"""Build temperature profiles."""
import geopandas as gpd
import atlite
import pandas as pd
import xarray as xr
import numpy as np
if __name__ == '__main__':
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'build_temperature_profiles',
weather_year='',
simpl='',
clusters=48,
)
cutout_name = snakemake.input.cutout
year = snakemake.wildcards.weather_year
if year:
snapshots = dict(start=year, end=str(int(year)+1), closed="left")
cutout_name = cutout_name.format(weather_year=year)
else:
snapshots = snakemake.config['snapshots']
time = pd.date_range(freq='h', **snapshots)
if snakemake.config["atlite"].get("drop_leap_day", False):
time = time[~((time.month == 2) & (time.day == 29))]
cutout = atlite.Cutout(cutout_name).sel(time=time)
clustered_regions = gpd.read_file(
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
I = cutout.indicatormatrix(clustered_regions)
for area in ["total", "rural", "urban"]:
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
M = I.T.dot(np.diag(I.dot(stacked_pop)))
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.] = 1.
M_tilde = M / nonzero_sum
temp_air = cutout.temperature(
matrix=M_tilde.T, index=clustered_regions.index)
temp_air.to_netcdf(snakemake.output[f"temp_air_{area}"])
temp_soil = cutout.soil_temperature(
temp_soil.to_netcdf(snakemake.output[f"temp_soil_{area}"])
Hosted by CPS Cyber Physical Systems .