"""Build heat demand time series."""
import geopandas as gpd
import atlite
import pandas as pd
import xarray as xr
import numpy as np
if __name__ == '__main__':
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'build_heat_demands',
weather_year='',
simpl='',
clusters=48,
)
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
year = snakemake.wildcards.weather_year
snapshots = dict(start=year, end=str(int(year)+1), closed="left") if year else snakemake.config['snapshots']
time = pd.date_range(freq='m', **snapshots)
cutout_config = snakemake.config['atlite']['cutout']
if year: cutout_name = cutout_config.format(weather_year=year)
cutout = atlite.Cutout(cutout_config).sel(time=time)
clustered_regions = gpd.read_file(
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
I = cutout.indicatormatrix(clustered_regions)
for area in ["rural", "urban", "total"]:
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
heat_demand = cutout.heat_demand(
matrix=M.T, index=clustered_regions.index)
heat_demand.to_netcdf(snakemake.output[f"heat_demand_{area}"])
Hosted by CPS Cyber Physical Systems .