"""Build clustered population layouts."""
import geopandas as gpd
import xarray as xr
import pandas as pd
import atlite
if __name__ == '__main__':
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'build_clustered_population_layouts',
weather_year='',
simpl='',
clusters=48,
)
cutout_name = snakemake.input.cutout
year = snakemake.wildcards.weather_year
if year: cutout_name = cutout_name.format(weather_year=year)
cutout = atlite.Cutout(cutout_name)
clustered_regions = gpd.read_file(
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
I = cutout.indicatormatrix(clustered_regions)
pop = {}
for item in ["total", "urban", "rural"]:
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{item}'])
pop[item] = I.dot(pop_layout.stack(spatial=('y', 'x')))
pop = pd.DataFrame(pop, index=clustered_regions.index)
pop["ct"] = pop.index.str[:2]
country_population = pop.total.groupby(pop.ct).sum()
pop["fraction"] = pop.total / pop.ct.map(country_population)
pop.to_csv(snakemake.output.clustered_pop_layout)
Hosted by CPS Cyber Physical Systems .