pypsa-eur/scripts/build_existing_heating_distribution.py

123 lines
3.9 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Builds table of existing heat generation capacities for initial planning
horizon.
"""
import country_converter as coco
2024-01-22 08:29:32 +00:00
import numpy as np
import pandas as pd
cc = coco.CountryConverter()
def build_existing_heating():
# retrieve existing heating capacities
2024-01-22 08:29:32 +00:00
existing_heating = pd.read_csv(
snakemake.input.existing_heating, index_col=0, header=0
)
# data for Albania, Montenegro and Macedonia not included in database
existing_heating.loc["Albania"] = np.nan
existing_heating.loc["Montenegro"] = np.nan
existing_heating.loc["Macedonia"] = np.nan
existing_heating.fillna(0.0, inplace=True)
# convert GW to MW
existing_heating *= 1e3
existing_heating.index = cc.convert(existing_heating.index, to="iso2")
# coal and oil boilers are assimilated to oil boilers
2024-01-22 08:29:32 +00:00
existing_heating["oil boiler"] = (
existing_heating["oil boiler"] + existing_heating["coal boiler"]
)
existing_heating.drop(["coal boiler"], axis=1, inplace=True)
# distribute technologies to nodes by population
2024-01-22 08:29:32 +00:00
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
nodal_heating = existing_heating.loc[pop_layout.ct]
nodal_heating.index = pop_layout.index
nodal_heating = nodal_heating.multiply(pop_layout.fraction, axis=0)
2024-01-22 08:29:32 +00:00
district_heat_info = pd.read_csv(snakemake.input.district_heat_share, index_col=0)
dist_fraction = district_heat_info["district fraction of node"]
urban_fraction = district_heat_info["urban fraction"]
2024-01-22 08:29:32 +00:00
energy_layout = pd.read_csv(
snakemake.input.clustered_pop_energy_layout, index_col=0
)
uses = ["space", "water"]
sectors = ["residential", "services"]
nodal_sectoral_totals = pd.DataFrame(dtype=float)
for sector in sectors:
2024-01-22 08:29:32 +00:00
nodal_sectoral_totals[sector] = energy_layout[
[f"total {sector} {use}" for use in uses]
].sum(axis=1)
2024-01-22 08:29:32 +00:00
nodal_sectoral_fraction = nodal_sectoral_totals.div(
nodal_sectoral_totals.sum(axis=1), axis=0
)
nodal_heat_name_fraction = pd.DataFrame(dtype=float)
nodal_heat_name_fraction["urban central"] = dist_fraction
for sector in sectors:
2024-01-22 08:29:32 +00:00
nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[
sector
] * (1 - urban_fraction)
nodal_heat_name_fraction[f"{sector} urban decentral"] = nodal_sectoral_fraction[
sector
] * (urban_fraction - dist_fraction)
nodal_heat_name_tech = pd.concat(
{
name: nodal_heating.multiply(nodal_heat_name_fraction[name], axis=0)
for name in nodal_heat_name_fraction.columns
},
axis=1,
names=["heat name", "technology"],
)
# move all ground HPs to rural, all air to urban
for sector in sectors:
2024-01-22 08:29:32 +00:00
nodal_heat_name_tech[(f"{sector} rural", "ground heat pump")] += (
nodal_heat_name_tech[("urban central", "ground heat pump")]
* nodal_sectoral_fraction[sector]
+ nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")]
)
nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")] = 0.0
2024-01-22 08:29:32 +00:00
nodal_heat_name_tech[
(f"{sector} urban decentral", "air heat pump")
] += nodal_heat_name_tech[(f"{sector} rural", "air heat pump")]
nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] = 0.0
2024-01-22 08:29:32 +00:00
nodal_heat_name_tech[("urban central", "ground heat pump")] = 0.0
nodal_heat_name_tech.to_csv(snakemake.output.existing_heating_distribution)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_existing_heating_distribution",
simpl="",
clusters=48,
planning_horizons=2050,
)
build_existing_heating()