"""Build solar thermal collector time series."""
import geopandas as gpd
import atlite
import pandas as pd
import xarray as xr
import numpy as np
if __name__ == '__main__':
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'build_solar_thermal_profiles',
weather_year='',
simpl='',
clusters=48,
)
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
config = snakemake.config['solar_thermal']
year = snakemake.wildcards.weather_year
snapshots = dict(start=year, end=str(int(year)+1), closed="left") if year else snakemake.config['snapshots']
time = pd.date_range(freq='m', **snapshots)
cutout_config = snakemake.config['atlite']['cutout']
if year: cutout_name = cutout_config.format(weather_year=year)
cutout = atlite.Cutout(cutout_config).sel(time=time)
clustered_regions = gpd.read_file(
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
I = cutout.indicatormatrix(clustered_regions)
for area in ["total", "rural", "urban"]:
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.] = 1.
M_tilde = M / nonzero_sum
solar_thermal = cutout.solar_thermal(**config, matrix=M_tilde.T,
index=clustered_regions.index)
solar_thermal.to_netcdf(snakemake.output[f"solar_thermal_{area}"])
Hosted by CPS Cyber Physical Systems .