pypsa-eur/scripts/build_temperature_profiles.py

49 lines
1.5 KiB
Python
Raw Normal View History

import geopandas as gpd
import atlite
import pandas as pd
import xarray as xr
import scipy as sp
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.load(f)
snakemake.input = Dict()
snakemake.output = Dict()
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(snakemake.config['renewable']['onwind']['cutout'],
cutout_dir=snakemake.config['atlite']['cutout_dir'],
**params)
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
I = cutout.indicatormatrix(clustered_busregions)
for item in ["total","rural","urban"]:
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x')))))
nonzero_sum = M.sum(axis=0, keepdims=True)
nonzero_sum[nonzero_sum == 0.] = 1.
M_tilde = M/nonzero_sum
temp_air = cutout.temperature(matrix=M_tilde.T,index=clustered_busregions.index)
temp_air.to_netcdf(snakemake.output["temp_air_"+item])
temp_soil = cutout.soil_temperature(matrix=M_tilde.T,index=clustered_busregions.index)
temp_soil.to_netcdf(snakemake.output["temp_soil_"+item])