pypsa-eur/scripts/build_renewable_profiles.py

299 lines
13 KiB
Python
Raw Normal View History

#!/usr/bin/env python
"""
2019-08-11 20:34:18 +00:00
Calculates for each node several geographical properties:
2019-08-11 20:34:18 +00:00
1. the installable capacity (based on land-use),
2. the available generation time series (based on weather data),
3. the average distance from the node for onshore wind, AC-connected offshore wind, DC-connected offshore wind and solar PV generators, and
4. the fraction of the grid connection which is under water for offshore wind turbines.
.. note:: Hydroelectric profiles are built in script :mod:`build_hydro_profiles`.
Relevant settings
-----------------
2019-08-11 11:17:36 +00:00
.. code:: yaml
snapshots:
atlite:
nprocesses:
renewable:
{technology}:
cutout:
corine:
grid_codes:
distance:
natura:
max_depth:
max_shore_distance:
min_shore_distance:
capacity_per_sqkm:
correction_factor:
potential:
min_p_max_pu:
clip_p_max_pu:
resource:
Inputs
------
2019-08-12 17:01:53 +00:00
- ``data/bundle/corine/g250_clc06_V18_5.tif``: `CORINE Land Cover (CLC) <https://land.copernicus.eu/pan-european/corine-land-cover>`_ inventory on `44 classes <https://wiki.openstreetmap.org/wiki/Corine_Land_Cover#Tagging>`_ of land use (e.g. forests, arable land, industrial, urban areas).
.. image:: img/corine.png
:scale: 33 %
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric <https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain model for ocean and land at 15 arc-second intervals by the `General Bathymetric Chart of the Oceans (GEBCO) <https://www.gebco.net/data_and_products/gridded_bathymetry_data/>`_.
.. image:: img/gebco_2019_grid_image.jpg
:scale: 50 %
**Source:** `GEBCO <https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
2019-08-11 20:34:18 +00:00
- ``resources/natura.tiff``: confer :ref:`natura`
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
- ``"cutouts/" + config["renewable"][{technology}]['cutout']``: :ref:`cutout`
- ``networks/base.nc``: :ref:`base`
Outputs
-------
2019-08-11 20:34:18 +00:00
- ``resources/profile_{technology}.nc``:
2019-08-11 20:34:18 +00:00
The files have the fields *(dimensions)*:
2019-08-11 20:34:18 +00:00
- ``profile`` *(bus, time)*: the per unit hourly availability factors for each node
- ``weight`` *(bus)*: the sum of the layout weighting for each node
- ``p_nom_max`` *(bus)*: the maximal installable capacity at the node (in MW)
- ``potential`` *(y, x)*: the layout of generator units at cutout grid cells inside the voronoi cell (maximal installable capacity at each grid cell multiplied by the capacity factor)
- ``average_distance`` *(bus)*: the average distance of units in the voronoi cell to the grid node (in km)
2019-08-11 20:34:18 +00:00
- ``underwater_fraction`` *(bus)* [offshore only]: the fraction of the average connection distance which is under water
2019-08-11 09:40:47 +00:00
Description:
-----------------
First the script computes how much of the technology can be installed at each
2019-08-12 17:01:53 +00:00
cutout grid cell and each node using the `GLAES
<https://github.com/FZJ-IEK3-VSA/glaes>`_ library. This uses the CORINE land use data,
Natura2000 nature reserves and GEBCO bathymetry data.
2019-08-12 17:01:53 +00:00
To compute the layout of generators in each node's `Voronoi cell <https://en.wikipedia.org/wiki/Voronoi_diagram>`_, the installable
potential in each grid cell is multiplied with the capacity factor at each grid
2019-08-12 17:01:53 +00:00
cell. This is done since we assume more generators are installed at cells with a higher
capacity factor.
This layout is then used to compute the generation availability time series from
2019-08-12 17:01:53 +00:00
the weather data cutout from ``atlite``.
Two methods are available to compute the maximal installable potential for the
2019-08-12 17:01:53 +00:00
node (`p_nom_max`): ``simple`` and ``conservative``:
2019-08-12 17:01:53 +00:00
- ``simple`` adds up the installable potentials of the individual grid cells. If the model comes close to this limit, then the time series may slightly overestimate production since it is assumed the geographical distribution is proportional to capacity factor.
2019-08-12 17:01:53 +00:00
- ``conservative`` assertains the nodal limit by increasing capacities proportional to the layout until the limit of an individual grid cell is reached.
"""
import matplotlib.pyplot as plt
2018-08-03 09:54:28 +00:00
import os
import atlite
import numpy as np
import xarray as xr
import pandas as pd
import multiprocessing as mp
import glaes as gl
import geokit as gk
from osgeo import gdal
from scipy.sparse import csr_matrix, vstack
from pypsa.geo import haversine
from vresutils import landuse as vlanduse
from vresutils.array import spdiag
import progressbar as pgb
import logging
logger = logging.getLogger(__name__)
bounds = dx = dy = config = paths = gebco = clc = natura = None
def init_globals(bounds_xXyY, n_dx, n_dy, n_config, n_paths):
# global in each process of the multiprocessing.Pool
global bounds, dx, dy, config, paths, gebco, clc, natura
bounds = gk.Extent.from_xXyY(bounds_xXyY)
dx = n_dx
dy = n_dy
config = n_config
paths = n_paths
gebco = gk.raster.loadRaster(paths["gebco"])
gebco.SetProjection(gk.srs.loadSRS(4326).ExportToWkt())
clc = gk.raster.loadRaster(paths["corine"])
clc.SetProjection(gk.srs.loadSRS(3035).ExportToWkt())
natura = gk.raster.loadRaster(paths["natura"])
def downsample_to_coarse_grid(bounds, dx, dy, mask, data):
# The GDAL warp function with the 'average' resample algorithm needs a band of zero values of at least
# the size of one coarse cell around the original raster or it produces erroneous results
orig = mask.createRaster(data=data)
padded_extent = mask.extent.castTo(bounds.srs).pad(max(dx, dy)).castTo(mask.srs)
padded = padded_extent.fit((mask.pixelWidth, mask.pixelHeight)).warp(orig, mask.pixelWidth, mask.pixelHeight)
orig = None # free original raster
average = bounds.createRaster(dx, dy, dtype=gdal.GDT_Float32)
assert gdal.Warp(average, padded, resampleAlg='average') == 1, "gdal warp failed: %s" % gdal.GetLastErrorMsg()
return average
def calculate_potential(gid, save_map=None):
feature = gk.vector.extractFeature(paths["regions"], where=gid)
ec = gl.ExclusionCalculator(feature.geom)
corine = config.get("corine", {})
if isinstance(corine, list):
corine = {'grid_codes': corine}
if "grid_codes" in corine:
ec.excludeRasterType(clc, value=corine["grid_codes"], invert=True)
if corine.get("distance", 0.) > 0.:
ec.excludeRasterType(clc, value=corine["distance_grid_codes"], buffer=corine["distance"])
if config.get("natura", False):
ec.excludeRasterType(natura, value=1)
if "max_depth" in config:
ec.excludeRasterType(gebco, (None, -config["max_depth"]))
# TODO compute a distance field as a raster beforehand
if 'max_shore_distance' in config:
ec.excludeVectorType(paths["country_shapes"], buffer=config['max_shore_distance'], invert=True)
if 'min_shore_distance' in config:
ec.excludeVectorType(paths["country_shapes"], buffer=config['min_shore_distance'])
if save_map is not None:
ec.draw()
plt.savefig(save_map, transparent=True)
plt.close()
availability = downsample_to_coarse_grid(bounds, dx, dy, ec.region, np.where(ec.region.mask, ec._availability, 0))
return csr_matrix(gk.raster.extractMatrix(availability).flatten() / 100.)
if __name__ == '__main__':
pgb.streams.wrap_stderr()
logging.basicConfig(level=snakemake.config['logging_level'])
config = snakemake.config['renewable'][snakemake.wildcards.technology]
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(config['cutout'],
cutout_dir=os.path.dirname(snakemake.input.cutout),
**params)
minx, maxx, miny, maxy = cutout.extent
dx = (maxx - minx) / (cutout.shape[1] - 1)
dy = (maxy - miny) / (cutout.shape[0] - 1)
bounds_xXyY = (minx - dx/2., maxx + dx/2., miny - dy/2., maxy + dy/2.)
# Use GLAES to compute available potentials and the transition matrix
paths = dict(snakemake.input)
# Use the following for testing the default windows method on linux
# mp.set_start_method('spawn')
with mp.Pool(initializer=init_globals, initargs=(bounds_xXyY, dx, dy, config, paths),
maxtasksperchild=20, processes=snakemake.config['atlite'].get('nprocesses', 2)) as pool:
regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True)
2018-12-11 15:09:24 +00:00
buses = pd.Index(regions['name'], name="bus")
widgets = [
pgb.widgets.Percentage(),
' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT),
' ', pgb.widgets.Bar(),
' ', pgb.widgets.Timer(),
' ', pgb.widgets.ETA()
]
progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(regions))
matrix = vstack(list(progressbar(pool.imap(calculate_potential, regions.index))))
potentials = config['capacity_per_sqkm'] * vlanduse._cutout_cell_areas(cutout)
potmatrix = matrix * spdiag(potentials.ravel())
potmatrix.data[potmatrix.data < 1.] = 0 # ignore weather cells where only less than 1 MW can be installed
potmatrix.eliminate_zeros()
resource = config['resource']
func = getattr(cutout, resource.pop('method'))
correction_factor = config.get('correction_factor', 1.)
if correction_factor != 1.:
logger.warning('correction_factor is set as {}'.format(correction_factor))
capacity_factor = correction_factor * func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x')).values
layoutmatrix = potmatrix * spdiag(capacity_factor)
profile, capacities = func(matrix=layoutmatrix, index=buses, per_unit=True,
return_capacity=True, show_progress='Compute profiles: ',
**resource)
p_nom_max_meth = config.get('potential', 'conservative')
if p_nom_max_meth == 'simple':
p_nom_max = xr.DataArray(np.asarray(potmatrix.sum(axis=1)).squeeze(), [buses])
elif p_nom_max_meth == 'conservative':
# p_nom_max has to be calculated for each bus and is the minimal ratio
# (min over all weather grid cells of the bus region) between the available
# potential (potmatrix) and the used normalised layout (layoutmatrix /
# capacities), so we would like to calculate i.e. potmatrix / (layoutmatrix /
# capacities). Since layoutmatrix = potmatrix * capacity_factor, this
# corresponds to capacities/max(capacity factor in the voronoi cell)
p_nom_max = xr.DataArray([1./np.max(capacity_factor[inds]) if len(inds) else 0.
for inds in np.split(potmatrix.indices, potmatrix.indptr[1:-1])], [buses]) * capacities
else:
raise AssertionError('Config key `potential` should be one of "simple" (default) or "conservative",'
' not "{}"'.format(p_nom_max_meth))
layout = xr.DataArray(np.asarray(potmatrix.sum(axis=0)).reshape(cutout.shape),
[cutout.meta.indexes[ax] for ax in ['y', 'x']])
2018-12-11 15:09:24 +00:00
# Determine weighted average distance from substation
cell_coords = cutout.grid_coordinates()
average_distance = []
for i in regions.index:
row = layoutmatrix[i]
distances = haversine(regions.loc[i, ['x', 'y']], cell_coords[row.indices])[0]
average_distance.append((distances * (row.data / row.data.sum())).sum())
2018-12-11 15:09:24 +00:00
average_distance = xr.DataArray(average_distance, [buses])
ds = xr.merge([(correction_factor * profile).rename('profile'),
capacities.rename('weight'),
p_nom_max.rename('p_nom_max'),
layout.rename('potential'),
average_distance.rename('average_distance')])
if snakemake.wildcards.technology.startswith("offwind"):
import geopandas as gpd
from shapely.geometry import LineString
2018-12-19 14:37:18 +00:00
offshore_shape = gpd.read_file(snakemake.input.offshore_shapes).unary_union
underwater_fraction = []
for i in regions.index:
row = layoutmatrix[i]
centre_of_mass = (cell_coords[row.indices] * (row.data / row.data.sum())[:,np.newaxis]).sum(axis=0)
line = LineString([centre_of_mass, regions.loc[i, ['x', 'y']]])
underwater_fraction.append(line.intersection(offshore_shape).length / line.length)
ds['underwater_fraction'] = xr.DataArray(underwater_fraction, [buses])
# select only buses with some capacity and minimal capacity factor
ds = ds.sel(bus=((ds['profile'].mean('time') > config.get('min_p_max_pu', 0.)) &
(ds['p_nom_max'] > config.get('min_p_nom_max', 0.))))
if 'clip_p_max_pu' in config:
ds['profile'].values[ds['profile'].values < config['clip_p_max_pu']] = 0.
ds.to_netcdf(snakemake.output.profile)