||
8 -> 6
|
||||
11 -> 6
|
||||
12 -> 6
|
||||
10 -> 6
|
||||
8 -> 7
|
||||
9 -> 8
|
||||
8 -> 11
|
||||
7 -> 11
|
||||
7 -> 13
|
||||
9 -> 13
|
||||
9 -> 11
|
||||
8 -> 11
|
||||
10 -> 11
|
||||
7 -> 12
|
||||
9 -> 12
|
||||
13 -> 12
|
||||
8 -> 12
|
||||
10 -> 12
|
||||
14 -> 13
|
||||
10 -> 13
|
||||
8 -> 13
|
||||
11 -> 13
|
||||
12 -> 13
|
||||
7 -> 14
|
||||
9 -> 14
|
||||
10 -> 14
|
||||
15 -> 14
|
||||
8 -> 14
|
||||
11 -> 14
|
||||
12 -> 14
|
||||
16 -> 15
|
||||
12 -> 15
|
||||
7 -> 17
|
||||
9 -> 17
|
||||
10 -> 17
|
||||
15 -> 17
|
||||
8 -> 17
|
||||
11 -> 17
|
||||
12 -> 17
|
||||
7 -> 15
|
||||
9 -> 15
|
||||
13 -> 15
|
||||
8 -> 15
|
||||
10 -> 15
|
||||
7 -> 16
|
||||
10 -> 16
|
||||
7 -> 18
|
||||
12 -> 18
|
||||
7 -> 20
|
||||
22 -> 21
|
||||
20 -> 19
|
||||
21 -> 19
|
||||
}
|
||||
|
||||
|
|
||||
@ -226,28 +211,28 @@ In the terminal, this will show up as a list of jobs to be run:
|
||||
|
||||
Building DAG of jobs...
|
||||
Job stats:
|
||||
job count
|
||||
--------------------------- -------
|
||||
add_electricity 1
|
||||
add_extra_components 1
|
||||
base_network 1
|
||||
build_bus_regions 1
|
||||
build_electricity_demand 1
|
||||
build_line_rating 1
|
||||
build_powerplants 1
|
||||
build_renewable_profiles 4
|
||||
build_shapes 1
|
||||
build_ship_raster 1
|
||||
cluster_network 1
|
||||
copy_config 1
|
||||
prepare_network 1
|
||||
retrieve_cost_data 1
|
||||
retrieve_databundle 1
|
||||
retrieve_electricity_demand 1
|
||||
retrieve_natura_raster 1
|
||||
simplify_network 1
|
||||
solve_network 1
|
||||
total 22
|
||||
job count
|
||||
------------------------------------- -------
|
||||
add_electricity 1
|
||||
add_extra_components 1
|
||||
base_network 1
|
||||
build_electricity_demand 1
|
||||
build_line_rating 1
|
||||
build_powerplants 1
|
||||
build_renewable_profiles 4
|
||||
build_shapes 1
|
||||
build_ship_raster 1
|
||||
cluster_network 1
|
||||
prepare_network 1
|
||||
retrieve_cost_data 1
|
||||
retrieve_cutout 1
|
||||
retrieve_databundle 1
|
||||
retrieve_electricity_demand 1
|
||||
retrieve_ship_raster 1
|
||||
retrieve_synthetic_electricity_demand 1
|
||||
simplify_network 1
|
||||
solve_network 1
|
||||
total 22
|
||||
|
||||
|
||||
``snakemake`` then runs these jobs in the correct order.
|
||||
@ -283,7 +268,7 @@ For example, you can explore the evolution of the PyPSA networks by running
|
||||
#. ``snakemake resources/networks/elec.nc -call --configfile config/test/config.electricity.yaml``
|
||||
#. ``snakemake resources/networks/elec_s.nc -call --configfile config/test/config.electricity.yaml``
|
||||
#. ``snakemake resources/networks/elec_s_6.nc -call --configfile config/test/config.electricity.yaml``
|
||||
#. ``snakemake resources/networks/elec_s_6_ec_lcopt_Co2L-24H.nc -call --configfile config/test/config.electricity.yaml``
|
||||
#. ``snakemake resources/networks/elec_s_6_ec_lcopt_.nc -call --configfile config/test/config.electricity.yaml``
|
||||
|
||||
To run all combinations of wildcard values provided in the ``config/config.yaml`` under ``scenario:``,
|
||||
you can use the collection rule ``solve_elec_networks``.
|
||||
@ -321,6 +306,6 @@ Jupyter Notebooks).
|
||||
|
||||
import pypsa
|
||||
|
||||
n = pypsa.Network("results/networks/elec_s_6_ec_lcopt_Co2L-24H.nc")
|
||||
n = pypsa.Network("results/networks/elec_s_6_ec_lcopt_.nc")
|
||||
|
||||
For inspiration, read the `examples section in the PyPSA documentation <https://pypsa.readthedocs.io/en/latest/examples-basic.html>`__.
|
||||
|
@ -29,11 +29,11 @@ Results
|
||||
|
||||
By the time of writing the comparison with the historical data shows partially accurate, partially improvable results. The following figures show the comparison of the dispatch of the different carriers.
|
||||
|
||||
.. image:: ../graphics/validation_seasonal_operation_area_elec_s_37_ec_lv1.0_Ept.png
|
||||
.. image:: img/validation_seasonal_operation_area_elec_s_37_ec_lv1.0_Ept.png
|
||||
:width: 100%
|
||||
:align: center
|
||||
|
||||
.. image:: ../graphics/validation_production_bar_elec_s_37_ec_lv1.0_Ept.png
|
||||
.. image:: img/validation_production_bar_elec_s_37_ec_lv1.0_Ept.png
|
||||
:width: 100%
|
||||
:align: center
|
||||
|
||||
|
@ -35,8 +35,8 @@ The ``{technology}`` wildcard
|
||||
|
||||
The ``{technology}`` wildcard specifies for which renewable energy technology to produce availability time
|
||||
series and potentials using the rule :mod:`build_renewable_profiles`.
|
||||
It can take the values ``onwind``, ``offwind-ac``, ``offwind-dc``, and ``solar`` but **not** ``hydro``
|
||||
(since hydroelectric plant profiles are created by a different rule).
|
||||
It can take the values ``onwind``, ``offwind-ac``, ``offwind-dc``, ``offwind-float``, and ``solar`` but **not** ``hydro``
|
||||
(since hydroelectric plant profiles are created by a different rule)``
|
||||
|
||||
.. _simpl:
|
||||
|
||||
@ -101,7 +101,7 @@ The ``{opts}`` wildcard
|
||||
The ``{opts}`` wildcard is used for electricity-only studies. It triggers
|
||||
optional constraints, which are activated in either :mod:`prepare_network` or
|
||||
the :mod:`solve_network` step. It may hold multiple triggers separated by ``-``,
|
||||
i.e. ``Co2L-3H`` contains the ``Co2L`` trigger and the ``3H`` switch. There are
|
||||
i.e. ``Co2L-3h`` contains the ``Co2L`` trigger and the ``3h`` switch. There are
|
||||
currently:
|
||||
|
||||
|
||||
@ -121,7 +121,7 @@ The ``{sector_opts}`` wildcard
|
||||
|
||||
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
|
||||
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
|
||||
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
|
||||
# xH is the temporal resolution; 3h is 3-hourly, i.e. one snapshot every 3 hours
|
||||
# single letters are sectors: T for land transport, H for building heating,
|
||||
# B for biomass supply, I for industry, shipping and aviation,
|
||||
# A for agriculture, forestry and fishing
|
||||
|
@ -7,440 +7,466 @@ channels:
|
||||
- bioconda
|
||||
- http://conda.anaconda.org/gurobi
|
||||
- conda-forge
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1
|
||||
- _openmp_mutex=4.5
|
||||
- affine=2.4.0
|
||||
- alsa-lib=1.2.10
|
||||
- ampl-mp=3.1.0
|
||||
- amply=0.1.6
|
||||
- appdirs=1.4.4
|
||||
- asttokens=2.4.1
|
||||
- atk-1.0=2.38.0
|
||||
- atlite=0.2.12
|
||||
- attr=2.5.1
|
||||
- attrs=23.2.0
|
||||
- aws-c-auth=0.7.15
|
||||
- aws-c-cal=0.6.9
|
||||
- aws-c-common=0.9.12
|
||||
- aws-c-compression=0.2.17
|
||||
- aws-c-event-stream=0.4.1
|
||||
- aws-c-http=0.8.0
|
||||
- aws-c-io=0.14.3
|
||||
- aws-c-mqtt=0.10.1
|
||||
- aws-c-s3=0.5.0
|
||||
- aws-c-sdkutils=0.1.14
|
||||
- aws-checksums=0.1.17
|
||||
- aws-crt-cpp=0.26.1
|
||||
- aws-sdk-cpp=1.11.242
|
||||
- azure-core-cpp=1.10.3
|
||||
- azure-storage-blobs-cpp=12.10.0
|
||||
- azure-storage-common-cpp=12.5.0
|
||||
- beautifulsoup4=4.12.3
|
||||
- blosc=1.21.5
|
||||
- bokeh=3.3.4
|
||||
- bottleneck=1.3.7
|
||||
- branca=0.7.1
|
||||
- brotli=1.1.0
|
||||
- brotli-bin=1.1.0
|
||||
- brotli-python=1.1.0
|
||||
- bzip2=1.0.8
|
||||
- c-ares=1.26.0
|
||||
- c-blosc2=2.13.2
|
||||
- ca-certificates=2024.2.2
|
||||
- cairo=1.18.0
|
||||
- cartopy=0.22.0
|
||||
- cdsapi=0.6.1
|
||||
- certifi=2024.2.2
|
||||
- cffi=1.16.0
|
||||
- cfgv=3.3.1
|
||||
- cfitsio=4.3.1
|
||||
- cftime=1.6.3
|
||||
- charset-normalizer=3.3.2
|
||||
- click=8.1.7
|
||||
- click-plugins=1.1.1
|
||||
- cligj=0.7.2
|
||||
- cloudpickle=3.0.0
|
||||
- coin-or-cbc=2.10.10
|
||||
- coin-or-cgl=0.60.7
|
||||
- coin-or-clp=1.17.8
|
||||
- coin-or-osi=0.108.8
|
||||
- coin-or-utils=2.11.9
|
||||
- coincbc=2.10.10
|
||||
- colorama=0.4.6
|
||||
- configargparse=1.7
|
||||
- connection_pool=0.0.3
|
||||
- contourpy=1.2.0
|
||||
- country_converter=1.2
|
||||
- cppad=20240000.2
|
||||
- cycler=0.12.1
|
||||
- cytoolz=0.12.3
|
||||
- dask=2024.2.0
|
||||
- dask-core=2024.2.0
|
||||
- datrie=0.8.2
|
||||
- dbus=1.13.6
|
||||
- decorator=5.1.1
|
||||
- deprecation=2.1.0
|
||||
- descartes=1.1.0
|
||||
- distlib=0.3.8
|
||||
- distributed=2024.2.0
|
||||
- distro=1.9.0
|
||||
- docutils=0.20.1
|
||||
- dpath=2.1.6
|
||||
- entsoe-py=0.6.6
|
||||
- et_xmlfile=1.1.0
|
||||
- exceptiongroup=1.2.0
|
||||
- executing=2.0.1
|
||||
- expat=2.5.0
|
||||
- filelock=3.13.1
|
||||
- fiona=1.9.5
|
||||
- folium=0.15.1
|
||||
- font-ttf-dejavu-sans-mono=2.37
|
||||
- font-ttf-inconsolata=3.000
|
||||
- font-ttf-source-code-pro=2.038
|
||||
- font-ttf-ubuntu=0.83
|
||||
- fontconfig=2.14.2
|
||||
- fonts-conda-ecosystem=1
|
||||
- fonts-conda-forge=1
|
||||
- fonttools=4.49.0
|
||||
- freetype=2.12.1
|
||||
- freexl=2.0.0
|
||||
- fribidi=1.0.10
|
||||
- fsspec=2024.2.0
|
||||
- gdal=3.8.4
|
||||
- gdk-pixbuf=2.42.10
|
||||
- geographiclib=1.52
|
||||
- geojson-rewind=1.1.0
|
||||
- geopandas=0.14.3
|
||||
- geopandas-base=0.14.3
|
||||
- geopy=2.4.1
|
||||
- geos=3.12.1
|
||||
- geotiff=1.7.1
|
||||
- gettext=0.21.1
|
||||
- gflags=2.2.2
|
||||
- giflib=5.2.1
|
||||
- gitdb=4.0.11
|
||||
- gitpython=3.1.42
|
||||
- glib=2.78.4
|
||||
- glib-tools=2.78.4
|
||||
- glog=0.6.0
|
||||
- glpk=5.0
|
||||
- gmp=6.3.0
|
||||
- graphite2=1.3.13
|
||||
- graphviz=9.0.0
|
||||
- gst-plugins-base=1.22.9
|
||||
- gstreamer=1.22.9
|
||||
- gtk2=2.24.33
|
||||
- gts=0.7.6
|
||||
- harfbuzz=8.3.0
|
||||
- hdf4=4.2.15
|
||||
- hdf5=1.14.3
|
||||
- humanfriendly=10.0
|
||||
- icu=73.2
|
||||
- identify=2.5.35
|
||||
- idna=3.6
|
||||
- importlib-metadata=7.0.1
|
||||
- importlib_metadata=7.0.1
|
||||
- importlib_resources=6.1.1
|
||||
- iniconfig=2.0.0
|
||||
- ipopt=3.14.14
|
||||
- ipython=8.21.0
|
||||
- jedi=0.19.1
|
||||
- jinja2=3.1.3
|
||||
- joblib=1.3.2
|
||||
- json-c=0.17
|
||||
- jsonschema=4.21.1
|
||||
- jsonschema-specifications=2023.12.1
|
||||
- jupyter_core=5.7.1
|
||||
- kealib=1.5.3
|
||||
- keyutils=1.6.1
|
||||
- kiwisolver=1.4.5
|
||||
- krb5=1.21.2
|
||||
- lame=3.100
|
||||
- lcms2=2.16
|
||||
- ld_impl_linux-64=2.40
|
||||
- lerc=4.0.0
|
||||
- libabseil=20230802.1
|
||||
- libaec=1.1.2
|
||||
- libarchive=3.7.2
|
||||
- libarrow=15.0.0
|
||||
- libarrow-acero=15.0.0
|
||||
- libarrow-dataset=15.0.0
|
||||
- libarrow-flight=15.0.0
|
||||
- libarrow-flight-sql=15.0.0
|
||||
- libarrow-gandiva=15.0.0
|
||||
- libarrow-substrait=15.0.0
|
||||
- libblas=3.9.0
|
||||
- libboost-headers=1.84.0
|
||||
- libbrotlicommon=1.1.0
|
||||
- libbrotlidec=1.1.0
|
||||
- libbrotlienc=1.1.0
|
||||
- libcap=2.69
|
||||
- libcblas=3.9.0
|
||||
- libclang=15.0.7
|
||||
- libclang13=15.0.7
|
||||
- libcrc32c=1.1.2
|
||||
- libcups=2.3.3
|
||||
- libcurl=8.5.0
|
||||
- libdeflate=1.19
|
||||
- libedit=3.1.20191231
|
||||
- libev=4.33
|
||||
- libevent=2.1.12
|
||||
- libexpat=2.5.0
|
||||
- libffi=3.4.2
|
||||
- libflac=1.4.3
|
||||
- libgcc-ng=13.2.0
|
||||
- libgcrypt=1.10.3
|
||||
- libgd=2.3.3
|
||||
- libgdal=3.8.4
|
||||
- libgfortran-ng=13.2.0
|
||||
- libgfortran5=13.2.0
|
||||
- libglib=2.78.4
|
||||
- libgomp=13.2.0
|
||||
- libgoogle-cloud=2.12.0
|
||||
- libgpg-error=1.47
|
||||
- libgrpc=1.60.1
|
||||
- libhwloc=2.9.3
|
||||
- libiconv=1.17
|
||||
- libjpeg-turbo=3.0.0
|
||||
- libkml=1.3.0
|
||||
- liblapack=3.9.0
|
||||
- liblapacke=3.9.0
|
||||
- libllvm15=15.0.7
|
||||
- libnetcdf=4.9.2
|
||||
- libnghttp2=1.58.0
|
||||
- libnl=3.9.0
|
||||
- libnsl=2.0.1
|
||||
- libnuma=2.0.16
|
||||
- libogg=1.3.4
|
||||
- libopenblas=0.3.26
|
||||
- libopus=1.3.1
|
||||
- libparquet=15.0.0
|
||||
- libpng=1.6.42
|
||||
- libpq=16.2
|
||||
- libprotobuf=4.25.1
|
||||
- libre2-11=2023.06.02
|
||||
- librsvg=2.56.3
|
||||
- librttopo=1.1.0
|
||||
- libscotch=7.0.4
|
||||
- libsndfile=1.2.2
|
||||
- libspatialindex=1.9.3
|
||||
- libspatialite=5.1.0
|
||||
- libspral=2023.09.07
|
||||
- libsqlite=3.45.1
|
||||
- libssh2=1.11.0
|
||||
- libstdcxx-ng=13.2.0
|
||||
- libsystemd0=255
|
||||
- libthrift=0.19.0
|
||||
- libtiff=4.6.0
|
||||
- libutf8proc=2.8.0
|
||||
- libuuid=2.38.1
|
||||
- libvorbis=1.3.7
|
||||
- libwebp=1.3.2
|
||||
- libwebp-base=1.3.2
|
||||
- libxcb=1.15
|
||||
- libxcrypt=4.4.36
|
||||
- libxkbcommon=1.6.0
|
||||
- libxml2=2.12.5
|
||||
- libxslt=1.1.39
|
||||
- libzip=1.10.1
|
||||
- libzlib=1.2.13
|
||||
- linopy=0.3.4
|
||||
- locket=1.0.0
|
||||
- lxml=5.1.0
|
||||
- lz4=4.3.3
|
||||
- lz4-c=1.9.4
|
||||
- lzo=2.10
|
||||
- mapclassify=2.6.1
|
||||
- markupsafe=2.1.5
|
||||
- matplotlib=3.8.3
|
||||
- matplotlib-base=3.8.3
|
||||
- matplotlib-inline=0.1.6
|
||||
- memory_profiler=0.61.0
|
||||
- metis=5.1.0
|
||||
- minizip=4.0.4
|
||||
- mpg123=1.32.4
|
||||
- msgpack-python=1.0.7
|
||||
- mumps-include=5.6.2
|
||||
- mumps-seq=5.6.2
|
||||
- munkres=1.1.4
|
||||
- mysql-common=8.0.33
|
||||
- mysql-libs=8.0.33
|
||||
- nbformat=5.9.2
|
||||
- ncurses=6.4
|
||||
- netcdf4=1.6.5
|
||||
- networkx=3.2.1
|
||||
- nodeenv=1.8.0
|
||||
- nomkl=1.0
|
||||
- nspr=4.35
|
||||
- nss=3.98
|
||||
- numexpr=2.9.0
|
||||
- numpy=1.26.4
|
||||
- openjdk=21.0.2
|
||||
- openjpeg=2.5.0
|
||||
- openpyxl=3.1.2
|
||||
- openssl=3.2.1
|
||||
- orc=1.9.2
|
||||
- packaging=23.2
|
||||
- pandas=2.2.0
|
||||
- pango=1.50.14
|
||||
- parso=0.8.3
|
||||
- partd=1.4.1
|
||||
- patsy=0.5.6
|
||||
- pcre2=10.42
|
||||
- pexpect=4.9.0
|
||||
- pickleshare=0.7.5
|
||||
- pillow=10.2.0
|
||||
- pip=24.0
|
||||
- pixman=0.43.2
|
||||
- pkgutil-resolve-name=1.3.10
|
||||
- plac=1.4.2
|
||||
- platformdirs=4.2.0
|
||||
- pluggy=1.4.0
|
||||
- ply=3.11
|
||||
- poppler=24.02.0
|
||||
- poppler-data=0.4.12
|
||||
- postgresql=16.2
|
||||
- powerplantmatching=0.5.11
|
||||
- pre-commit=3.6.2
|
||||
- progressbar2=4.3.2
|
||||
- proj=9.3.1
|
||||
- prompt-toolkit=3.0.42
|
||||
- psutil=5.9.8
|
||||
- pthread-stubs=0.4
|
||||
- ptyprocess=0.7.0
|
||||
- pulp=2.7.0
|
||||
- pulseaudio-client=16.1
|
||||
- pure_eval=0.2.2
|
||||
- py-cpuinfo=9.0.0
|
||||
- pyarrow=15.0.0
|
||||
- pyarrow-hotfix=0.6
|
||||
- pycountry=22.3.5
|
||||
- pycparser=2.21
|
||||
- pygments=2.17.2
|
||||
- pyomo=6.6.1
|
||||
- pyparsing=3.1.1
|
||||
- pyproj=3.6.1
|
||||
- pypsa=0.27.0
|
||||
- pyqt=5.15.9
|
||||
- pyqt5-sip=12.12.2
|
||||
- pyscipopt=4.4.0
|
||||
- pyshp=2.3.1
|
||||
- pysocks=1.7.1
|
||||
- pytables=3.9.2
|
||||
- pytest=8.0.0
|
||||
- python=3.11.8
|
||||
- python-dateutil=2.8.2
|
||||
- python-fastjsonschema=2.19.1
|
||||
- python-tzdata=2024.1
|
||||
- python-utils=3.8.2
|
||||
- python_abi=3.11
|
||||
- pytz=2024.1
|
||||
- pyxlsb=1.0.10
|
||||
- pyyaml=6.0.1
|
||||
- qt-main=5.15.8
|
||||
- rasterio=1.3.9
|
||||
- rdma-core=50.0
|
||||
- re2=2023.06.02
|
||||
- readline=8.2
|
||||
- referencing=0.33.0
|
||||
- requests=2.31.0
|
||||
- reretry=0.11.8
|
||||
- rioxarray=0.15.1
|
||||
- rpds-py=0.18.0
|
||||
- rtree=1.2.0
|
||||
- s2n=1.4.3
|
||||
- scikit-learn=1.4.1.post1
|
||||
- scip=8.1.0
|
||||
- scipy=1.12.0
|
||||
- scotch=7.0.4
|
||||
- seaborn=0.13.2
|
||||
- seaborn-base=0.13.2
|
||||
- setuptools=69.1.0
|
||||
- setuptools-scm=8.0.4
|
||||
- setuptools_scm=8.0.4
|
||||
- shapely=2.0.2
|
||||
- sip=6.7.12
|
||||
- six=1.16.0
|
||||
- smart_open=6.4.0
|
||||
- smmap=5.0.0
|
||||
- snakemake-minimal=7.32.4
|
||||
- snappy=1.1.10
|
||||
- snuggs=1.4.7
|
||||
- sortedcontainers=2.4.0
|
||||
- soupsieve=2.5
|
||||
- sqlite=3.45.1
|
||||
- stack_data=0.6.2
|
||||
- statsmodels=0.14.1
|
||||
- stopit=1.1.2
|
||||
- tabula-py=2.7.0
|
||||
- tabulate=0.9.0
|
||||
- tbb=2021.11.0
|
||||
- tblib=3.0.0
|
||||
- threadpoolctl=3.3.0
|
||||
- throttler=1.2.2
|
||||
- tiledb=2.20.0
|
||||
- tk=8.6.13
|
||||
- toml=0.10.2
|
||||
- tomli=2.0.1
|
||||
- toolz=0.12.1
|
||||
- toposort=1.10
|
||||
- tornado=6.3.3
|
||||
- tqdm=4.66.2
|
||||
- traitlets=5.14.1
|
||||
- typing-extensions=4.9.0
|
||||
- typing_extensions=4.9.0
|
||||
- tzcode=2024a
|
||||
- tzdata=2024a
|
||||
- ucx=1.15.0
|
||||
- ukkonen=1.0.1
|
||||
- unidecode=1.3.8
|
||||
- unixodbc=2.3.12
|
||||
- uriparser=0.9.7
|
||||
- urllib3=2.2.1
|
||||
- validators=0.22.0
|
||||
- virtualenv=20.25.0
|
||||
- wcwidth=0.2.13
|
||||
- wheel=0.42.0
|
||||
- wrapt=1.16.0
|
||||
- xarray=2024.2.0
|
||||
- xcb-util=0.4.0
|
||||
- xcb-util-image=0.4.0
|
||||
- xcb-util-keysyms=0.4.0
|
||||
- xcb-util-renderutil=0.3.9
|
||||
- xcb-util-wm=0.4.1
|
||||
- xerces-c=3.2.5
|
||||
- xkeyboard-config=2.41
|
||||
- xlrd=2.0.1
|
||||
- xorg-fixesproto=5.0
|
||||
- xorg-inputproto=2.3.2
|
||||
- xorg-kbproto=1.0.7
|
||||
- xorg-libice=1.1.1
|
||||
- xorg-libsm=1.2.4
|
||||
- xorg-libx11=1.8.7
|
||||
- xorg-libxau=1.0.11
|
||||
- xorg-libxdmcp=1.1.3
|
||||
- xorg-libxext=1.3.4
|
||||
- xorg-libxfixes=5.0.3
|
||||
- xorg-libxi=1.7.10
|
||||
- xorg-libxrender=0.9.11
|
||||
- xorg-libxt=1.3.0
|
||||
- xorg-libxtst=1.2.3
|
||||
- xorg-recordproto=1.14.2
|
||||
- xorg-renderproto=0.11.1
|
||||
- xorg-xextproto=7.3.0
|
||||
- xorg-xf86vidmodeproto=2.3.1
|
||||
- xorg-xproto=7.0.31
|
||||
- xyzservices=2023.10.1
|
||||
- xz=5.2.6
|
||||
- yaml=0.2.5
|
||||
- yte=1.5.4
|
||||
- zict=3.0.0
|
||||
- zipp=3.17.0
|
||||
- zlib=1.2.13
|
||||
- zlib-ng=2.0.7
|
||||
- zstd=1.5.5
|
||||
- _libgcc_mutex=0.1=conda_forge
|
||||
- _openmp_mutex=4.5=2_gnu
|
||||
- affine=2.4.0=pyhd8ed1ab_0
|
||||
- alsa-lib=1.2.11=hd590300_1
|
||||
- ampl-mp=3.1.0=h2cc385e_1006
|
||||
- amply=0.1.6=pyhd8ed1ab_0
|
||||
- appdirs=1.4.4=pyh9f0ad1d_0
|
||||
- argparse-dataclass=2.0.0=pyhd8ed1ab_0
|
||||
- asttokens=2.4.1=pyhd8ed1ab_0
|
||||
- atk-1.0=2.38.0=h04ea711_2
|
||||
- atlite=0.2.12=pyhd8ed1ab_0
|
||||
- attr=2.5.1=h166bdaf_1
|
||||
- attrs=23.2.0=pyh71513ae_0
|
||||
- aws-c-auth=0.7.18=he0b1f16_0
|
||||
- aws-c-cal=0.6.11=heb1d5e4_0
|
||||
- aws-c-common=0.9.15=hd590300_0
|
||||
- aws-c-compression=0.2.18=hce8ee76_3
|
||||
- aws-c-event-stream=0.4.2=h01f5eca_8
|
||||
- aws-c-http=0.8.1=hdb68c23_10
|
||||
- aws-c-io=0.14.7=hbfbeace_6
|
||||
- aws-c-mqtt=0.10.4=h50844eb_0
|
||||
- aws-c-s3=0.5.7=h6be9164_2
|
||||
- aws-c-sdkutils=0.1.15=hce8ee76_3
|
||||
- aws-checksums=0.1.18=hce8ee76_3
|
||||
- aws-crt-cpp=0.26.8=h2150271_2
|
||||
- aws-sdk-cpp=1.11.267=hddb5a97_7
|
||||
- azure-core-cpp=1.11.1=h91d86a7_1
|
||||
- azure-identity-cpp=1.6.0=hf1915f5_1
|
||||
- azure-storage-blobs-cpp=12.10.0=h00ab1b0_1
|
||||
- azure-storage-common-cpp=12.5.0=h94269e2_4
|
||||
- beautifulsoup4=4.12.3=pyha770c72_0
|
||||
- blosc=1.21.5=hc2324a3_1
|
||||
- bokeh=3.4.1=pyhd8ed1ab_0
|
||||
- bottleneck=1.3.8=py311h1f0f07a_0
|
||||
- branca=0.7.2=pyhd8ed1ab_0
|
||||
- brotli=1.1.0=hd590300_1
|
||||
- brotli-bin=1.1.0=hd590300_1
|
||||
- brotli-python=1.1.0=py311hb755f60_1
|
||||
- bzip2=1.0.8=hd590300_5
|
||||
- c-ares=1.28.1=hd590300_0
|
||||
- c-blosc2=2.14.4=hb4ffafa_1
|
||||
- ca-certificates=2024.2.2=hbcca054_0
|
||||
- cads-api-client=1.0.0=pyhd8ed1ab_0
|
||||
- cairo=1.18.0=h3faef2a_0
|
||||
- cartopy=0.23.0=py311h320fe9a_0
|
||||
- cdsapi=0.7.0=pyhd8ed1ab_0
|
||||
- certifi=2024.2.2=pyhd8ed1ab_0
|
||||
- cffi=1.16.0=py311hb3a22ac_0
|
||||
- cfgv=3.3.1=pyhd8ed1ab_0
|
||||
- cfitsio=4.4.0=hbdc6101_1
|
||||
- cftime=1.6.3=py311h1f0f07a_0
|
||||
- charset-normalizer=3.3.2=pyhd8ed1ab_0
|
||||
- click=8.1.7=unix_pyh707e725_0
|
||||
- click-plugins=1.1.1=py_0
|
||||
- cligj=0.7.2=pyhd8ed1ab_1
|
||||
- cloudpickle=3.0.0=pyhd8ed1ab_0
|
||||
- coin-or-cbc=2.10.10=h9002f0b_0
|
||||
- coin-or-cgl=0.60.7=h516709c_0
|
||||
- coin-or-clp=1.17.8=h1ee7a9c_0
|
||||
- coin-or-osi=0.108.10=haf5fa05_0
|
||||
- coin-or-utils=2.11.11=hee58242_0
|
||||
- coincbc=2.10.10=0_metapackage
|
||||
- colorama=0.4.6=pyhd8ed1ab_0
|
||||
- conda-inject=1.3.1=pyhd8ed1ab_0
|
||||
- configargparse=1.7=pyhd8ed1ab_0
|
||||
- connection_pool=0.0.3=pyhd3deb0d_0
|
||||
- contourpy=1.2.1=py311h9547e67_0
|
||||
- country_converter=1.2=pyhd8ed1ab_0
|
||||
- cppad=20240000.4=h59595ed_0
|
||||
- cycler=0.12.1=pyhd8ed1ab_0
|
||||
- cytoolz=0.12.3=py311h459d7ec_0
|
||||
- dask=2024.4.2=pyhd8ed1ab_0
|
||||
- dask-core=2024.4.2=pyhd8ed1ab_0
|
||||
- dask-expr=1.0.14=pyhd8ed1ab_0
|
||||
- datrie=0.8.2=py311h459d7ec_7
|
||||
- dbus=1.13.6=h5008d03_3
|
||||
- decorator=5.1.1=pyhd8ed1ab_0
|
||||
- deprecation=2.1.0=pyh9f0ad1d_0
|
||||
- descartes=1.1.0=py_4
|
||||
- distlib=0.3.8=pyhd8ed1ab_0
|
||||
- distributed=2024.4.2=pyhd8ed1ab_0
|
||||
- distro=1.9.0=pyhd8ed1ab_0
|
||||
- docutils=0.21.2=pyhd8ed1ab_0
|
||||
- dpath=2.1.6=pyha770c72_0
|
||||
- entsoe-py=0.6.7=pyhd8ed1ab_0
|
||||
- et_xmlfile=1.1.0=pyhd8ed1ab_0
|
||||
- exceptiongroup=1.2.0=pyhd8ed1ab_2
|
||||
- executing=2.0.1=pyhd8ed1ab_0
|
||||
- expat=2.6.2=h59595ed_0
|
||||
- filelock=3.14.0=pyhd8ed1ab_0
|
||||
- fiona=1.9.6=py311hf8e0aa6_0
|
||||
- fmt=10.2.1=h00ab1b0_0
|
||||
- folium=0.16.0=pyhd8ed1ab_0
|
||||
- font-ttf-dejavu-sans-mono=2.37=hab24e00_0
|
||||
- font-ttf-inconsolata=3.000=h77eed37_0
|
||||
- font-ttf-source-code-pro=2.038=h77eed37_0
|
||||
- font-ttf-ubuntu=0.83=h77eed37_2
|
||||
- fontconfig=2.14.2=h14ed4e7_0
|
||||
- fonts-conda-ecosystem=1=0
|
||||
- fonts-conda-forge=1=0
|
||||
- fonttools=4.51.0=py311h459d7ec_0
|
||||
- freetype=2.12.1=h267a509_2
|
||||
- freexl=2.0.0=h743c826_0
|
||||
- fribidi=1.0.10=h36c2ea0_0
|
||||
- fsspec=2024.3.1=pyhca7485f_0
|
||||
- gdal=3.8.5=py311hd032c08_2
|
||||
- gdk-pixbuf=2.42.11=hb9ae30d_0
|
||||
- geographiclib=2.0=pyhd8ed1ab_0
|
||||
- geojson-rewind=1.1.0=pyhd8ed1ab_0
|
||||
- geopandas=0.14.4=pyhd8ed1ab_0
|
||||
- geopandas-base=0.14.4=pyha770c72_0
|
||||
- geopy=2.4.1=pyhd8ed1ab_1
|
||||
- geos=3.12.1=h59595ed_0
|
||||
- geotiff=1.7.1=h6cf1f90_16
|
||||
- gettext=0.22.5=h59595ed_2
|
||||
- gettext-tools=0.22.5=h59595ed_2
|
||||
- gflags=2.2.2=he1b5a44_1004
|
||||
- giflib=5.2.2=hd590300_0
|
||||
- gitdb=4.0.11=pyhd8ed1ab_0
|
||||
- gitpython=3.1.43=pyhd8ed1ab_0
|
||||
- glib=2.80.0=hf2295e7_6
|
||||
- glib-tools=2.80.0=hde27a5a_6
|
||||
- glog=0.7.0=hed5481d_0
|
||||
- glpk=5.0=h445213a_0
|
||||
- gmp=6.3.0=h59595ed_1
|
||||
- graphite2=1.3.13=h59595ed_1003
|
||||
- graphviz=9.0.0=h78e8752_1
|
||||
- gst-plugins-base=1.24.1=hfa15dee_2
|
||||
- gstreamer=1.24.1=h98fc4e7_2
|
||||
- gtk2=2.24.33=h280cfa0_4
|
||||
- gts=0.7.6=h977cf35_4
|
||||
- harfbuzz=8.4.0=h3d44ed6_0
|
||||
- hdf4=4.2.15=h2a13503_7
|
||||
- hdf5=1.14.3=nompi_h4f84152_101
|
||||
- humanfriendly=10.0=pyhd8ed1ab_6
|
||||
- icu=73.2=h59595ed_0
|
||||
- identify=2.5.36=pyhd8ed1ab_0
|
||||
- idna=3.7=pyhd8ed1ab_0
|
||||
- immutables=0.20=py311h459d7ec_1
|
||||
- importlib-metadata=7.1.0=pyha770c72_0
|
||||
- importlib_metadata=7.1.0=hd8ed1ab_0
|
||||
- importlib_resources=6.4.0=pyhd8ed1ab_0
|
||||
- iniconfig=2.0.0=pyhd8ed1ab_0
|
||||
- ipopt=3.14.16=hf967516_0
|
||||
- ipython=8.22.2=pyh707e725_0
|
||||
- jedi=0.19.1=pyhd8ed1ab_0
|
||||
- jinja2=3.1.3=pyhd8ed1ab_0
|
||||
- joblib=1.4.2=pyhd8ed1ab_0
|
||||
- json-c=0.17=h7ab15ed_0
|
||||
- jsonschema=4.22.0=pyhd8ed1ab_0
|
||||
- jsonschema-specifications=2023.12.1=pyhd8ed1ab_0
|
||||
- jupyter_core=5.7.2=py311h38be061_0
|
||||
- kealib=1.5.3=h2f55d51_0
|
||||
- keyutils=1.6.1=h166bdaf_0
|
||||
- kiwisolver=1.4.5=py311h9547e67_1
|
||||
- krb5=1.21.2=h659d440_0
|
||||
- lame=3.100=h166bdaf_1003
|
||||
- lcms2=2.16=hb7c19ff_0
|
||||
- ld_impl_linux-64=2.40=h55db66e_0
|
||||
- lerc=4.0.0=h27087fc_0
|
||||
- libabseil=20240116.2=cxx17_h59595ed_0
|
||||
- libaec=1.1.3=h59595ed_0
|
||||
- libarchive=3.7.2=h2aa1ff5_1
|
||||
- libarrow=15.0.2=hefa796f_6_cpu
|
||||
- libarrow-acero=15.0.2=hbabe93e_6_cpu
|
||||
- libarrow-dataset=15.0.2=hbabe93e_6_cpu
|
||||
- libarrow-flight=15.0.2=hc4f8a93_6_cpu
|
||||
- libarrow-flight-sql=15.0.2=he4f5ca8_6_cpu
|
||||
- libarrow-gandiva=15.0.2=hc1954e9_6_cpu
|
||||
- libarrow-substrait=15.0.2=he4f5ca8_6_cpu
|
||||
- libasprintf=0.22.5=h661eb56_2
|
||||
- libasprintf-devel=0.22.5=h661eb56_2
|
||||
- libblas=3.9.0=22_linux64_openblas
|
||||
- libboost-headers=1.84.0=ha770c72_2
|
||||
- libbrotlicommon=1.1.0=hd590300_1
|
||||
- libbrotlidec=1.1.0=hd590300_1
|
||||
- libbrotlienc=1.1.0=hd590300_1
|
||||
- libcap=2.69=h0f662aa_0
|
||||
- libcblas=3.9.0=22_linux64_openblas
|
||||
- libclang-cpp15=15.0.7=default_h127d8a8_5
|
||||
- libclang13=18.1.4=default_h5d6823c_0
|
||||
- libcrc32c=1.1.2=h9c3ff4c_0
|
||||
- libcups=2.3.3=h4637d8d_4
|
||||
- libcurl=8.7.1=hca28451_0
|
||||
- libdeflate=1.20=hd590300_0
|
||||
- libedit=3.1.20191231=he28a2e2_2
|
||||
- libev=4.33=hd590300_2
|
||||
- libevent=2.1.12=hf998b51_1
|
||||
- libexpat=2.6.2=h59595ed_0
|
||||
- libffi=3.4.2=h7f98852_5
|
||||
- libflac=1.4.3=h59595ed_0
|
||||
- libgcc-ng=13.2.0=h77fa898_6
|
||||
- libgcrypt=1.10.3=hd590300_0
|
||||
- libgd=2.3.3=h119a65a_9
|
||||
- libgdal=3.8.5=hf9625ee_2
|
||||
- libgettextpo=0.22.5=h59595ed_2
|
||||
- libgettextpo-devel=0.22.5=h59595ed_2
|
||||
- libgfortran-ng=13.2.0=h69a702a_6
|
||||
- libgfortran5=13.2.0=h43f5ff8_6
|
||||
- libglib=2.80.0=hf2295e7_6
|
||||
- libgomp=13.2.0=h77fa898_6
|
||||
- libgoogle-cloud=2.23.0=h9be4e54_1
|
||||
- libgoogle-cloud-storage=2.23.0=hc7a4891_1
|
||||
- libgpg-error=1.49=h4f305b6_0
|
||||
- libgrpc=1.62.2=h15f2491_0
|
||||
- libhwloc=2.9.3=default_h554bfaf_1009
|
||||
- libiconv=1.17=hd590300_2
|
||||
- libjpeg-turbo=3.0.0=hd590300_1
|
||||
- libkml=1.3.0=h01aab08_1018
|
||||
- liblapack=3.9.0=22_linux64_openblas
|
||||
- liblapacke=3.9.0=22_linux64_openblas
|
||||
- libllvm15=15.0.7=hb3ce162_4
|
||||
- libllvm16=16.0.6=hb3ce162_3
|
||||
- libllvm18=18.1.4=h2448989_0
|
||||
- libnetcdf=4.9.2=nompi_h9612171_113
|
||||
- libnghttp2=1.58.0=h47da74e_1
|
||||
- libnl=3.9.0=hd590300_0
|
||||
- libnsl=2.0.1=hd590300_0
|
||||
- libogg=1.3.4=h7f98852_1
|
||||
- libopenblas=0.3.27=pthreads_h413a1c8_0
|
||||
- libopus=1.3.1=h7f98852_1
|
||||
- libparquet=15.0.2=hacf5a1f_6_cpu
|
||||
- libpng=1.6.43=h2797004_0
|
||||
- libpq=16.2=h33b98f1_1
|
||||
- libprotobuf=4.25.3=h08a7969_0
|
||||
- libre2-11=2023.09.01=h5a48ba9_2
|
||||
- librsvg=2.58.0=hadf69e7_1
|
||||
- librttopo=1.1.0=h8917695_15
|
||||
- libscotch=7.0.4=h91e35bf_1
|
||||
- libsndfile=1.2.2=hc60ed4a_1
|
||||
- libspatialindex=1.9.3=h9c3ff4c_4
|
||||
- libspatialite=5.1.0=h6f065fc_5
|
||||
- libspral=2024.01.18=h6aa6db2_0
|
||||
- libsqlite=3.45.3=h2797004_0
|
||||
- libssh2=1.11.0=h0841786_0
|
||||
- libstdcxx-ng=13.2.0=hc0a3c3a_6
|
||||
- libsystemd0=255=h3516f8a_1
|
||||
- libthrift=0.19.0=hb90f79a_1
|
||||
- libtiff=4.6.0=h1dd3fc0_3
|
||||
- libutf8proc=2.8.0=h166bdaf_0
|
||||
- libuuid=2.38.1=h0b41bf4_0
|
||||
- libvorbis=1.3.7=h9c3ff4c_0
|
||||
- libwebp=1.4.0=h2c329e2_0
|
||||
- libwebp-base=1.4.0=hd590300_0
|
||||
- libxcb=1.15=h0b41bf4_0
|
||||
- libxcrypt=4.4.36=hd590300_1
|
||||
- libxkbcommon=1.7.0=h662e7e4_0
|
||||
- libxml2=2.12.6=h232c23b_2
|
||||
- libxslt=1.1.39=h76b75d6_0
|
||||
- libzip=1.10.1=h2629f0a_3
|
||||
- libzlib=1.2.13=hd590300_5
|
||||
- linopy=0.3.8=pyhd8ed1ab_0
|
||||
- locket=1.0.0=pyhd8ed1ab_0
|
||||
- lxml=5.2.1=py311hc0a218f_0
|
||||
- lz4=4.3.3=py311h38e4bf4_0
|
||||
- lz4-c=1.9.4=hcb278e6_0
|
||||
- lzo=2.10=hd590300_1001
|
||||
- mapclassify=2.6.1=pyhd8ed1ab_0
|
||||
- markupsafe=2.1.5=py311h459d7ec_0
|
||||
- matplotlib=3.8.4=py311h38be061_0
|
||||
- matplotlib-base=3.8.4=py311h54ef318_0
|
||||
- matplotlib-inline=0.1.7=pyhd8ed1ab_0
|
||||
- memory_profiler=0.61.0=pyhd8ed1ab_0
|
||||
- metis=5.1.0=h59595ed_1007
|
||||
- minizip=4.0.5=h0ab5242_0
|
||||
- mpfr=4.2.1=h9458935_1
|
||||
- mpg123=1.32.6=h59595ed_0
|
||||
- msgpack-python=1.0.7=py311h9547e67_0
|
||||
- multiurl=0.3.1=pyhd8ed1ab_0
|
||||
- mumps-include=5.6.2=ha770c72_4
|
||||
- mumps-seq=5.6.2=hfef103a_4
|
||||
- munkres=1.1.4=pyh9f0ad1d_0
|
||||
- mysql-common=8.3.0=hf1915f5_4
|
||||
- mysql-libs=8.3.0=hca2cd23_4
|
||||
- nbformat=5.10.4=pyhd8ed1ab_0
|
||||
- ncurses=6.4.20240210=h59595ed_0
|
||||
- netcdf4=1.6.5=nompi_py311he8ad708_100
|
||||
- networkx=3.3=pyhd8ed1ab_1
|
||||
- nodeenv=1.8.0=pyhd8ed1ab_0
|
||||
- nomkl=1.0=h5ca1d4c_0
|
||||
- nspr=4.35=h27087fc_0
|
||||
- nss=3.98=h1d7d5a4_0
|
||||
- numexpr=2.9.0=py311h039bad6_100
|
||||
- numpy=1.26.4=py311h64a7726_0
|
||||
- openjdk=22.0.1=hb622114_0
|
||||
- openjpeg=2.5.2=h488ebb8_0
|
||||
- openpyxl=3.1.2=py311h459d7ec_1
|
||||
- openssl=3.3.0=hd590300_0
|
||||
- orc=2.0.0=h17fec99_1
|
||||
- packaging=24.0=pyhd8ed1ab_0
|
||||
- pandas=2.2.2=py311h320fe9a_0
|
||||
- pango=1.52.2=ha41ecd1_0
|
||||
- parso=0.8.4=pyhd8ed1ab_0
|
||||
- partd=1.4.1=pyhd8ed1ab_0
|
||||
- patsy=0.5.6=pyhd8ed1ab_0
|
||||
- pcre2=10.43=hcad00b1_0
|
||||
- pexpect=4.9.0=pyhd8ed1ab_0
|
||||
- pickleshare=0.7.5=py_1003
|
||||
- pillow=10.3.0=py311h18e6fac_0
|
||||
- pip=24.0=pyhd8ed1ab_0
|
||||
- pixman=0.43.2=h59595ed_0
|
||||
- pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1
|
||||
- plac=1.4.3=pyhd8ed1ab_0
|
||||
- platformdirs=4.2.1=pyhd8ed1ab_0
|
||||
- pluggy=1.5.0=pyhd8ed1ab_0
|
||||
- ply=3.11=pyhd8ed1ab_2
|
||||
- poppler=24.04.0=hb6cd0d7_0
|
||||
- poppler-data=0.4.12=hd8ed1ab_0
|
||||
- postgresql=16.2=h82ecc9d_1
|
||||
- powerplantmatching=0.5.14=pyhd8ed1ab_0
|
||||
- pre-commit=3.7.0=pyha770c72_0
|
||||
- progressbar2=4.4.2=pyhd8ed1ab_0
|
||||
- proj=9.4.0=h1d62c97_1
|
||||
- prompt-toolkit=3.0.42=pyha770c72_0
|
||||
- psutil=5.9.8=py311h459d7ec_0
|
||||
- pthread-stubs=0.4=h36c2ea0_1001
|
||||
- ptyprocess=0.7.0=pyhd3deb0d_0
|
||||
- pulp=2.8.0=py311h38be061_0
|
||||
- pulseaudio-client=17.0=hb77b528_0
|
||||
- pure_eval=0.2.2=pyhd8ed1ab_0
|
||||
- py-cpuinfo=9.0.0=pyhd8ed1ab_0
|
||||
- pyarrow=15.0.2=py311hd5e4297_6_cpu
|
||||
- pyarrow-hotfix=0.6=pyhd8ed1ab_0
|
||||
- pycountry=22.3.5=pyhd8ed1ab_0
|
||||
- pycparser=2.22=pyhd8ed1ab_0
|
||||
- pygments=2.17.2=pyhd8ed1ab_0
|
||||
- pyomo=6.6.1=py311hb755f60_0
|
||||
- pyparsing=3.1.2=pyhd8ed1ab_0
|
||||
- pyproj=3.6.1=py311hb3a3e68_6
|
||||
- pypsa=0.27.1=pyhd8ed1ab_0
|
||||
- pyqt=5.15.9=py311hf0fb5b6_5
|
||||
- pyqt5-sip=12.12.2=py311hb755f60_5
|
||||
- pyscipopt=5.0.1=py311hb755f60_0
|
||||
- pyshp=2.3.1=pyhd8ed1ab_0
|
||||
- pysocks=1.7.1=pyha2e5f31_6
|
||||
- pytables=3.9.2=py311h3e8b7c9_2
|
||||
- pytest=8.2.0=pyhd8ed1ab_0
|
||||
- python=3.11.9=hb806964_0_cpython
|
||||
- python-dateutil=2.9.0=pyhd8ed1ab_0
|
||||
- python-fastjsonschema=2.19.1=pyhd8ed1ab_0
|
||||
- python-tzdata=2024.1=pyhd8ed1ab_0
|
||||
- python-utils=3.8.2=pyhd8ed1ab_0
|
||||
- python_abi=3.11=4_cp311
|
||||
- pytz=2024.1=pyhd8ed1ab_0
|
||||
- pyxlsb=1.0.10=pyhd8ed1ab_0
|
||||
- pyyaml=6.0.1=py311h459d7ec_1
|
||||
- qt-main=5.15.8=hc9dc06e_21
|
||||
- rasterio=1.3.10=py311h375a7ea_0
|
||||
- rdma-core=51.0=hd3aeb46_0
|
||||
- re2=2023.09.01=h7f4b329_2
|
||||
- readline=8.2=h8228510_1
|
||||
- referencing=0.35.1=pyhd8ed1ab_0
|
||||
- requests=2.31.0=pyhd8ed1ab_0
|
||||
- reretry=0.11.8=pyhd8ed1ab_0
|
||||
- rioxarray=0.15.5=pyhd8ed1ab_0
|
||||
- rpds-py=0.18.0=py311h46250e7_0
|
||||
- rtree=1.2.0=py311h3bb2b0f_0
|
||||
- s2n=1.4.12=h06160fa_0
|
||||
- scikit-learn=1.4.2=py311hc009520_0
|
||||
- scip=9.0.0=hded5f35_4
|
||||
- scipy=1.13.0=py311h64a7726_0
|
||||
- scotch=7.0.4=h23d43cc_1
|
||||
- seaborn=0.13.2=hd8ed1ab_2
|
||||
- seaborn-base=0.13.2=pyhd8ed1ab_2
|
||||
- setuptools=69.5.1=pyhd8ed1ab_0
|
||||
- setuptools-scm=8.0.4=pyhd8ed1ab_1
|
||||
- setuptools_scm=8.0.4=hd8ed1ab_1
|
||||
- shapely=2.0.4=py311h2032efe_0
|
||||
- sip=6.7.12=py311hb755f60_0
|
||||
- six=1.16.0=pyh6c4a22f_0
|
||||
- smart_open=7.0.4=pyhd8ed1ab_0
|
||||
- smmap=5.0.0=pyhd8ed1ab_0
|
||||
- snakemake-interface-common=1.17.2=pyhdfd78af_0
|
||||
- snakemake-interface-executor-plugins=9.1.1=pyhdfd78af_0
|
||||
- snakemake-interface-report-plugins=1.0.0=pyhdfd78af_0
|
||||
- snakemake-interface-storage-plugins=3.2.2=pyhdfd78af_0
|
||||
- snakemake-minimal=8.11.1=pyhdfd78af_0
|
||||
- snappy=1.2.0=hdb0a2a9_1
|
||||
- snuggs=1.4.7=py_0
|
||||
- sortedcontainers=2.4.0=pyhd8ed1ab_0
|
||||
- soupsieve=2.5=pyhd8ed1ab_1
|
||||
- spdlog=1.13.0=hd2e6256_0
|
||||
- sqlite=3.45.3=h2c6b66d_0
|
||||
- stack_data=0.6.2=pyhd8ed1ab_0
|
||||
- statsmodels=0.14.1=py311h1f0f07a_0
|
||||
- stopit=1.1.2=py_0
|
||||
- tabula-py=2.7.0=py311h38be061_1
|
||||
- tabulate=0.9.0=pyhd8ed1ab_1
|
||||
- tbb=2021.11.0=h00ab1b0_1
|
||||
- tblib=3.0.0=pyhd8ed1ab_0
|
||||
- threadpoolctl=3.5.0=pyhc1e730c_0
|
||||
- throttler=1.2.2=pyhd8ed1ab_0
|
||||
- tiledb=2.22.0=h27f064a_3
|
||||
- tk=8.6.13=noxft_h4845f30_101
|
||||
- toml=0.10.2=pyhd8ed1ab_0
|
||||
- tomli=2.0.1=pyhd8ed1ab_0
|
||||
- toolz=0.12.1=pyhd8ed1ab_0
|
||||
- toposort=1.10=pyhd8ed1ab_0
|
||||
- tornado=6.4=py311h459d7ec_0
|
||||
- tqdm=4.66.2=pyhd8ed1ab_0
|
||||
- traitlets=5.14.3=pyhd8ed1ab_0
|
||||
- typing-extensions=4.11.0=hd8ed1ab_0
|
||||
- typing_extensions=4.11.0=pyha770c72_0
|
||||
- tzcode=2024a=h3f72095_0
|
||||
- tzdata=2024a=h0c530f3_0
|
||||
- ucx=1.15.0=ha691c75_8
|
||||
- ukkonen=1.0.1=py311h9547e67_4
|
||||
- unidecode=1.3.8=pyhd8ed1ab_0
|
||||
- unixodbc=2.3.12=h661eb56_0
|
||||
- uriparser=0.9.7=h59595ed_1
|
||||
- urllib3=2.2.1=pyhd8ed1ab_0
|
||||
- validators=0.28.1=pyhd8ed1ab_0
|
||||
- virtualenv=20.26.1=pyhd8ed1ab_0
|
||||
- wcwidth=0.2.13=pyhd8ed1ab_0
|
||||
- wheel=0.43.0=pyhd8ed1ab_1
|
||||
- wrapt=1.16.0=py311h459d7ec_0
|
||||
- xarray=2024.3.0=pyhd8ed1ab_0
|
||||
- xcb-util=0.4.0=hd590300_1
|
||||
- xcb-util-image=0.4.0=h8ee46fc_1
|
||||
- xcb-util-keysyms=0.4.0=h8ee46fc_1
|
||||
- xcb-util-renderutil=0.3.9=hd590300_1
|
||||
- xcb-util-wm=0.4.1=h8ee46fc_1
|
||||
- xerces-c=3.2.5=hac6953d_0
|
||||
- xkeyboard-config=2.41=hd590300_0
|
||||
- xlrd=2.0.1=pyhd8ed1ab_3
|
||||
- xorg-fixesproto=5.0=h7f98852_1002
|
||||
- xorg-inputproto=2.3.2=h7f98852_1002
|
||||
- xorg-kbproto=1.0.7=h7f98852_1002
|
||||
- xorg-libice=1.1.1=hd590300_0
|
||||
- xorg-libsm=1.2.4=h7391055_0
|
||||
- xorg-libx11=1.8.9=h8ee46fc_0
|
||||
- xorg-libxau=1.0.11=hd590300_0
|
||||
- xorg-libxdmcp=1.1.3=h7f98852_0
|
||||
- xorg-libxext=1.3.4=h0b41bf4_2
|
||||
- xorg-libxfixes=5.0.3=h7f98852_1004
|
||||
- xorg-libxi=1.7.10=h7f98852_0
|
||||
- xorg-libxrender=0.9.11=hd590300_0
|
||||
- xorg-libxt=1.3.0=hd590300_1
|
||||
- xorg-libxtst=1.2.3=h7f98852_1002
|
||||
- xorg-recordproto=1.14.2=h7f98852_1002
|
||||
- xorg-renderproto=0.11.1=h7f98852_1002
|
||||
- xorg-xextproto=7.3.0=h0b41bf4_1003
|
||||
- xorg-xf86vidmodeproto=2.3.1=h7f98852_1002
|
||||
- xorg-xproto=7.0.31=h7f98852_1007
|
||||
- xyzservices=2024.4.0=pyhd8ed1ab_0
|
||||
- xz=5.2.6=h166bdaf_0
|
||||
- yaml=0.2.5=h7f98852_2
|
||||
- yte=1.5.4=pyha770c72_0
|
||||
- zict=3.0.0=pyhd8ed1ab_0
|
||||
- zipp=3.17.0=pyhd8ed1ab_0
|
||||
- zlib=1.2.13=hd590300_5
|
||||
- zlib-ng=2.0.7=h0b41bf4_0
|
||||
- zstd=1.5.5=hfc55251_0
|
||||
- pip:
|
||||
- highspy==1.5.3
|
||||
- oauthlib==3.2.2
|
||||
- requests-oauthlib==1.3.1
|
||||
- snakemake-executor-plugin-cluster-generic==1.0.9
|
||||
- snakemake-executor-plugin-slurm==0.4.5
|
||||
- snakemake-executor-plugin-slurm-jobstep==0.2.1
|
||||
- snakemake-storage-plugin-http==0.2.3
|
||||
- tsam==2.3.1
|
||||
|
@ -25,7 +25,7 @@ dependencies:
|
||||
- yaml
|
||||
- pytables
|
||||
- lxml
|
||||
- powerplantmatching>=0.5.5,!=0.5.9
|
||||
- powerplantmatching>=0.5.15
|
||||
- numpy
|
||||
- pandas>=2.1
|
||||
- geopandas>=0.11.0
|
||||
|
Before Width: | Height: | Size: 543 KiB |
Before Width: | Height: | Size: 975 KiB |
Before Width: | Height: | Size: 664 KiB |
@ -86,7 +86,9 @@ rule base_network:
|
||||
offshore_shapes=resources("offshore_shapes.geojson"),
|
||||
europe_shape=resources("europe_shape.geojson"),
|
||||
output:
|
||||
resources("networks/base.nc"),
|
||||
base_network=resources("networks/base.nc"),
|
||||
regions_onshore=resources("regions_onshore.geojson"),
|
||||
regions_offshore=resources("regions_offshore.geojson"),
|
||||
log:
|
||||
logs("base_network.log"),
|
||||
benchmark:
|
||||
@ -109,7 +111,7 @@ rule build_shapes:
|
||||
nuts3=ancient("data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp"),
|
||||
nuts3pop=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
|
||||
nuts3gdp=ancient("data/bundle/nama_10r_3gdp.tsv.gz"),
|
||||
ch_cantons=ancient("data/bundle/ch_cantons.csv"),
|
||||
ch_cantons=ancient("data/ch_cantons.csv"),
|
||||
ch_popgdp=ancient("data/bundle/je-e-21.03.02.xls"),
|
||||
output:
|
||||
country_shapes=resources("country_shapes.geojson"),
|
||||
@ -127,27 +129,6 @@ rule build_shapes:
|
||||
"../scripts/build_shapes.py"
|
||||
|
||||
|
||||
rule build_bus_regions:
|
||||
params:
|
||||
countries=config_provider("countries"),
|
||||
input:
|
||||
country_shapes=resources("country_shapes.geojson"),
|
||||
offshore_shapes=resources("offshore_shapes.geojson"),
|
||||
base_network=resources("networks/base.nc"),
|
||||
output:
|
||||
regions_onshore=resources("regions_onshore.geojson"),
|
||||
regions_offshore=resources("regions_offshore.geojson"),
|
||||
log:
|
||||
logs("build_bus_regions.log"),
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=1000,
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_bus_regions.py"
|
||||
|
||||
|
||||
if config["enable"].get("build_cutout", False):
|
||||
|
||||
rule build_cutout:
|
||||
@ -172,27 +153,6 @@ if config["enable"].get("build_cutout", False):
|
||||
"../scripts/build_cutout.py"
|
||||
|
||||
|
||||
if config["enable"].get("build_natura_raster", False):
|
||||
|
||||
rule build_natura_raster:
|
||||
input:
|
||||
natura=ancient("data/bundle/natura/Natura2000_end2015.shp"),
|
||||
cutout=lambda w: "cutouts/"
|
||||
+ CDIR
|
||||
+ config_provider("atlite", "default_cutout")(w)
|
||||
+ ".nc",
|
||||
output:
|
||||
resources("natura.tiff"),
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
log:
|
||||
logs("build_natura_raster.log"),
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_natura_raster.py"
|
||||
|
||||
|
||||
rule build_ship_raster:
|
||||
input:
|
||||
ship_density="data/shipdensity_global.zip",
|
||||
@ -220,7 +180,7 @@ rule determine_availability_matrix_MD_UA:
|
||||
wdpa="data/WDPA.gpkg",
|
||||
wdpa_marine="data/WDPA_WDOECM_marine.gpkg",
|
||||
gebco=lambda w: (
|
||||
"data/bundle/GEBCO_2014_2D.nc"
|
||||
"data/bundle/gebco/GEBCO_2014_2D.nc"
|
||||
if config_provider("renewable", w.technology)(w).get("max_depth")
|
||||
else []
|
||||
),
|
||||
@ -276,7 +236,7 @@ rule build_renewable_profiles:
|
||||
base_network=resources("networks/base.nc"),
|
||||
corine=ancient("data/bundle/corine/g250_clc06_V18_5.tif"),
|
||||
natura=lambda w: (
|
||||
resources("natura.tiff")
|
||||
"data/bundle/natura/natura.tiff"
|
||||
if config_provider("renewable", w.technology, "natura")(w)
|
||||
else []
|
||||
),
|
||||
@ -287,8 +247,11 @@ rule build_renewable_profiles:
|
||||
),
|
||||
gebco=ancient(
|
||||
lambda w: (
|
||||
"data/bundle/GEBCO_2014_2D.nc"
|
||||
if config_provider("renewable", w.technology)(w).get("max_depth")
|
||||
"data/bundle/gebco/GEBCO_2014_2D.nc"
|
||||
if (
|
||||
config_provider("renewable", w.technology)(w).get("max_depth")
|
||||
or config_provider("renewable", w.technology)(w).get("min_depth")
|
||||
)
|
||||
else []
|
||||
)
|
||||
),
|
||||
@ -433,11 +396,11 @@ rule add_electricity:
|
||||
else resources("networks/base.nc")
|
||||
),
|
||||
tech_costs=lambda w: resources(
|
||||
f"costs_{config_provider('costs', 'year') (w)}.csv"
|
||||
f"costs_{config_provider('costs', 'year')(w)}.csv"
|
||||
),
|
||||
regions=resources("regions_onshore.geojson"),
|
||||
powerplants=resources("powerplants.csv"),
|
||||
hydro_capacities=ancient("data/bundle/hydro_capacities.csv"),
|
||||
hydro_capacities=ancient("data/hydro_capacities.csv"),
|
||||
geth_hydro_capacities="data/geth2015_hydro_capacities.csv",
|
||||
unit_commitment="data/unit_commitment.csv",
|
||||
fuel_price=lambda w: (
|
||||
@ -478,7 +441,7 @@ rule simplify_network:
|
||||
input:
|
||||
network=resources("networks/elec.nc"),
|
||||
tech_costs=lambda w: resources(
|
||||
f"costs_{config_provider('costs', 'year') (w)}.csv"
|
||||
f"costs_{config_provider('costs', 'year')(w)}.csv"
|
||||
),
|
||||
regions_onshore=resources("regions_onshore.geojson"),
|
||||
regions_offshore=resources("regions_offshore.geojson"),
|
||||
@ -526,7 +489,7 @@ rule cluster_network:
|
||||
else []
|
||||
),
|
||||
tech_costs=lambda w: resources(
|
||||
f"costs_{config_provider('costs', 'year') (w)}.csv"
|
||||
f"costs_{config_provider('costs', 'year')(w)}.csv"
|
||||
),
|
||||
output:
|
||||
network=resources("networks/elec_s{simpl}_{clusters}.nc"),
|
||||
@ -555,7 +518,7 @@ rule add_extra_components:
|
||||
input:
|
||||
network=resources("networks/elec_s{simpl}_{clusters}.nc"),
|
||||
tech_costs=lambda w: resources(
|
||||
f"costs_{config_provider('costs', 'year') (w)}.csv"
|
||||
f"costs_{config_provider('costs', 'year')(w)}.csv"
|
||||
),
|
||||
output:
|
||||
resources("networks/elec_s{simpl}_{clusters}_ec.nc"),
|
||||
@ -590,7 +553,7 @@ rule prepare_network:
|
||||
input:
|
||||
resources("networks/elec_s{simpl}_{clusters}_ec.nc"),
|
||||
tech_costs=lambda w: resources(
|
||||
f"costs_{config_provider('costs', 'year') (w)}.csv"
|
||||
f"costs_{config_provider('costs', 'year')(w)}.csv"
|
||||
),
|
||||
co2_price=lambda w: resources("co2_price.csv") if "Ept" in w.opts else [],
|
||||
output:
|
||||
|
@ -287,10 +287,10 @@ rule build_energy_totals:
|
||||
energy=config_provider("energy"),
|
||||
input:
|
||||
nuts3_shapes=resources("nuts3_shapes.geojson"),
|
||||
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
|
||||
co2="data/bundle/eea/UNFCCC_v23.csv",
|
||||
swiss="data/switzerland-new_format-all_years.csv",
|
||||
swiss_transport="data/gr-e-11.03.02.01.01-cc.csv",
|
||||
idees="data/bundle-sector/jrc-idees-2015",
|
||||
idees="data/bundle/jrc-idees-2015",
|
||||
district_heat_share="data/district_heat_share.csv",
|
||||
eurostat="data/eurostat/eurostat-energy_balances-april_2023_edition",
|
||||
output:
|
||||
@ -338,10 +338,10 @@ rule build_biomass_potentials:
|
||||
"https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx",
|
||||
keep_local=True,
|
||||
),
|
||||
nuts2="data/bundle-sector/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
|
||||
nuts2="data/bundle/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
|
||||
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
nuts3_population=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
|
||||
swiss_cantons=ancient("data/bundle/ch_cantons.csv"),
|
||||
swiss_cantons=ancient("data/ch_cantons.csv"),
|
||||
swiss_population=ancient("data/bundle/je-e-21.03.02.xls"),
|
||||
country_shapes=resources("country_shapes.geojson"),
|
||||
output:
|
||||
@ -416,7 +416,7 @@ rule build_sequestration_potentials:
|
||||
|
||||
rule build_salt_cavern_potentials:
|
||||
input:
|
||||
salt_caverns="data/bundle-sector/h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
salt_caverns="data/bundle/h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
regions_offshore=resources("regions_offshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
output:
|
||||
@ -436,7 +436,7 @@ rule build_salt_cavern_potentials:
|
||||
|
||||
rule build_ammonia_production:
|
||||
input:
|
||||
usgs="data/bundle-sector/myb1-2017-nitro.xls",
|
||||
usgs="data/bundle/myb1-2017-nitro.xls",
|
||||
output:
|
||||
ammonia_production=resources("ammonia_production.csv"),
|
||||
threads: 1
|
||||
@ -458,7 +458,7 @@ rule build_industry_sector_ratios:
|
||||
ammonia=config_provider("sector", "ammonia", default=False),
|
||||
input:
|
||||
ammonia_production=resources("ammonia_production.csv"),
|
||||
idees="data/bundle-sector/jrc-idees-2015",
|
||||
idees="data/bundle/jrc-idees-2015",
|
||||
output:
|
||||
industry_sector_ratios=resources("industry_sector_ratios.csv"),
|
||||
threads: 1
|
||||
@ -508,7 +508,7 @@ rule build_industrial_production_per_country:
|
||||
countries=config_provider("countries"),
|
||||
input:
|
||||
ammonia_production=resources("ammonia_production.csv"),
|
||||
jrc="data/bundle-sector/jrc-idees-2015",
|
||||
jrc="data/bundle/jrc-idees-2015",
|
||||
eurostat="data/eurostat/eurostat-energy_balances-april_2023_edition",
|
||||
output:
|
||||
industrial_production_per_country=resources(
|
||||
@ -564,7 +564,10 @@ rule build_industrial_distribution_key:
|
||||
input:
|
||||
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
clustered_pop_layout=resources("pop_layout_elec_s{simpl}_{clusters}.csv"),
|
||||
hotmaps_industrial_database="data/bundle-sector/Industrial_Database.csv",
|
||||
hotmaps_industrial_database=storage(
|
||||
"https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database/-/raw/master/data/Industrial_Database.csv",
|
||||
keep_local=True,
|
||||
),
|
||||
output:
|
||||
industrial_distribution_key=resources(
|
||||
"industrial_distribution_key_elec_s{simpl}_{clusters}.csv"
|
||||
@ -652,7 +655,7 @@ rule build_industrial_energy_demand_per_country_today:
|
||||
countries=config_provider("countries"),
|
||||
industry=config_provider("industry"),
|
||||
input:
|
||||
jrc="data/bundle-sector/jrc-idees-2015",
|
||||
jrc="data/bundle/jrc-idees-2015",
|
||||
industrial_production_per_country=resources(
|
||||
"industrial_production_per_country.csv"
|
||||
),
|
||||
@ -704,7 +707,7 @@ rule build_retro_cost:
|
||||
countries=config_provider("countries"),
|
||||
input:
|
||||
building_stock="data/retro/data_building_stock.csv",
|
||||
data_tabula="data/bundle-sector/retro/tabula-calculator-calcsetbuilding.csv",
|
||||
data_tabula="data/bundle/retro/tabula-calculator-calcsetbuilding.csv",
|
||||
air_temperature=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
|
||||
u_values_PL="data/retro/u_values_poland.csv",
|
||||
tax_w="data/retro/electricity_taxes_eu.csv",
|
||||
@ -780,8 +783,8 @@ rule build_transport_demand:
|
||||
"pop_weighted_energy_totals_s{simpl}_{clusters}.csv"
|
||||
),
|
||||
transport_data=resources("transport_data.csv"),
|
||||
traffic_data_KFZ="data/bundle-sector/emobility/KFZ__count",
|
||||
traffic_data_Pkw="data/bundle-sector/emobility/Pkw__count",
|
||||
traffic_data_KFZ="data/bundle/emobility/KFZ__count",
|
||||
traffic_data_Pkw="data/bundle/emobility/Pkw__count",
|
||||
temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
|
||||
output:
|
||||
transport_demand=resources("transport_demand_s{simpl}_{clusters}.csv"),
|
||||
@ -859,7 +862,7 @@ rule build_existing_heating_distribution:
|
||||
def input_profile_offwind(w):
|
||||
return {
|
||||
f"profile_{tech}": resources(f"profile_{tech}.nc")
|
||||
for tech in ["offwind-ac", "offwind-dc"]
|
||||
for tech in ["offwind-ac", "offwind-dc", "offwind-float"]
|
||||
if (tech in config_provider("electricity", "renewable_carriers")(w))
|
||||
}
|
||||
|
||||
@ -925,7 +928,7 @@ rule prepare_sector_network:
|
||||
avail_profile=resources("avail_profile_s{simpl}_{clusters}.csv"),
|
||||
dsm_profile=resources("dsm_profile_s{simpl}_{clusters}.csv"),
|
||||
co2_totals_name=resources("co2_totals.csv"),
|
||||
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
|
||||
co2="data/bundle/eea/UNFCCC_v23.csv",
|
||||
biomass_potentials=lambda w: (
|
||||
resources(
|
||||
"biomass_potentials_s{simpl}_{clusters}_"
|
||||
|
@ -199,6 +199,7 @@ rule make_summary:
|
||||
energy=RESULTS + "csvs/energy.csv",
|
||||
supply=RESULTS + "csvs/supply.csv",
|
||||
supply_energy=RESULTS + "csvs/supply_energy.csv",
|
||||
nodal_supply_energy=RESULTS + "csvs/nodal_supply_energy.csv",
|
||||
prices=RESULTS + "csvs/prices.csv",
|
||||
weighted_prices=RESULTS + "csvs/weighted_prices.csv",
|
||||
market_values=RESULTS + "csvs/market_values.csv",
|
||||
@ -230,7 +231,7 @@ rule plot_summary:
|
||||
energy=RESULTS + "csvs/energy.csv",
|
||||
balances=RESULTS + "csvs/supply_energy.csv",
|
||||
eurostat="data/eurostat/eurostat-energy_balances-april_2023_edition",
|
||||
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
|
||||
co2="data/bundle/eea/UNFCCC_v23.csv",
|
||||
output:
|
||||
costs=RESULTS + "graphs/costs.pdf",
|
||||
energy=RESULTS + "graphs/energy.pdf",
|
||||
|
@ -14,23 +14,27 @@ if config["enable"]["retrieve"] is False:
|
||||
|
||||
if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle", True):
|
||||
datafiles = [
|
||||
"ch_cantons.csv",
|
||||
"je-e-21.03.02.xls",
|
||||
"eez/World_EEZ_v8_2014.shp",
|
||||
"hydro_capacities.csv",
|
||||
"naturalearth/ne_10m_admin_0_countries.shp",
|
||||
"NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp",
|
||||
"nama_10r_3popgdp.tsv.gz",
|
||||
"nama_10r_3gdp.tsv.gz",
|
||||
"corine/g250_clc06_V18_5.tif",
|
||||
"eea/UNFCCC_v23.csv",
|
||||
"nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
|
||||
"myb1-2017-nitro.xls",
|
||||
"emobility/KFZ__count",
|
||||
"emobility/Pkw__count",
|
||||
"h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
"natura/natura.tiff",
|
||||
"gebco/GEBCO_2014_2D.nc",
|
||||
]
|
||||
|
||||
if not config.get("tutorial", False):
|
||||
datafiles.extend(["natura/Natura2000_end2015.shp", "GEBCO_2014_2D.nc"])
|
||||
|
||||
rule retrieve_databundle:
|
||||
output:
|
||||
protected(expand("data/bundle/{file}", file=datafiles)),
|
||||
protected(directory("data/bundle/jrc-idees-2015")),
|
||||
log:
|
||||
"logs/retrieve_databundle.log",
|
||||
resources:
|
||||
@ -41,23 +45,14 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
|
||||
script:
|
||||
"../scripts/retrieve_databundle.py"
|
||||
|
||||
|
||||
if config["enable"].get("retrieve_irena"):
|
||||
|
||||
rule retrieve_irena:
|
||||
rule retrieve_eurostat_data:
|
||||
output:
|
||||
offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
|
||||
onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
|
||||
solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
|
||||
directory("data/eurostat/eurostat-energy_balances-april_2023_edition"),
|
||||
log:
|
||||
"logs/retrieve_irena.log",
|
||||
resources:
|
||||
mem_mb=1000,
|
||||
"logs/retrieve_eurostat_data.log",
|
||||
retries: 2
|
||||
conda:
|
||||
"../envs/retrieve.yaml"
|
||||
script:
|
||||
"../scripts/retrieve_irena.py"
|
||||
"../scripts/retrieve_eurostat_data.py"
|
||||
|
||||
|
||||
if config["enable"]["retrieve"] and config["enable"].get("retrieve_cutout", True):
|
||||
@ -65,7 +60,7 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_cutout", True
|
||||
rule retrieve_cutout:
|
||||
input:
|
||||
storage(
|
||||
"https://zenodo.org/record/6382570/files/{cutout}.nc",
|
||||
"https://zenodo.org/records/6382570/files/{cutout}.nc",
|
||||
),
|
||||
output:
|
||||
protected("cutouts/" + CDIR + "{cutout}.nc"),
|
||||
@ -97,64 +92,6 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", T
|
||||
"../scripts/retrieve_cost_data.py"
|
||||
|
||||
|
||||
if config["enable"]["retrieve"] and config["enable"].get(
|
||||
"retrieve_natura_raster", True
|
||||
):
|
||||
|
||||
rule retrieve_natura_raster:
|
||||
input:
|
||||
storage(
|
||||
"https://zenodo.org/record/4706686/files/natura.tiff",
|
||||
keep_local=True,
|
||||
),
|
||||
output:
|
||||
resources("natura.tiff"),
|
||||
log:
|
||||
logs("retrieve_natura_raster.log"),
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
retries: 2
|
||||
run:
|
||||
copyfile(input[0], output[0])
|
||||
validate_checksum(output[0], input[0])
|
||||
|
||||
|
||||
if config["enable"]["retrieve"] and config["enable"].get(
|
||||
"retrieve_sector_databundle", True
|
||||
):
|
||||
datafiles = [
|
||||
"eea/UNFCCC_v23.csv",
|
||||
"switzerland-sfoe/switzerland-new_format.csv",
|
||||
"nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
|
||||
"myb1-2017-nitro.xls",
|
||||
"Industrial_Database.csv",
|
||||
"emobility/KFZ__count",
|
||||
"emobility/Pkw__count",
|
||||
"h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
]
|
||||
|
||||
rule retrieve_sector_databundle:
|
||||
output:
|
||||
protected(expand("data/bundle-sector/{files}", files=datafiles)),
|
||||
protected(directory("data/bundle-sector/jrc-idees-2015")),
|
||||
log:
|
||||
"logs/retrieve_sector_databundle.log",
|
||||
retries: 2
|
||||
conda:
|
||||
"../envs/retrieve.yaml"
|
||||
script:
|
||||
"../scripts/retrieve_sector_databundle.py"
|
||||
|
||||
rule retrieve_eurostat_data:
|
||||
output:
|
||||
directory("data/eurostat/eurostat-energy_balances-april_2023_edition"),
|
||||
log:
|
||||
"logs/retrieve_eurostat_data.log",
|
||||
retries: 2
|
||||
script:
|
||||
"../scripts/retrieve_eurostat_data.py"
|
||||
|
||||
|
||||
if config["enable"]["retrieve"]:
|
||||
datafiles = [
|
||||
"IGGIELGN_LNGs.geojson",
|
||||
@ -217,7 +154,7 @@ if config["enable"]["retrieve"]:
|
||||
rule retrieve_ship_raster:
|
||||
input:
|
||||
storage(
|
||||
"https://zenodo.org/record/6953563/files/shipdensity_global.zip",
|
||||
"https://zenodo.org/records/10973944/files/shipdensity_global.zip",
|
||||
keep_local=True,
|
||||
),
|
||||
output:
|
||||
@ -239,7 +176,7 @@ if config["enable"]["retrieve"]:
|
||||
rule download_copernicus_land_cover:
|
||||
input:
|
||||
storage(
|
||||
"https://zenodo.org/record/3939050/files/PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif",
|
||||
"https://zenodo.org/records/3939050/files/PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif",
|
||||
),
|
||||
output:
|
||||
"data/Copernicus_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326.tif",
|
||||
@ -312,7 +249,7 @@ if config["enable"]["retrieve"]:
|
||||
layer_path = (
|
||||
f"/vsizip/{params.folder}/WDPA_{bYYYY}_Public_shp_{i}.zip"
|
||||
)
|
||||
print(f"Adding layer {i + 1} of 3 to combined output file.")
|
||||
print(f"Adding layer {i+1} of 3 to combined output file.")
|
||||
shell("ogr2ogr -f gpkg -update -append {output.gpkg} {layer_path}")
|
||||
|
||||
rule download_wdpa_marine:
|
||||
@ -335,7 +272,7 @@ if config["enable"]["retrieve"]:
|
||||
for i in range(3):
|
||||
# vsizip is special driver for directly working with zipped shapefiles in ogr2ogr
|
||||
layer_path = f"/vsizip/{params.folder}/WDPA_WDOECM_{bYYYY}_Public_marine_shp_{i}.zip"
|
||||
print(f"Adding layer {i + 1} of 3 to combined output file.")
|
||||
print(f"Adding layer {i+1} of 3 to combined output file.")
|
||||
shell("ogr2ogr -f gpkg -update -append {output.gpkg} {layer_path}")
|
||||
|
||||
|
||||
|
@ -26,9 +26,6 @@ rule add_existing_baseyear:
|
||||
existing_heating_distribution=resources(
|
||||
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
|
||||
),
|
||||
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
|
||||
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
|
||||
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
|
||||
output:
|
||||
RESULTS
|
||||
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
|
@ -25,9 +25,6 @@ rule add_existing_baseyear:
|
||||
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
|
||||
),
|
||||
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
|
||||
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
|
||||
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
|
||||
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
|
||||
output:
|
||||
RESULTS
|
||||
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
|
@ -67,7 +67,7 @@ def get_rdir(run):
|
||||
return RDIR
|
||||
|
||||
|
||||
def get_run_path(fn, dir, rdir, shared_resources):
|
||||
def get_run_path(fn, dir, rdir, shared_resources, exclude_from_shared):
|
||||
"""
|
||||
Dynamically provide paths based on shared resources and filename.
|
||||
|
||||
@ -87,6 +87,8 @@ def get_run_path(fn, dir, rdir, shared_resources):
|
||||
- If string is "base", special handling for shared "base" resources (see notes).
|
||||
- If random string other than "base", this folder is used instead of the `rdir` keyword.
|
||||
- If boolean, directly specifies if the resource is shared.
|
||||
exclude_from_shared: list
|
||||
List of filenames to exclude from shared resources. Only relevant if shared_resources is "base".
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -104,10 +106,12 @@ def get_run_path(fn, dir, rdir, shared_resources):
|
||||
existing_wildcards = set(re.findall(pattern, fn))
|
||||
irrelevant_wildcards = {"technology", "year", "scope", "kind"}
|
||||
no_relevant_wildcards = not existing_wildcards - irrelevant_wildcards
|
||||
no_elec_rule = not fn.startswith("networks/elec") and not fn.startswith(
|
||||
"add_electricity"
|
||||
not_shared_rule = (
|
||||
not fn.startswith("networks/elec")
|
||||
and not fn.startswith("add_electricity")
|
||||
and not any(fn.startswith(ex) for ex in exclude_from_shared)
|
||||
)
|
||||
is_shared = no_relevant_wildcards and no_elec_rule
|
||||
is_shared = no_relevant_wildcards and not_shared_rule
|
||||
rdir = "" if is_shared else rdir
|
||||
elif isinstance(shared_resources, str):
|
||||
rdir = shared_resources + "/"
|
||||
@ -121,7 +125,7 @@ def get_run_path(fn, dir, rdir, shared_resources):
|
||||
return f"{dir}{rdir}{fn}"
|
||||
|
||||
|
||||
def path_provider(dir, rdir, shared_resources):
|
||||
def path_provider(dir, rdir, shared_resources, exclude_from_shared):
|
||||
"""
|
||||
Returns a partial function that dynamically provides paths based on shared
|
||||
resources and the filename.
|
||||
@ -132,7 +136,13 @@ def path_provider(dir, rdir, shared_resources):
|
||||
A partial function that takes a filename as input and
|
||||
returns the path to the file based on the shared_resources parameter.
|
||||
"""
|
||||
return partial(get_run_path, dir=dir, rdir=rdir, shared_resources=shared_resources)
|
||||
return partial(
|
||||
get_run_path,
|
||||
dir=dir,
|
||||
rdir=rdir,
|
||||
shared_resources=shared_resources,
|
||||
exclude_from_shared=exclude_from_shared,
|
||||
)
|
||||
|
||||
|
||||
def get_opt(opts, expr, flags=None):
|
||||
@ -707,7 +717,7 @@ def update_config_from_wildcards(config, w, inplace=True):
|
||||
|
||||
def get_checksum_from_zenodo(file_url):
|
||||
parts = file_url.split("/")
|
||||
record_id = parts[parts.index("record") + 1]
|
||||
record_id = parts[parts.index("records") + 1]
|
||||
filename = parts[-1]
|
||||
|
||||
response = requests.get(f"https://zenodo.org/api/records/{record_id}", timeout=30)
|
||||
@ -746,7 +756,7 @@ def validate_checksum(file_path, zenodo_url=None, checksum=None):
|
||||
>>> validate_checksum("/path/to/file", checksum="md5:abc123...")
|
||||
>>> validate_checksum(
|
||||
... "/path/to/file",
|
||||
... zenodo_url="https://zenodo.org/record/12345/files/example.txt",
|
||||
... zenodo_url="https://zenodo.org/records/12345/files/example.txt",
|
||||
... )
|
||||
|
||||
If the checksum is invalid, an AssertionError will be raised.
|
||||
|
@ -86,43 +86,39 @@ def add_brownfield(n, n_p, year):
|
||||
for tattr in n.component_attrs[c.name].index[selection]:
|
||||
n.import_series_from_dataframe(c.pnl[tattr], c.name, tattr)
|
||||
|
||||
# deal with gas network
|
||||
pipe_carrier = ["gas pipeline"]
|
||||
if snakemake.params.H2_retrofit:
|
||||
# drop capacities of previous year to avoid duplicating
|
||||
to_drop = n.links.carrier.isin(pipe_carrier) & (n.links.build_year != year)
|
||||
n.mremove("Link", n.links.loc[to_drop].index)
|
||||
# deal with gas network
|
||||
pipe_carrier = ["gas pipeline"]
|
||||
if snakemake.params.H2_retrofit:
|
||||
# drop capacities of previous year to avoid duplicating
|
||||
to_drop = n.links.carrier.isin(pipe_carrier) & (n.links.build_year != year)
|
||||
n.mremove("Link", n.links.loc[to_drop].index)
|
||||
|
||||
# subtract the already retrofitted from today's gas grid capacity
|
||||
h2_retrofitted_fixed_i = n.links[
|
||||
(n.links.carrier == "H2 pipeline retrofitted")
|
||||
& (n.links.build_year != year)
|
||||
].index
|
||||
gas_pipes_i = n.links[n.links.carrier.isin(pipe_carrier)].index
|
||||
CH4_per_H2 = 1 / snakemake.params.H2_retrofit_capacity_per_CH4
|
||||
fr = "H2 pipeline retrofitted"
|
||||
to = "gas pipeline"
|
||||
# today's pipe capacity
|
||||
pipe_capacity = n.links.loc[gas_pipes_i, "p_nom"]
|
||||
# already retrofitted capacity from gas -> H2
|
||||
already_retrofitted = (
|
||||
n.links.loc[h2_retrofitted_fixed_i, "p_nom"]
|
||||
.rename(lambda x: x.split("-2")[0].replace(fr, to))
|
||||
.groupby(level=0)
|
||||
.sum()
|
||||
)
|
||||
remaining_capacity = (
|
||||
pipe_capacity
|
||||
- CH4_per_H2
|
||||
* already_retrofitted.reindex(index=pipe_capacity.index).fillna(0)
|
||||
)
|
||||
n.links.loc[gas_pipes_i, "p_nom"] = remaining_capacity
|
||||
else:
|
||||
new_pipes = n.links.carrier.isin(pipe_carrier) & (
|
||||
n.links.build_year == year
|
||||
)
|
||||
n.links.loc[new_pipes, "p_nom"] = 0.0
|
||||
n.links.loc[new_pipes, "p_nom_min"] = 0.0
|
||||
# subtract the already retrofitted from today's gas grid capacity
|
||||
h2_retrofitted_fixed_i = n.links[
|
||||
(n.links.carrier == "H2 pipeline retrofitted")
|
||||
& (n.links.build_year != year)
|
||||
].index
|
||||
gas_pipes_i = n.links[n.links.carrier.isin(pipe_carrier)].index
|
||||
CH4_per_H2 = 1 / snakemake.params.H2_retrofit_capacity_per_CH4
|
||||
fr = "H2 pipeline retrofitted"
|
||||
to = "gas pipeline"
|
||||
# today's pipe capacity
|
||||
pipe_capacity = n.links.loc[gas_pipes_i, "p_nom"]
|
||||
# already retrofitted capacity from gas -> H2
|
||||
already_retrofitted = (
|
||||
n.links.loc[h2_retrofitted_fixed_i, "p_nom"]
|
||||
.rename(lambda x: x.split("-2")[0].replace(fr, to) + f"-{year}")
|
||||
.groupby(level=0)
|
||||
.sum()
|
||||
)
|
||||
remaining_capacity = pipe_capacity - CH4_per_H2 * already_retrofitted.reindex(
|
||||
index=pipe_capacity.index
|
||||
).fillna(0)
|
||||
n.links.loc[gas_pipes_i, "p_nom"] = remaining_capacity
|
||||
else:
|
||||
new_pipes = n.links.carrier.isin(pipe_carrier) & (n.links.build_year == year)
|
||||
n.links.loc[new_pipes, "p_nom"] = 0.0
|
||||
n.links.loc[new_pipes, "p_nom_min"] = 0.0
|
||||
|
||||
|
||||
def disable_grid_expansion_if_limit_hit(n):
|
||||
|
@ -46,7 +46,7 @@ Inputs
|
||||
------
|
||||
|
||||
- ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity.
|
||||
- ``data/bundle/hydro_capacities.csv``: Hydropower plant store/discharge power capacities, energy storage capacity, and average hourly inflow by country.
|
||||
- ``data/hydro_capacities.csv``: Hydropower plant store/discharge power capacities, energy storage capacity, and average hourly inflow by country.
|
||||
|
||||
.. image:: img/hydrocapacities.png
|
||||
:scale: 34 %
|
||||
|
@ -13,6 +13,7 @@ from types import SimpleNamespace
|
||||
import country_converter as coco
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import powerplantmatching as pm
|
||||
import pypsa
|
||||
import xarray as xr
|
||||
from _helpers import (
|
||||
@ -60,14 +61,22 @@ def add_existing_renewables(df_agg, costs):
|
||||
Append existing renewables to the df_agg pd.DataFrame with the conventional
|
||||
power plants.
|
||||
"""
|
||||
carriers = {"solar": "solar", "onwind": "onwind", "offwind": "offwind-ac"}
|
||||
tech_map = {"solar": "PV", "onwind": "Onshore", "offwind": "Offshore"}
|
||||
|
||||
for tech in ["solar", "onwind", "offwind"]:
|
||||
carrier = carriers[tech]
|
||||
countries = snakemake.config["countries"]
|
||||
irena = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2()
|
||||
irena = irena.query("Country in @countries")
|
||||
irena = irena.groupby(["Technology", "Country", "Year"]).Capacity.sum()
|
||||
|
||||
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.0)
|
||||
irena = irena.unstack().reset_index()
|
||||
|
||||
for carrier, tech in tech_map.items():
|
||||
df = (
|
||||
irena[irena.Technology.str.contains(tech)]
|
||||
.drop(columns=["Technology"])
|
||||
.set_index("Country")
|
||||
)
|
||||
df.columns = df.columns.astype(int)
|
||||
df.index = cc.convert(df.index, to="iso2")
|
||||
|
||||
# calculate yearly differences
|
||||
df.insert(loc=0, value=0.0, column="1999")
|
||||
@ -97,14 +106,16 @@ def add_existing_renewables(df_agg, costs):
|
||||
|
||||
for year in nodal_df.columns:
|
||||
for node in nodal_df.index:
|
||||
name = f"{node}-{tech}-{year}"
|
||||
name = f"{node}-{carrier}-{year}"
|
||||
capacity = nodal_df.loc[node, year]
|
||||
if capacity > 0.0:
|
||||
df_agg.at[name, "Fueltype"] = tech
|
||||
df_agg.at[name, "Fueltype"] = carrier
|
||||
df_agg.at[name, "Capacity"] = capacity
|
||||
df_agg.at[name, "DateIn"] = year
|
||||
df_agg.at[name, "lifetime"] = costs.at[tech, "lifetime"]
|
||||
df_agg.at[name, "DateOut"] = year + costs.at[tech, "lifetime"] - 1
|
||||
df_agg.at[name, "lifetime"] = costs.at[carrier, "lifetime"]
|
||||
df_agg.at[name, "DateOut"] = (
|
||||
year + costs.at[carrier, "lifetime"] - 1
|
||||
)
|
||||
df_agg.at[name, "cluster_bus"] = node
|
||||
|
||||
|
||||
@ -152,7 +163,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
|
||||
technology_to_drop = ["Pv", "Storage Technologies"]
|
||||
|
||||
# drop unused fueltyps and technologies
|
||||
# drop unused fueltypes and technologies
|
||||
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True)
|
||||
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True)
|
||||
df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel)
|
||||
@ -241,6 +252,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
]
|
||||
suffix = "-ac" if generator == "offwind" else ""
|
||||
name_suffix = f" {generator}{suffix}-{grouping_year}"
|
||||
name_suffix_by = f" {generator}{suffix}-{baseyear}"
|
||||
asset_i = capacity.index + name_suffix
|
||||
if generator in ["solar", "onwind", "offwind"]:
|
||||
# to consider electricity grid connection costs or a split between
|
||||
@ -270,21 +282,13 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
|
||||
# for offshore the splitting only includes coastal regions
|
||||
inv_ind = [
|
||||
i
|
||||
for i in inv_ind
|
||||
if (i + name_suffix)
|
||||
in n.generators.index.str.replace(
|
||||
str(baseyear), str(grouping_year)
|
||||
)
|
||||
i for i in inv_ind if (i + name_suffix_by) in n.generators.index
|
||||
]
|
||||
|
||||
p_max_pu = n.generators_t.p_max_pu[
|
||||
[i + name_suffix for i in inv_ind]
|
||||
]
|
||||
p_max_pu.columns = [
|
||||
i + name_suffix.replace(str(grouping_year), str(baseyear))
|
||||
for i in inv_ind
|
||||
[i + name_suffix_by for i in inv_ind]
|
||||
]
|
||||
p_max_pu.columns = [i + name_suffix for i in inv_ind]
|
||||
|
||||
n.madd(
|
||||
"Generator",
|
||||
@ -302,9 +306,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
)
|
||||
|
||||
else:
|
||||
p_max_pu = n.generators_t.p_max_pu[
|
||||
capacity.index + f" {generator}{suffix}-{baseyear}"
|
||||
]
|
||||
p_max_pu = n.generators_t.p_max_pu[capacity.index + name_suffix_by]
|
||||
|
||||
if not new_build.empty:
|
||||
n.madd(
|
||||
@ -430,7 +432,7 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
linear decommissioning of heating capacities from 2020 to 2045 is
|
||||
currently assumed heating capacities split between residential and
|
||||
services proportional to heating load in both 50% capacities
|
||||
in rural busess 50% in urban buses
|
||||
in rural buses 50% in urban buses
|
||||
"""
|
||||
logger.debug(f"Adding heating capacities installed before {baseyear}")
|
||||
|
||||
|
@ -246,7 +246,8 @@ if __name__ == "__main__":
|
||||
attach_hydrogen_pipelines(n, costs, extendable_carriers)
|
||||
|
||||
sanitize_carriers(n, snakemake.config)
|
||||
sanitize_locations(n)
|
||||
if "location" in n.buses:
|
||||
sanitize_locations(n)
|
||||
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
@ -5,10 +5,7 @@
|
||||
|
||||
# coding: utf-8
|
||||
"""
|
||||
Creates the network topology from a `ENTSO-E map extract.
|
||||
|
||||
<https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA
|
||||
network.
|
||||
Creates the network topology from an `ENTSO-E map extract <https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA network.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -59,8 +56,19 @@ Outputs
|
||||
.. image:: img/base.png
|
||||
:scale: 33 %
|
||||
|
||||
- ``resources/regions_onshore.geojson``:
|
||||
|
||||
.. image:: img/regions_onshore.png
|
||||
:scale: 33 %
|
||||
|
||||
- ``resources/regions_offshore.geojson``:
|
||||
|
||||
.. image:: img/regions_offshore.png
|
||||
:scale: 33 %
|
||||
|
||||
Description
|
||||
-----------
|
||||
Creates the network topology from an ENTSO-E map extract, and create Voronoi shapes for each bus representing both onshore and offshore regions.
|
||||
"""
|
||||
|
||||
import logging
|
||||
@ -75,11 +83,11 @@ import shapely
|
||||
import shapely.prepared
|
||||
import shapely.wkt
|
||||
import yaml
|
||||
from _helpers import configure_logging, get_snapshots, set_scenario_config
|
||||
from _helpers import REGION_COLS, configure_logging, get_snapshots, set_scenario_config
|
||||
from packaging.version import Version, parse
|
||||
from scipy import spatial
|
||||
from scipy.sparse import csgraph
|
||||
from shapely.geometry import LineString, Point
|
||||
from shapely.geometry import LineString, Point, Polygon
|
||||
|
||||
PD_GE_2_2 = parse(pd.__version__) >= Version("2.2")
|
||||
|
||||
@ -561,7 +569,7 @@ def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
|
||||
buses["substation_lv"] = (
|
||||
lv_b & onshore_b & (~buses["under_construction"]) & has_connections_b
|
||||
)
|
||||
buses["substation_off"] = (offshore_b | (hv_b & onshore_b)) & (
|
||||
buses["substation_off"] = ((hv_b & offshore_b) | (hv_b & onshore_b)) & (
|
||||
~buses["under_construction"]
|
||||
)
|
||||
|
||||
@ -779,9 +787,147 @@ def base_network(
|
||||
return n
|
||||
|
||||
|
||||
def voronoi_partition_pts(points, outline):
|
||||
"""
|
||||
Compute the polygons of a voronoi partition of `points` within the polygon
|
||||
`outline`. Taken from
|
||||
https://github.com/FRESNA/vresutils/blob/master/vresutils/graph.py.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
points : Nx2 - ndarray[dtype=float]
|
||||
outline : Polygon
|
||||
Returns
|
||||
-------
|
||||
polygons : N - ndarray[dtype=Polygon|MultiPolygon]
|
||||
"""
|
||||
points = np.asarray(points)
|
||||
|
||||
if len(points) == 1:
|
||||
polygons = [outline]
|
||||
else:
|
||||
xmin, ymin = np.amin(points, axis=0)
|
||||
xmax, ymax = np.amax(points, axis=0)
|
||||
xspan = xmax - xmin
|
||||
yspan = ymax - ymin
|
||||
|
||||
# to avoid any network positions outside all Voronoi cells, append
|
||||
# the corners of a rectangle framing these points
|
||||
vor = spatial.Voronoi(
|
||||
np.vstack(
|
||||
(
|
||||
points,
|
||||
[
|
||||
[xmin - 3.0 * xspan, ymin - 3.0 * yspan],
|
||||
[xmin - 3.0 * xspan, ymax + 3.0 * yspan],
|
||||
[xmax + 3.0 * xspan, ymin - 3.0 * yspan],
|
||||
[xmax + 3.0 * xspan, ymax + 3.0 * yspan],
|
||||
],
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
polygons = []
|
||||
for i in range(len(points)):
|
||||
poly = Polygon(vor.vertices[vor.regions[vor.point_region[i]]])
|
||||
|
||||
if not poly.is_valid:
|
||||
poly = poly.buffer(0)
|
||||
|
||||
with np.errstate(invalid="ignore"):
|
||||
poly = poly.intersection(outline)
|
||||
|
||||
polygons.append(poly)
|
||||
|
||||
return polygons
|
||||
|
||||
|
||||
def build_bus_shapes(n, country_shapes, offshore_shapes, countries):
|
||||
country_shapes = gpd.read_file(country_shapes).set_index("name")["geometry"]
|
||||
offshore_shapes = gpd.read_file(offshore_shapes)
|
||||
offshore_shapes = offshore_shapes.reindex(columns=REGION_COLS).set_index("name")[
|
||||
"geometry"
|
||||
]
|
||||
|
||||
onshore_regions = []
|
||||
offshore_regions = []
|
||||
|
||||
for country in countries:
|
||||
c_b = n.buses.country == country
|
||||
|
||||
onshore_shape = country_shapes[country]
|
||||
onshore_locs = (
|
||||
n.buses.loc[c_b & n.buses.onshore_bus]
|
||||
.sort_values(
|
||||
by="substation_lv", ascending=False
|
||||
) # preference for substations
|
||||
.drop_duplicates(subset=["x", "y"], keep="first")[["x", "y"]]
|
||||
)
|
||||
onshore_regions.append(
|
||||
gpd.GeoDataFrame(
|
||||
{
|
||||
"name": onshore_locs.index,
|
||||
"x": onshore_locs["x"],
|
||||
"y": onshore_locs["y"],
|
||||
"geometry": voronoi_partition_pts(
|
||||
onshore_locs.values, onshore_shape
|
||||
),
|
||||
"country": country,
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
if country not in offshore_shapes.index:
|
||||
continue
|
||||
offshore_shape = offshore_shapes[country]
|
||||
offshore_locs = n.buses.loc[c_b & n.buses.substation_off, ["x", "y"]]
|
||||
offshore_regions_c = gpd.GeoDataFrame(
|
||||
{
|
||||
"name": offshore_locs.index,
|
||||
"x": offshore_locs["x"],
|
||||
"y": offshore_locs["y"],
|
||||
"geometry": voronoi_partition_pts(offshore_locs.values, offshore_shape),
|
||||
"country": country,
|
||||
}
|
||||
)
|
||||
offshore_regions_c = offshore_regions_c.loc[offshore_regions_c.area > 1e-2]
|
||||
offshore_regions.append(offshore_regions_c)
|
||||
|
||||
shapes = pd.concat(onshore_regions, ignore_index=True)
|
||||
|
||||
return onshore_regions, offshore_regions, shapes
|
||||
|
||||
|
||||
def append_bus_shapes(n, shapes, type):
|
||||
"""
|
||||
Append shapes to the network. If shapes with the same component and type
|
||||
already exist, they will be removed.
|
||||
|
||||
Parameters:
|
||||
n (pypsa.Network): The network to which the shapes will be appended.
|
||||
shapes (geopandas.GeoDataFrame): The shapes to be appended.
|
||||
**kwargs: Additional keyword arguments used in `n.madd`.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
remove = n.shapes.query("component == 'Bus' and type == @type").index
|
||||
n.mremove("Shape", remove)
|
||||
|
||||
offset = n.shapes.index.astype(int).max() + 1 if not n.shapes.empty else 0
|
||||
shapes = shapes.rename(lambda x: int(x) + offset)
|
||||
n.madd(
|
||||
"Shape",
|
||||
shapes.index,
|
||||
geometry=shapes.geometry,
|
||||
idx=shapes.name,
|
||||
component="Bus",
|
||||
type=type,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("base_network")
|
||||
@ -803,5 +949,22 @@ if __name__ == "__main__":
|
||||
snakemake.config,
|
||||
)
|
||||
|
||||
onshore_regions, offshore_regions, shapes = build_bus_shapes(
|
||||
n,
|
||||
snakemake.input.country_shapes,
|
||||
snakemake.input.offshore_shapes,
|
||||
snakemake.params.countries,
|
||||
)
|
||||
|
||||
shapes.to_file(snakemake.output.regions_onshore)
|
||||
append_bus_shapes(n, shapes, "onshore")
|
||||
|
||||
if offshore_regions:
|
||||
shapes = pd.concat(offshore_regions, ignore_index=True)
|
||||
shapes.to_file(snakemake.output.regions_offshore)
|
||||
append_bus_shapes(n, shapes, "offshore")
|
||||
else:
|
||||
offshore_shapes.to_frame().to_file(snakemake.output.regions_offshore)
|
||||
|
||||
n.meta = snakemake.config
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
n.export_to_netcdf(snakemake.output.base_network)
|
||||
|
@ -1,218 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Creates Voronoi shapes for each bus representing both onshore and offshore
|
||||
regions.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
countries:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config/config.yaml`` at
|
||||
:ref:`toplevel_cf`
|
||||
|
||||
Inputs
|
||||
------
|
||||
|
||||
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
|
||||
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
|
||||
- ``networks/base.nc``: confer :ref:`base`
|
||||
|
||||
Outputs
|
||||
-------
|
||||
|
||||
- ``resources/regions_onshore.geojson``:
|
||||
|
||||
.. image:: img/regions_onshore.png
|
||||
:scale: 33 %
|
||||
|
||||
- ``resources/regions_offshore.geojson``:
|
||||
|
||||
.. image:: img/regions_offshore.png
|
||||
:scale: 33 %
|
||||
|
||||
Description
|
||||
-----------
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import REGION_COLS, configure_logging, set_scenario_config
|
||||
from scipy.spatial import Voronoi
|
||||
from shapely.geometry import Polygon
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def voronoi_partition_pts(points, outline):
|
||||
"""
|
||||
Compute the polygons of a voronoi partition of `points` within the polygon
|
||||
`outline`. Taken from
|
||||
https://github.com/FRESNA/vresutils/blob/master/vresutils/graph.py.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
points : Nx2 - ndarray[dtype=float]
|
||||
outline : Polygon
|
||||
Returns
|
||||
-------
|
||||
polygons : N - ndarray[dtype=Polygon|MultiPolygon]
|
||||
"""
|
||||
points = np.asarray(points)
|
||||
|
||||
if len(points) == 1:
|
||||
polygons = [outline]
|
||||
else:
|
||||
xmin, ymin = np.amin(points, axis=0)
|
||||
xmax, ymax = np.amax(points, axis=0)
|
||||
xspan = xmax - xmin
|
||||
yspan = ymax - ymin
|
||||
|
||||
# to avoid any network positions outside all Voronoi cells, append
|
||||
# the corners of a rectangle framing these points
|
||||
vor = Voronoi(
|
||||
np.vstack(
|
||||
(
|
||||
points,
|
||||
[
|
||||
[xmin - 3.0 * xspan, ymin - 3.0 * yspan],
|
||||
[xmin - 3.0 * xspan, ymax + 3.0 * yspan],
|
||||
[xmax + 3.0 * xspan, ymin - 3.0 * yspan],
|
||||
[xmax + 3.0 * xspan, ymax + 3.0 * yspan],
|
||||
],
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
polygons = []
|
||||
for i in range(len(points)):
|
||||
poly = Polygon(vor.vertices[vor.regions[vor.point_region[i]]])
|
||||
|
||||
if not poly.is_valid:
|
||||
poly = poly.buffer(0)
|
||||
|
||||
with np.errstate(invalid="ignore"):
|
||||
poly = poly.intersection(outline)
|
||||
|
||||
polygons.append(poly)
|
||||
|
||||
return polygons
|
||||
|
||||
|
||||
def append_bus_shapes(n, shapes, type):
|
||||
"""
|
||||
Append shapes to the network. If shapes with the same component and type
|
||||
already exist, they will be removed.
|
||||
|
||||
Parameters:
|
||||
n (pypsa.Network): The network to which the shapes will be appended.
|
||||
shapes (geopandas.GeoDataFrame): The shapes to be appended.
|
||||
**kwargs: Additional keyword arguments used in `n.madd`.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
remove = n.shapes.query("component == 'Bus' and type == @type").index
|
||||
n.mremove("Shape", remove)
|
||||
|
||||
offset = n.shapes.index.astype(int).max() + 1 if not n.shapes.empty else 0
|
||||
shapes = shapes.rename(lambda x: int(x) + offset)
|
||||
n.madd(
|
||||
"Shape",
|
||||
shapes.index,
|
||||
geometry=shapes.geometry,
|
||||
idx=shapes.name,
|
||||
component="Bus",
|
||||
type=type,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_bus_regions")
|
||||
configure_logging(snakemake)
|
||||
set_scenario_config(snakemake)
|
||||
|
||||
countries = snakemake.params.countries
|
||||
|
||||
base_network = snakemake.input.base_network
|
||||
n = pypsa.Network(base_network)
|
||||
|
||||
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index("name")[
|
||||
"geometry"
|
||||
]
|
||||
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes)
|
||||
offshore_shapes = offshore_shapes.reindex(columns=REGION_COLS).set_index("name")[
|
||||
"geometry"
|
||||
]
|
||||
|
||||
onshore_regions = []
|
||||
offshore_regions = []
|
||||
|
||||
for country in countries:
|
||||
c_b = n.buses.country == country
|
||||
|
||||
onshore_shape = country_shapes[country]
|
||||
onshore_locs = (
|
||||
n.buses.loc[c_b & n.buses.onshore_bus]
|
||||
.sort_values(
|
||||
by="substation_lv", ascending=False
|
||||
) # preference for substations
|
||||
.drop_duplicates(subset=["x", "y"], keep="first")[["x", "y"]]
|
||||
)
|
||||
onshore_regions.append(
|
||||
gpd.GeoDataFrame(
|
||||
{
|
||||
"name": onshore_locs.index,
|
||||
"x": onshore_locs["x"],
|
||||
"y": onshore_locs["y"],
|
||||
"geometry": voronoi_partition_pts(
|
||||
onshore_locs.values, onshore_shape
|
||||
),
|
||||
"country": country,
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
if country not in offshore_shapes.index:
|
||||
continue
|
||||
offshore_shape = offshore_shapes[country]
|
||||
offshore_locs = n.buses.loc[c_b & n.buses.substation_off, ["x", "y"]]
|
||||
offshore_regions_c = gpd.GeoDataFrame(
|
||||
{
|
||||
"name": offshore_locs.index,
|
||||
"x": offshore_locs["x"],
|
||||
"y": offshore_locs["y"],
|
||||
"geometry": voronoi_partition_pts(offshore_locs.values, offshore_shape),
|
||||
"country": country,
|
||||
}
|
||||
)
|
||||
offshore_regions_c = offshore_regions_c.loc[offshore_regions_c.area > 1e-2]
|
||||
offshore_regions.append(offshore_regions_c)
|
||||
|
||||
shapes = pd.concat(onshore_regions, ignore_index=True)
|
||||
shapes.to_file(snakemake.output.regions_onshore)
|
||||
append_bus_shapes(n, shapes, "onshore")
|
||||
|
||||
if offshore_regions:
|
||||
shapes = pd.concat(offshore_regions, ignore_index=True)
|
||||
shapes.to_file(snakemake.output.regions_offshore)
|
||||
append_bus_shapes(n, shapes, "offshore")
|
||||
|
||||
else:
|
||||
offshore_shapes.to_frame().to_file(snakemake.output.regions_offshore)
|
||||
|
||||
# save network with shapes
|
||||
n.export_to_netcdf(base_network)
|
@ -129,7 +129,7 @@ def copy_timeslice(load, cntry, start, stop, delta, fn_load=None):
|
||||
load.loc[start:stop, cntry] = load.loc[
|
||||
start - delta : stop - delta, cntry
|
||||
].values
|
||||
elif fn_load is not None:
|
||||
elif fn_load is not None and cntry in load:
|
||||
duration = pd.date_range(freq="h", start=start - delta, end=stop - delta)
|
||||
load_raw = load_timeseries(fn_load, duration, [cntry])
|
||||
load.loc[start:stop, cntry] = load_raw.loc[
|
||||
|
@ -142,6 +142,7 @@ def build_eurostat(input_eurostat, countries, nprocesses=1, disable_progressbar=
|
||||
"Domestic navigation": "Domestic Navigation",
|
||||
"International maritime bunkers": "Bunkers",
|
||||
"UK": "GB",
|
||||
"EL": "GR",
|
||||
}
|
||||
columns_rename = {"Total": "Total all products"}
|
||||
df.rename(index=index_rename, columns=columns_rename, inplace=True)
|
||||
|
@ -139,7 +139,10 @@ def approximate_missing_eia_stats(eia_stats, runoff_fn, countries):
|
||||
runoff.index = runoff.index.astype(int)
|
||||
|
||||
# fix outliers; exceptional floods in 1977-1979 in ES & PT
|
||||
runoff.loc[1978, ["ES", "PT"]] = runoff.loc[1979, ["ES", "PT"]]
|
||||
if "ES" in runoff:
|
||||
runoff.loc[1978, "ES"] = runoff.loc[1979, "ES"]
|
||||
if "PT" in runoff:
|
||||
runoff.loc[1978, "PT"] = runoff.loc[1979, "PT"]
|
||||
|
||||
runoff_eia = runoff.loc[eia_stats.index]
|
||||
|
||||
|
@ -313,7 +313,7 @@ def chemicals_industry():
|
||||
df.loc["methane", sector] += s_fec["Natural gas"]
|
||||
|
||||
# LPG and other feedstock materials are assimilated to naphtha
|
||||
# since they will be produced through Fischer-Tropsh process
|
||||
# since they will be produced through Fischer-Tropsch process
|
||||
sel = [
|
||||
"Solids",
|
||||
"Refinery gas",
|
||||
|
@ -1,118 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Rasters the vector data of the `Natura 2000.
|
||||
|
||||
<https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas onto all
|
||||
cutout regions.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
renewable:
|
||||
{technology}:
|
||||
cutout:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config/config.yaml`` at
|
||||
:ref:`renewable_cf`
|
||||
|
||||
Inputs
|
||||
------
|
||||
|
||||
- ``data/bundle/natura/Natura2000_end2015.shp``: `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas.
|
||||
|
||||
.. image:: img/natura.png
|
||||
:scale: 33 %
|
||||
|
||||
Outputs
|
||||
-------
|
||||
|
||||
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times.
|
||||
|
||||
.. image:: img/natura.png
|
||||
:scale: 33 %
|
||||
|
||||
Description
|
||||
-----------
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import rasterio as rio
|
||||
from _helpers import configure_logging, set_scenario_config
|
||||
from rasterio.features import geometry_mask
|
||||
from rasterio.warp import transform_bounds
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def determine_cutout_xXyY(cutout_name):
|
||||
"""
|
||||
Determine the full extent of a cutout.
|
||||
|
||||
Since the coordinates of the cutout data are given as the
|
||||
center of the grid cells, the extent of the cutout is
|
||||
calculated by adding/subtracting half of the grid cell size.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutout_name : str
|
||||
Path to the cutout.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A list of extent coordinates in the order [x, X, y, Y].
|
||||
"""
|
||||
cutout = atlite.Cutout(cutout_name)
|
||||
assert cutout.crs.to_epsg() == 4326
|
||||
x, X, y, Y = cutout.extent
|
||||
dx, dy = cutout.dx, cutout.dy
|
||||
return [x - dx / 2.0, X + dx / 2.0, y - dy / 2.0, Y + dy / 2.0]
|
||||
|
||||
|
||||
def get_transform_and_shape(bounds, res):
|
||||
left, bottom = [(b // res) * res for b in bounds[:2]]
|
||||
right, top = [(b // res + 1) * res for b in bounds[2:]]
|
||||
shape = int((top - bottom) // res), int((right - left) / res)
|
||||
transform = rio.Affine(res, 0, left, 0, -res, top)
|
||||
return transform, shape
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_natura_raster")
|
||||
configure_logging(snakemake)
|
||||
set_scenario_config(snakemake)
|
||||
|
||||
x, X, y, Y = determine_cutout_xXyY(snakemake.input.cutout)
|
||||
bounds = transform_bounds(4326, 3035, x, y, X, Y)
|
||||
transform, out_shape = get_transform_and_shape(bounds, res=100)
|
||||
|
||||
# adjusted boundaries
|
||||
shapes = gpd.read_file(snakemake.input.natura).to_crs(3035)
|
||||
raster = ~geometry_mask(shapes.geometry, out_shape, transform)
|
||||
raster = raster.astype(rio.uint8)
|
||||
|
||||
with rio.open(
|
||||
snakemake.output[0],
|
||||
"w",
|
||||
driver="GTiff",
|
||||
dtype=rio.uint8,
|
||||
count=1,
|
||||
transform=transform,
|
||||
crs=3035,
|
||||
compress="lzw",
|
||||
width=raster.shape[1],
|
||||
height=raster.shape[0],
|
||||
) as dst:
|
||||
dst.write(raster, indexes=1)
|
@ -26,7 +26,7 @@ Relevant settings
|
||||
|
||||
renewable:
|
||||
{technology}:
|
||||
cutout: corine: luisa: grid_codes: distance: natura: max_depth:
|
||||
cutout: corine: luisa: grid_codes: distance: natura: max_depth: min_depth:
|
||||
max_shore_distance: min_shore_distance: capacity_per_sqkm:
|
||||
correction_factor: min_p_max_pu: clip_p_max_pu: resource:
|
||||
|
||||
@ -52,7 +52,7 @@ Inputs
|
||||
CORINE land cover, see `Annex 1 of the technical documentation
|
||||
<https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_.
|
||||
|
||||
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric
|
||||
- ``data/bundle/gebco/GEBCO_2014_2D.nc``: A `bathymetric
|
||||
<https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain
|
||||
model for ocean and land at 15 arc-second intervals by the `General
|
||||
Bathymetric Chart of the Oceans (GEBCO)
|
||||
@ -284,6 +284,12 @@ if __name__ == "__main__":
|
||||
func = functools.partial(np.greater, -params["max_depth"])
|
||||
excluder.add_raster(snakemake.input.gebco, codes=func, crs=4326, nodata=-1000)
|
||||
|
||||
if params.get("min_depth"):
|
||||
func = functools.partial(np.greater, -params["min_depth"])
|
||||
excluder.add_raster(
|
||||
snakemake.input.gebco, codes=func, crs=4326, nodata=-1000, invert=True
|
||||
)
|
||||
|
||||
if "min_shore_distance" in params:
|
||||
buffer = params["min_shore_distance"]
|
||||
excluder.add_geometry(snakemake.input.country_shapes, buffer=buffer)
|
||||
|
@ -38,7 +38,7 @@ Inputs
|
||||
|
||||
- ``data/bundle/nama_10r_3popgdp.tsv.gz``: Average annual population by NUTS3 region (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en>`__)
|
||||
- ``data/bundle/nama_10r_3gdp.tsv.gz``: Gross domestic product (GDP) by NUTS 3 regions (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3gdp&lang=en>`__)
|
||||
- ``data/bundle/ch_cantons.csv``: Mapping between Swiss Cantons and NUTS3 regions
|
||||
- ``data/ch_cantons.csv``: Mapping between Swiss Cantons and NUTS3 regions
|
||||
- ``data/bundle/je-e-21.03.02.xls``: Population and GDP data per Canton (`BFS - Swiss Federal Statistical Office <https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.7786557.html>`_ )
|
||||
|
||||
Outputs
|
||||
|
@ -45,12 +45,38 @@ import logging
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
import atlite
|
||||
import rioxarray
|
||||
from _helpers import configure_logging, set_scenario_config
|
||||
from build_natura_raster import determine_cutout_xXyY
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def determine_cutout_xXyY(cutout_name):
|
||||
"""
|
||||
Determine the full extent of a cutout.
|
||||
|
||||
Since the coordinates of the cutout data are given as the
|
||||
center of the grid cells, the extent of the cutout is
|
||||
calculated by adding/subtracting half of the grid cell size.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutout_name : str
|
||||
Path to the cutout.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A list of extent coordinates in the order [x, X, y, Y].
|
||||
"""
|
||||
cutout = atlite.Cutout(cutout_name)
|
||||
assert cutout.crs.to_epsg() == 4326
|
||||
x, X, y, Y = cutout.extent
|
||||
dx, dy = cutout.dx, cutout.dy
|
||||
return [x - dx / 2.0, X + dx / 2.0, y - dy / 2.0, Y + dy / 2.0]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
@ -135,7 +135,7 @@ import pypsa
|
||||
import seaborn as sns
|
||||
from _helpers import configure_logging, set_scenario_config, update_p_nom_max
|
||||
from add_electricity import load_costs
|
||||
from build_bus_regions import append_bus_shapes
|
||||
from base_network import append_bus_shapes
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.clustering.spatial import (
|
||||
busmap_by_greedy_modularity,
|
||||
|
@ -413,6 +413,85 @@ def calculate_supply_energy(n, label, supply_energy):
|
||||
return supply_energy
|
||||
|
||||
|
||||
def calculate_nodal_supply_energy(n, label, nodal_supply_energy):
|
||||
"""
|
||||
Calculate the total energy supply/consumption of each component at the
|
||||
buses aggregated by carrier and node.
|
||||
"""
|
||||
|
||||
bus_carriers = n.buses.carrier.unique()
|
||||
|
||||
for i in bus_carriers:
|
||||
bus_map = n.buses.carrier == i
|
||||
bus_map.at[""] = False
|
||||
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
s = (
|
||||
pd.concat(
|
||||
[
|
||||
(
|
||||
c.pnl.p[items]
|
||||
.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
.multiply(c.df.loc[items, "sign"])
|
||||
),
|
||||
c.df.loc[items][["bus", "carrier"]],
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
.groupby(by=["bus", "carrier"])
|
||||
.sum()[0]
|
||||
)
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
nodal_supply_energy = nodal_supply_energy.reindex(
|
||||
s.index.union(nodal_supply_energy.index)
|
||||
)
|
||||
nodal_supply_energy.loc[s.index, label] = s
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
items = c.df.index[c.df["bus" + str(end)].map(bus_map).fillna(False)]
|
||||
|
||||
if (len(items) == 0) or c.pnl["p" + end].empty:
|
||||
continue
|
||||
|
||||
s = (
|
||||
pd.concat(
|
||||
[
|
||||
(
|
||||
(-1)
|
||||
* c.pnl["p" + end][items]
|
||||
.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
),
|
||||
c.df.loc[items][["bus0", "carrier"]],
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
.groupby(by=["bus0", "carrier"])
|
||||
.sum()[0]
|
||||
)
|
||||
|
||||
s.index = s.index.map(lambda x: (x[0], x[1] + end))
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
nodal_supply_energy = nodal_supply_energy.reindex(
|
||||
s.index.union(nodal_supply_energy.index)
|
||||
)
|
||||
|
||||
nodal_supply_energy.loc[s.index, label] = s
|
||||
|
||||
return nodal_supply_energy
|
||||
|
||||
|
||||
def calculate_metrics(n, label, metrics):
|
||||
metrics_list = [
|
||||
"line_volume",
|
||||
@ -637,6 +716,7 @@ def make_summaries(networks_dict):
|
||||
"energy",
|
||||
"supply",
|
||||
"supply_energy",
|
||||
"nodal_supply_energy",
|
||||
"prices",
|
||||
"weighted_prices",
|
||||
"price_statistics",
|
||||
|
@ -60,6 +60,7 @@ def rename_techs(label):
|
||||
"offwind": "offshore wind",
|
||||
"offwind-ac": "offshore wind (AC)",
|
||||
"offwind-dc": "offshore wind (DC)",
|
||||
"offwind-float": "offshore wind (Float)",
|
||||
"onwind": "onshore wind",
|
||||
"ror": "hydroelectricity",
|
||||
"hydro": "hydroelectricity",
|
||||
|
@ -97,7 +97,7 @@ def define_spatial(nodes, options):
|
||||
spatial.gas.industry = nodes + " gas for industry"
|
||||
spatial.gas.industry_cc = nodes + " gas for industry CC"
|
||||
spatial.gas.biogas_to_gas = nodes + " biogas to gas"
|
||||
spatial.gas.biogas_to_gas_cc = nodes + "biogas to gas CC"
|
||||
spatial.gas.biogas_to_gas_cc = nodes + " biogas to gas CC"
|
||||
else:
|
||||
spatial.gas.nodes = ["EU gas"]
|
||||
spatial.gas.locations = ["EU"]
|
||||
@ -906,8 +906,6 @@ def add_ammonia(n, costs):
|
||||
|
||||
nodes = pop_layout.index
|
||||
|
||||
cf_industry = snakemake.params.industry
|
||||
|
||||
n.add("Carrier", "NH3")
|
||||
|
||||
n.madd(
|
||||
@ -2865,7 +2863,7 @@ def add_industry(n, costs):
|
||||
if demand_factor != 1:
|
||||
logger.warning(f"Changing HVC demand by {demand_factor*100-100:+.2f}%.")
|
||||
|
||||
p_set_plastics = (
|
||||
p_set_naphtha = (
|
||||
demand_factor
|
||||
* industrial_demand.loc[nodes, "naphtha"].rename(
|
||||
lambda x: x + " naphtha for industry"
|
||||
@ -2874,7 +2872,7 @@ def add_industry(n, costs):
|
||||
)
|
||||
|
||||
if not options["regional_oil_demand"]:
|
||||
p_set_plastics = p_set_plastics.sum()
|
||||
p_set_naphtha = p_set_naphtha.sum()
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
@ -2889,7 +2887,7 @@ def add_industry(n, costs):
|
||||
spatial.oil.naphtha,
|
||||
bus=spatial.oil.naphtha,
|
||||
carrier="naphtha for industry",
|
||||
p_set=p_set_plastics,
|
||||
p_set=p_set_naphtha,
|
||||
)
|
||||
|
||||
# some CO2 from naphtha are process emissions from steam cracker
|
||||
@ -2900,19 +2898,114 @@ def add_industry(n, costs):
|
||||
)
|
||||
emitted_co2_per_naphtha = costs.at["oil", "CO2 intensity"] - process_co2_per_naphtha
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.naphtha,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.naphtha,
|
||||
bus2="co2 atmosphere",
|
||||
bus3=spatial.co2.process_emissions,
|
||||
carrier="naphtha for industry",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=emitted_co2_per_naphtha,
|
||||
efficiency3=process_co2_per_naphtha,
|
||||
non_sequestered = 1 - get(
|
||||
cf_industry["HVC_environment_sequestration_fraction"],
|
||||
investment_year,
|
||||
)
|
||||
|
||||
if cf_industry["waste_to_energy"] or cf_industry["waste_to_energy_cc"]:
|
||||
|
||||
non_sequestered_hvc_locations = (
|
||||
pd.Index(spatial.oil.demand_locations) + " non-sequestered HVC"
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
non_sequestered_hvc_locations,
|
||||
location=spatial.oil.demand_locations,
|
||||
carrier="non-sequestered HVC",
|
||||
unit="MWh_LHV",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.naphtha,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.naphtha,
|
||||
bus2=non_sequestered_hvc_locations,
|
||||
bus3=spatial.co2.process_emissions,
|
||||
carrier="naphtha for industry",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=non_sequestered
|
||||
* emitted_co2_per_naphtha
|
||||
/ costs.at["oil", "CO2 intensity"],
|
||||
efficiency3=process_co2_per_naphtha,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.demand_locations,
|
||||
suffix=" HVC to air",
|
||||
bus0=non_sequestered_hvc_locations,
|
||||
bus1="co2 atmosphere",
|
||||
carrier="HVC to air",
|
||||
p_nom_extendable=True,
|
||||
efficiency=costs.at["oil", "CO2 intensity"],
|
||||
)
|
||||
|
||||
if len(non_sequestered_hvc_locations) == 1:
|
||||
waste_source = non_sequestered_hvc_locations[0]
|
||||
else:
|
||||
waste_source = non_sequestered_hvc_locations
|
||||
|
||||
if cf_industry["waste_to_energy"]:
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.nodes + " waste CHP",
|
||||
bus0=waste_source,
|
||||
bus1=spatial.nodes,
|
||||
bus2=spatial.nodes + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
carrier="waste CHP",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["waste CHP", "fixed"]
|
||||
* costs.at["waste CHP", "efficiency"],
|
||||
marginal_cost=costs.at["waste CHP", "VOM"],
|
||||
efficiency=costs.at["waste CHP", "efficiency"],
|
||||
efficiency2=costs.at["waste CHP", "efficiency-heat"],
|
||||
efficiency3=costs.at["oil", "CO2 intensity"],
|
||||
lifetime=costs.at["waste CHP", "lifetime"],
|
||||
)
|
||||
|
||||
if cf_industry["waste_to_energy_cc"]:
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.nodes + " waste CHP CC",
|
||||
bus0=waste_source,
|
||||
bus1=spatial.nodes,
|
||||
bus2=spatial.nodes + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
bus4=spatial.co2.nodes,
|
||||
carrier="waste CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["waste CHP CC", "fixed"]
|
||||
* costs.at["waste CHP CC", "efficiency"],
|
||||
marginal_cost=costs.at["waste CHP CC", "VOM"],
|
||||
efficiency=costs.at["waste CHP CC", "efficiency"],
|
||||
efficiency2=costs.at["waste CHP CC", "efficiency-heat"],
|
||||
efficiency3=costs.at["oil", "CO2 intensity"]
|
||||
* (1 - options["cc_fraction"]),
|
||||
efficiency4=costs.at["oil", "CO2 intensity"] * options["cc_fraction"],
|
||||
lifetime=costs.at["waste CHP CC", "lifetime"],
|
||||
)
|
||||
|
||||
else:
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.naphtha,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.naphtha,
|
||||
bus2="co2 atmosphere",
|
||||
bus3=spatial.co2.process_emissions,
|
||||
carrier="naphtha for industry",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=emitted_co2_per_naphtha * non_sequestered,
|
||||
efficiency3=process_co2_per_naphtha,
|
||||
)
|
||||
|
||||
# aviation
|
||||
demand_factor = options.get("aviation_demand_factor", 1)
|
||||
if demand_factor != 1:
|
||||
@ -3122,7 +3215,6 @@ def add_waste_heat(n):
|
||||
# TODO options?
|
||||
|
||||
logger.info("Add possibility to use industrial waste heat in district heating")
|
||||
cf_industry = snakemake.params.industry
|
||||
|
||||
# AC buses with district heating
|
||||
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
||||
@ -3585,7 +3677,7 @@ if __name__ == "__main__":
|
||||
opts="",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
sector_opts="CO2L0-24H-T-H-B-I-A-dist1",
|
||||
sector_opts="CO2L0-24h-T-H-B-I-A-dist1",
|
||||
planning_horizons="2030",
|
||||
)
|
||||
|
||||
@ -3594,6 +3686,7 @@ if __name__ == "__main__":
|
||||
update_config_from_wildcards(snakemake.config, snakemake.wildcards)
|
||||
|
||||
options = snakemake.params.sector
|
||||
cf_industry = snakemake.params.industry
|
||||
|
||||
investment_year = int(snakemake.wildcards.planning_horizons[-4:])
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright 2019-2022 Fabian Hofmann (TUB, FIAS)
|
||||
# Copyright 2019-2024 Fabian Hofmann (TUB, FIAS), Fabian Neumann (TUB)
|
||||
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -7,24 +7,15 @@
|
||||
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3517935.svg
|
||||
:target: https://doi.org/10.5281/zenodo.3517935
|
||||
|
||||
The data bundle (1.4 GB) contains common GIS datasets like NUTS3 shapes, EEZ shapes, CORINE Landcover, Natura 2000 and also electricity specific summary statistics like historic per country yearly totals of hydro generation, GDP and POP on NUTS3 levels and per-country load time-series.
|
||||
The data bundle contains common GIS datasets like NUTS3 shapes, EEZ shapes,
|
||||
CORINE Landcover, Natura 2000 and also electricity specific summary statistics
|
||||
like historic per country yearly totals of hydro generation, GDP and population
|
||||
data on NUTS3 levels and energy balances.
|
||||
|
||||
This rule downloads the data bundle from `zenodo <https://doi.org/10.5281/zenodo.3517935>`_ and extracts it in the ``data`` sub-directory, such that all files of the bundle are stored in the ``data/bundle`` subdirectory.
|
||||
|
||||
The :ref:`tutorial` uses a smaller `data bundle <https://zenodo.org/record/3517921/files/pypsa-eur-tutorial-data-bundle.tar.xz>`_ than required for the full model (188 MB)
|
||||
|
||||
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3517921.svg
|
||||
:target: https://doi.org/10.5281/zenodo.3517921
|
||||
|
||||
**Relevant Settings**
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
tutorial:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config/config.yaml`` at
|
||||
:ref:`toplevel_cf`
|
||||
This rule downloads the data bundle from `zenodo
|
||||
<https://doi.org/10.5281/zenodo.3517935>`_ and extracts it in the ``data``
|
||||
sub-directory, such that all files of the bundle are stored in the
|
||||
``data/bundle`` subdirectory.
|
||||
|
||||
**Outputs**
|
||||
|
||||
@ -57,10 +48,7 @@ if __name__ == "__main__":
|
||||
configure_logging(snakemake)
|
||||
set_scenario_config(snakemake)
|
||||
|
||||
if snakemake.config["tutorial"]:
|
||||
url = "https://zenodo.org/record/3517921/files/pypsa-eur-tutorial-data-bundle.tar.xz"
|
||||
else:
|
||||
url = "https://zenodo.org/record/3517935/files/pypsa-eur-data-bundle.tar.xz"
|
||||
url = "https://zenodo.org/records/10973944/files/bundle.tar.xz"
|
||||
|
||||
tarball_fn = Path(f"{rootpath}/bundle.tar.xz")
|
||||
to_fn = Path(rootpath) / Path(snakemake.output[0]).parent.parent
|
||||
@ -74,6 +62,7 @@ if __name__ == "__main__":
|
||||
logger.info("Extracting databundle.")
|
||||
tarfile.open(tarball_fn).extractall(to_fn)
|
||||
|
||||
logger.info("Unlinking tarball.")
|
||||
tarball_fn.unlink()
|
||||
|
||||
logger.info(f"Databundle available in '{to_fn}'.")
|
||||
|
@ -4,7 +4,7 @@
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Retrieve gas infrastructure data from
|
||||
https://zenodo.org/record/4767098/files/IGGIELGN.zip.
|
||||
https://zenodo.org/records/4767098/files/IGGIELGN.zip.
|
||||
"""
|
||||
|
||||
import logging
|
||||
@ -32,7 +32,7 @@ if __name__ == "__main__":
|
||||
configure_logging(snakemake)
|
||||
set_scenario_config(snakemake)
|
||||
|
||||
url = "https://zenodo.org/record/4767098/files/IGGIELGN.zip"
|
||||
url = "https://zenodo.org/records/4767098/files/IGGIELGN.zip"
|
||||
|
||||
# Save locations
|
||||
zip_fn = Path(f"{rootpath}/IGGIELGN.zip")
|
||||
|
@ -1,108 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright 2023 Thomas Gilon (Climact)
|
||||
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
This rule downloads the existing capacities from `IRENASTAT <https://www.irena.org/Data/Downloads/IRENASTAT>`_ and extracts it in the ``data/existing_capacities`` sub-directory.
|
||||
|
||||
**Relevant Settings**
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
enable:
|
||||
retrieve_irena:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config.yaml`` at
|
||||
:ref:`enable_cf`
|
||||
|
||||
**Outputs**
|
||||
|
||||
- ``data/existing_capacities``: existing capacities for offwind, onwind and solar
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging, set_scenario_config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
REGIONS = [
|
||||
"Albania",
|
||||
"Austria",
|
||||
"Belgium",
|
||||
"Bosnia and Herzegovina",
|
||||
"Bulgaria",
|
||||
"Croatia",
|
||||
"Czechia",
|
||||
"Denmark",
|
||||
"Estonia",
|
||||
"Finland",
|
||||
"France",
|
||||
"Germany",
|
||||
"Greece",
|
||||
"Hungary",
|
||||
"Ireland",
|
||||
"Italy",
|
||||
"Latvia",
|
||||
"Lithuania",
|
||||
"Luxembourg",
|
||||
"Montenegro",
|
||||
# "Netherlands",
|
||||
"Netherlands (Kingdom of the)",
|
||||
"North Macedonia",
|
||||
"Norway",
|
||||
"Poland",
|
||||
"Portugal",
|
||||
"Romania",
|
||||
"Serbia",
|
||||
"Slovakia",
|
||||
"Slovenia",
|
||||
"Spain",
|
||||
"Sweden",
|
||||
"Switzerland",
|
||||
# "United Kingdom",
|
||||
"United Kingdom of Great Britain and Northern Ireland (the)",
|
||||
]
|
||||
|
||||
REGIONS_DICT = {
|
||||
"Bosnia and Herzegovina": "Bosnia Herzg",
|
||||
"Netherlands (Kingdom of the)": "Netherlands",
|
||||
"United Kingdom of Great Britain and Northern Ireland (the)": "UK",
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("retrieve_irena")
|
||||
configure_logging(snakemake)
|
||||
set_scenario_config(snakemake)
|
||||
|
||||
irena_raw = pd.read_csv(
|
||||
"https://pxweb.irena.org:443/sq/99e64b12-fe03-4a7b-92ea-a22cc3713b92",
|
||||
skiprows=2,
|
||||
index_col=[0, 1, 3],
|
||||
encoding="latin-1",
|
||||
)
|
||||
|
||||
var = "Installed electricity capacity (MW)"
|
||||
irena = irena_raw[var].unstack(level=2).reset_index(level=1).replace(0, "")
|
||||
|
||||
irena = irena[irena.index.isin(REGIONS)]
|
||||
irena.rename(index=REGIONS_DICT, inplace=True)
|
||||
|
||||
df_offwind = irena[irena.Technology.str.contains("Offshore")].drop(
|
||||
columns=["Technology"]
|
||||
)
|
||||
df_onwind = irena[irena.Technology.str.contains("Onshore")].drop(
|
||||
columns=["Technology"]
|
||||
)
|
||||
df_pv = irena[irena.Technology.str.contains("Solar")].drop(columns=["Technology"])
|
||||
|
||||
df_offwind.to_csv(snakemake.output["offwind"])
|
||||
df_onwind.to_csv(snakemake.output["onwind"])
|
||||
df_pv.to_csv(snakemake.output["solar"])
|
@ -1,49 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2021-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Retrieve and extract data bundle for sector-coupled studies.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import tarfile
|
||||
from pathlib import Path
|
||||
|
||||
from _helpers import (
|
||||
configure_logging,
|
||||
progress_retrieve,
|
||||
set_scenario_config,
|
||||
validate_checksum,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("retrieve_databundle")
|
||||
rootpath = ".."
|
||||
else:
|
||||
rootpath = "."
|
||||
configure_logging(snakemake)
|
||||
set_scenario_config(snakemake)
|
||||
|
||||
url = "https://zenodo.org/record/5824485/files/pypsa-eur-sec-data-bundle.tar.gz"
|
||||
|
||||
tarball_fn = Path(f"{rootpath}/sector-bundle.tar.gz")
|
||||
to_fn = Path(rootpath) / Path(snakemake.output[0]).parent.parent
|
||||
|
||||
logger.info(f"Downloading databundle from '{url}'.")
|
||||
disable_progress = snakemake.config["run"].get("disable_progressbar", False)
|
||||
progress_retrieve(url, tarball_fn, disable=disable_progress)
|
||||
|
||||
validate_checksum(tarball_fn, url)
|
||||
|
||||
logger.info("Extracting databundle.")
|
||||
tarfile.open(tarball_fn).extractall(to_fn)
|
||||
|
||||
tarball_fn.unlink()
|
||||
|
||||
logger.info(f"Databundle available in '{to_fn}'.")
|
@ -95,7 +95,7 @@ import pypsa
|
||||
import scipy as sp
|
||||
from _helpers import configure_logging, set_scenario_config, update_p_nom_max
|
||||
from add_electricity import load_costs
|
||||
from build_bus_regions import append_bus_shapes
|
||||
from base_network import append_bus_shapes
|
||||
from cluster_network import cluster_regions, clustering_for_n_clusters
|
||||
from pypsa.clustering.spatial import (
|
||||
aggregateoneport,
|
||||
|
@ -124,14 +124,8 @@ def add_land_use_constraint_perfect(n):
|
||||
def _add_land_use_constraint(n):
|
||||
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
||||
|
||||
for carrier in [
|
||||
"solar",
|
||||
"solar rooftop",
|
||||
"solar-hsat",
|
||||
"onwind",
|
||||
"offwind-ac",
|
||||
"offwind-dc",
|
||||
]:
|
||||
for carrier in ["solar","solar rooftop",
|
||||
"solar-hsat", "onwind", "offwind-ac", "offwind-dc", "offwind-float"]:
|
||||
extendable_i = (n.generators.carrier == carrier) & n.generators.p_nom_extendable
|
||||
n.generators.loc[extendable_i, "p_nom_min"] = 0
|
||||
|
||||
@ -166,14 +160,8 @@ def _add_land_use_constraint_m(n, planning_horizons, config):
|
||||
grouping_years = config["existing_capacities"]["grouping_years_power"]
|
||||
current_horizon = snakemake.wildcards.planning_horizons
|
||||
|
||||
for carrier in [
|
||||
"solar",
|
||||
"solar rooftop",
|
||||
"solar-hsat",
|
||||
"onwind",
|
||||
"offwind-ac",
|
||||
"offwind-dc",
|
||||
]:
|
||||
for carrier in ["solar", "solar rooftop",
|
||||
"solar-hsat", "onwind", "offwind-ac", "offwind-dc"]:
|
||||
extendable_i = (n.generators.carrier == carrier) & n.generators.p_nom_extendable
|
||||
n.generators.loc[extendable_i, "p_nom_min"] = 0
|
||||
|
||||
@ -1044,13 +1032,13 @@ if __name__ == "__main__":
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"solve_network",
|
||||
configfiles="../config/test/config.electricity.yaml",
|
||||
"solve_sector_network",
|
||||
configfiles="../config/test/config.perfect.yaml",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="5",
|
||||
ll="v1.5",
|
||||
sector_opts="Co2L-24h",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
sector_opts="CO2L0-1H-T-H-B-I-A-dist1",
|
||||
planning_horizons="2030",
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|