pypsa-eur/scripts/build_industry_sector_ratios.py

1521 lines
50 KiB
Python
Raw Normal View History

import pandas as pd
import numpy as np
base_dir = "data/jrc-idees-2015"
# year for which data is retrieved
raw_year = 2015
year = raw_year-2016
conv_factor=11.630 #GWh/ktoe OR MWh/toe
country = 'EU28'
sub_sheet_name_dict = { 'Iron and steel':'ISI',
'Chemicals Industry':'CHI',
'Non-metallic mineral products': 'NMM',
'Pulp, paper and printing': 'PPA',
'Food, beverages and tobacco': 'FBT',
'Non Ferrous Metals' : 'NFM',
'Transport Equipment': 'TRE',
'Machinery Equipment': 'MAE',
'Textiles and leather':'TEL',
'Wood and wood products': 'WWP',
'Other Industrial Sectors': 'OIS'}
index = ['elec','coal','coke','biomass','methane','hydrogen','heat','naphtha','process emission','process emission from feedstock']
df = pd.DataFrame(index=index)
## Iron and steel
#
#> There are two different approaches to produce iron and steel: i.e., integrated steelworks and electric arc.
#
#> Electric arc approach has higher efficiency and relies more on electricity.
#
#> We assume that integrated steelworks will be replaced by electric arc entirely.
sector = 'Iron and steel'
# read the input sheets
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True) # the summary sheet
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True) # the final energy consumption sheet
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True) # the used energy sheet
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
### Electric arc
sector = 'Electric arc'
df[sector] = 0.
# read the corresponding lines
s_fec = excel_fec.iloc[51:57,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec',sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat',sector] += s_fec['Low enthalpy heat']
#### Steel: Smelters
subsector = 'Steel: Smelters'
# read the corresponding lines
s_fec = excel_fec.iloc[61:67,year]
s_ued = excel_ued.iloc[61:67,year]
assert s_fec.index[0] == subsector
# Efficiency changes due to transforming all the smelters into methane
eff_met=s_ued['Natural gas (incl. biogas)']/s_fec['Natural gas (incl. biogas)']
df.loc['methane', sector] += s_ued[subsector]/eff_met
#### Steel: Electric arc
subsector = 'Steel: Electric arc'
# read the corresponding lines
s_fec = excel_fec.iloc[67:68,year]
assert s_fec.index[0] == subsector
# only electricity
df.loc['elec',sector] += s_fec[subsector]
#### Steel: Furnaces, Refining and Rolling
#> assume fully electrified
#
#> other processes are scaled by the used energy
subsector = 'Steel: Furnaces, Refining and Rolling'
# read the corresponding lines
s_fec = excel_fec.iloc[68:75,year]
s_ued = excel_ued.iloc[68:75,year]
assert s_fec.index[0] == subsector
# this process can be electrified
eff = s_ued['Steel: Furnaces, Refining and Rolling - Electric']/s_fec['Steel: Furnaces, Refining and Rolling - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff
#### Steel: Products finishing
#> assume fully electrified
subsector = 'Steel: Products finishing'
# read the corresponding lines
s_fec = excel_fec.iloc[75:92,year]
s_ued = excel_ued.iloc[75:92,year]
assert s_fec.index[0] == subsector
# this process can be electrified
eff = s_ued['Steel: Products finishing - Electric']/s_fec['Steel: Products finishing - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff
#### Process emissions (per physical output)
s_emi = excel_emi.iloc[51:93,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[7:8,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] = s_emi['Process emissions']/s_out[sector] # unit tCO2/t material
# final energy consumption per t
df.loc[['elec','heat','methane'],sector] = df.loc[['elec','heat','methane'],sector]*conv_factor/s_out[sector] # unit MWh/t material
### For primary route: DRI with H2 + EAF
df['DRI + Electric arc'] = df['Electric arc']
# adding the Hydrogen necessary for the Direct Reduction of Iron. consumption 1.7 MWh H2 /ton steel
df.loc['hydrogen', 'DRI + Electric arc'] = snakemake.config["industry"]["H2_DRI"]
# add electricity consumption in DRI shaft (0.322 MWh/tSl)
df.loc['elec', 'DRI + Electric arc'] += snakemake.config["industry"]["elec_DRI"]
### Integrated steelworks (could be used in combination with CCS)
### Assume existing fuels are kept, except for furnaces, refining, rolling, finishing
### Ignore 'derived gases' since these are top gases from furnaces
sector = 'Integrated steelworks'
df['Integrated steelworks']= 0.
# read the corresponding lines
s_fec = excel_fec.iloc[3:9,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec',sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat',sector] += s_fec['Low enthalpy heat']
#### Steel: Sinter/Pellet making
subsector = 'Steel: Sinter/Pellet making'
# read the corresponding lines
s_fec = excel_fec.iloc[13:19,year]
s_ued = excel_ued.iloc[13:19,year]
assert s_fec.index[0] == subsector
df.loc['elec',sector] += s_fec['Electricity']
df.loc['methane',sector] += s_fec['Natural gas (incl. biogas)']
df.loc['methane',sector] += s_fec['Residual fuel oil']
df.loc['coal',sector] += s_fec['Solids']
#### Steel: Blast / Basic Oxygen Furnace
subsector = 'Steel: Blast /Basic oxygen furnace'
# read the corresponding lines
s_fec = excel_fec.iloc[19:25,year]
s_ued = excel_ued.iloc[19:25,year]
assert s_fec.index[0] == subsector
df.loc['methane',sector] += s_fec['Natural gas (incl. biogas)']
df.loc['methane',sector] += s_fec['Residual fuel oil']
df.loc['coal',sector] += s_fec['Solids']
df.loc['coke',sector] += s_fec['Coke']
#### Steel: Furnaces, Refining and Rolling
#> assume fully electrified
#
#> other processes are scaled by the used energy
subsector = 'Steel: Furnaces, Refining and Rolling'
# read the corresponding lines
s_fec = excel_fec.iloc[25:32,year]
s_ued = excel_ued.iloc[25:32,year]
assert s_fec.index[0] == subsector
# this process can be electrified
eff = s_ued['Steel: Furnaces, Refining and Rolling - Electric']/s_fec['Steel: Furnaces, Refining and Rolling - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff
#### Steel: Products finishing
#> assume fully electrified
subsector = 'Steel: Products finishing'
# read the corresponding lines
s_fec = excel_fec.iloc[32:49,year]
s_ued = excel_ued.iloc[32:49,year]
assert s_fec.index[0] == subsector
# this process can be electrified
eff = s_ued['Steel: Products finishing - Electric']/s_fec['Steel: Products finishing - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff
#### Process emissions (per physical output)
s_emi = excel_emi.iloc[3:50,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[6:7,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] = s_emi['Process emissions']/s_out[sector] # unit tCO2/t material
# final energy consumption per t
df.loc[['elec','heat','methane','coke','coal'],sector] = df.loc[['elec','heat','methane','coke','coal'],sector]*conv_factor/s_out[sector] # unit MWh/t material
## Chemicals Industry
sector = 'Chemicals Industry'
# read the input sheets
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True) # the summary sheet
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True) # the final energy consumption sheet
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True) # the used energy sheet
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
### Basic chemicals
## Ammonia is separated afterwards
sector = 'Basic chemicals'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:9,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec',sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat',sector] += s_fec['Low enthalpy heat']
#### Chemicals: Feedstock (energy used as raw material)
#> There are Solids, Refinery gas, LPG, Diesel oil, Residual fuel oil, Other liquids, Naphtha, Natural gas for feedstock.
#
#> Naphta represents 47%, methane 17%. LPG (18%) solids, refinery gas, diesel oil, residual fuel oils and other liquids are asimilated to Naphtha
subsector = 'Chemicals: Feedstock (energy used as raw material)'
# read the corresponding lines
s_fec = excel_fec.iloc[13:22,year]
assert s_fec.index[0] == subsector
# naphtha
df.loc['naphtha',sector] += s_fec['Naphtha']
# natural gas
df.loc['methane',sector] += s_fec['Natural gas']
# LPG and other feedstock materials are assimilated to naphtha since they will be produced trough Fischer-Tropsh process
df.loc['naphtha',sector] += (s_fec['Solids'] + s_fec['Refinery gas'] + s_fec['LPG'] + s_fec['Diesel oil']
+ s_fec['Residual fuel oil'] + s_fec['Other liquids'])
#### Chemicals: Steam processing
#> All the final energy consumption in the Steam processing is converted to methane, since we need >1000 C temperatures here.
#
#> The current efficiency of methane is assumed in the conversion.
subsector = 'Chemicals: Steam processing'
# read the corresponding lines
s_fec = excel_fec.iloc[22:33,year]
s_ued = excel_ued.iloc[22:33,year]
assert s_fec.index[0] == subsector
# efficiency of natural gas
eff_ch4 = s_ued['Natural gas (incl. biogas)']/s_fec['Natural gas (incl. biogas)']
# replace all fec by methane
df.loc['methane',sector] += s_ued[subsector]/eff_ch4
#### Chemicals: Furnaces
#> assume fully electrified
subsector = 'Chemicals: Furnaces'
# read the corresponding lines
s_fec = excel_fec.iloc[33:41,year]
s_ued = excel_ued.iloc[33:41,year]
assert s_fec.index[0] == subsector
#efficiency of electrification
eff_elec = s_ued['Chemicals: Furnaces - Electric']/s_fec['Chemicals: Furnaces - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff_elec
#### Chemicals: Process cooling
#> assume fully electrified
subsector = 'Chemicals: Process cooling'
# read the corresponding lines
s_fec = excel_fec.iloc[41:55,year]
s_ued = excel_ued.iloc[41:55,year]
assert s_fec.index[0] == subsector
eff_elec = s_ued['Chemicals: Process cooling - Electric']/s_fec['Chemicals: Process cooling - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff_elec
#### Chemicals: Generic electric process
subsector = 'Chemicals: Generic electric process'
# read the corresponding lines
s_fec = excel_fec.iloc[55:56,year]
assert s_fec.index[0] == subsector
df.loc['elec',sector] += s_fec[subsector]
#### Process emissions
s_emi = excel_emi.iloc[3:57,year]
assert s_emi.index[0] == sector
## Correct everything by subtracting 2015's ammonia demand and putting in ammonia demand for H2 and electricity separately
s_out = excel_out.iloc[8:9,year]
assert sector in str(s_out.index)
ammonia = pd.read_csv(snakemake.input.ammonia_production,
index_col=0)
eu28 = ['FR', 'DE', 'GB', 'IT', 'ES', 'PL', 'SE', 'NL', 'BE', 'FI',
'DK', 'PT', 'RO', 'AT', 'BG', 'EE', 'GR', 'LV', 'CZ',
'HU', 'IE', 'SK', 'LT', 'HR', 'LU', 'SI', 'CY', 'MT']
#ktNH3/a
total_ammonia = ammonia.loc[ammonia.index.intersection(eu28),str(raw_year)].sum()
s_out -= total_ammonia
df.loc['process emission',sector] += (s_emi['Process emissions'] - snakemake.config["industry"]['petrochemical_process_emissions']*1e3 - snakemake.config["industry"]['NH3_process_emissions']*1e3)/s_out.values # unit tCO2/t material
#these are emissions originating from feedstock, i.e. could be non-fossil origin
df.loc['process emission from feedstock',sector] += (snakemake.config["industry"]['petrochemical_process_emissions']*1e3)/s_out.values # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
#convert from ktoe/a to GWh/a
df.loc[sources,sector] *= conv_factor
df.loc['methane',sector] -= total_ammonia*snakemake.config['industry']['MWh_CH4_per_tNH3_SMR']
df.loc['elec',sector] -= total_ammonia*snakemake.config['industry']['MWh_elec_per_tNH3_SMR']
df.loc[sources,sector] = df.loc[sources,sector]/s_out.values # unit MWh/t material
df.rename(columns={sector : sector + " (without ammonia)"},
inplace=True)
sector = 'Ammonia'
df[sector] = 0.
df.loc['hydrogen',sector] = snakemake.config['industry']['MWh_H2_per_tNH3_electrolysis']
df.loc['elec',sector] = snakemake.config['industry']['MWh_elec_per_tNH3_electrolysis']
### Other chemicals
sector = 'Other chemicals'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[58:64,year]
# check the position
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec',sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat',sector] += s_fec['Low enthalpy heat']
#### Chemicals: High enthalpy heat processing
#> assume fully electrified
subsector = 'Chemicals: High enthalpy heat processing'
# read the corresponding lines
s_fec = excel_fec.iloc[68:81,year]
s_ued = excel_ued.iloc[68:81,year]
assert s_fec.index[0] == subsector
eff_elec = s_ued['High enthalpy heat processing - Electric (microwave)']/s_fec['High enthalpy heat processing - Electric (microwave)']
df.loc['elec',sector] += s_ued[subsector]/eff_elec
#### Chemicals: Furnaces
#> assume fully electrified
subsector = 'Chemicals: Furnaces'
# read the corresponding lines
s_fec = excel_fec.iloc[81:89,year]
s_ued = excel_ued.iloc[81:89,year]
assert s_fec.index[0] == subsector
eff_elec = s_ued['Chemicals: Furnaces - Electric']/s_fec['Chemicals: Furnaces - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff_elec
#### Chemicals: Process cooling
#> assume fully electrified
subsector = 'Chemicals: Process cooling'
# read the corresponding lines
s_fec = excel_fec.iloc[89:103,year]
s_ued = excel_ued.iloc[89:103,year]
assert s_fec.index[0] == subsector
eff = s_ued['Chemicals: Process cooling - Electric']/s_fec['Chemicals: Process cooling - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff
#### Chemicals: Generic electric process
subsector = 'Chemicals: Generic electric process'
# read the corresponding lines
s_fec = excel_fec.iloc[103:104,year]
assert s_fec.index[0] == subsector
df.loc['elec',sector] += s_fec[subsector]
#### Process emissions
s_emi = excel_emi.iloc[58:105,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[9:10,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] += s_emi['Process emissions']/s_out.values # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out.values # unit MWh/t material
# 1 ktoe = 11630 MWh
### Pharmaceutical products etc.
sector = 'Pharmaceutical products etc.'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[106:112,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec',sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat',sector] += s_fec['Low enthalpy heat']
#### Chemicals: High enthalpy heat processing
#> assume fully electrified
subsector = 'Chemicals: High enthalpy heat processing'
# read the corresponding lines
s_fec = excel_fec.iloc[116:129,year]
s_ued = excel_ued.iloc[116:129,year]
assert s_fec.index[0] == subsector
eff_elec = s_ued['High enthalpy heat processing - Electric (microwave)']/s_fec['High enthalpy heat processing - Electric (microwave)']
df.loc['elec',sector] += s_ued[subsector]/eff_elec
#### Chemicals: Furnaces
#> assume fully electrified
subsector = 'Chemicals: Furnaces'
# read the corresponding lines
s_fec = excel_fec.iloc[129:137,year]
s_ued = excel_ued.iloc[129:137,year]
assert s_fec.index[0] == subsector
eff = s_ued['Chemicals: Furnaces - Electric']/s_fec['Chemicals: Furnaces - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff
#### Chemicals: Process cooling
#> assume fully electrified
subsector = 'Chemicals: Process cooling'
# read the corresponding lines
s_fec = excel_fec.iloc[137:151,year]
s_ued = excel_ued.iloc[137:151,year]
assert s_fec.index[0] == subsector
eff_elec = s_ued['Chemicals: Process cooling - Electric']/s_fec['Chemicals: Process cooling - Electric']
df.loc['elec',sector] += s_ued[subsector]/eff_elec
#### Chemicals: Generic electric process
subsector = 'Chemicals: Generic electric process'
# read the corresponding lines
s_fec = excel_fec.iloc[151:152,year]
assert s_fec.index[0] == subsector
df.loc['elec',sector] += s_fec[subsector]
# read the corresponding lines
s_out = excel_out.iloc[10:11,year]
# check the position
assert sector in str(s_out.index)
df.loc['process emission',sector] += 0 # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat', 'naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out.values # unit MWh/t material
# 1 ktoe = 11630 MWh
## Non-metallic mineral products
#
#> This includes cement, ceramic and glass production.
#
#> This sector includes process-emissions related to the fabrication of clinker.
sector = 'Non-metallic mineral products'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True)
### Cement
#
#> This sector has process-emissions.
#
#> Includes three subcategories: (a) Grinding, milling of raw material, (b) Pre-heating and pre-calcination, (c) clinker production (kilns), (d) Grinding, packaging. (b)+(c) represent 94% of fec. So (a) is joined to (b) and (d) is joined to (c).
#
#> Temperatures above 1400C are required for procesing limestone and sand into clinker.
#
#> Everything (except current electricity and heat consumption and existing biomass) is transformed into methane for high T.
sector = 'Cement'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:25,year]
s_ued = excel_ued.iloc[3:25,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec',sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat',sector] += s_fec['Low enthalpy heat']
# pre-processing: keep existing elec and biomass, rest to methane
df.loc['elec', sector] += s_fec['Cement: Grinding, milling of raw material']
df.loc['biomass', sector] += s_fec['Biomass']
df.loc['methane', sector] += s_fec['Cement: Pre-heating and pre-calcination'] - s_fec['Biomass']
#### Cement: Clinker production (kilns)
subsector = 'Cement: Clinker production (kilns)'
# read the corresponding lines
s_fec = excel_fec.iloc[34:43,year]
s_ued = excel_ued.iloc[34:43,year]
assert s_fec.index[0] == subsector
df.loc['biomass', sector] += s_fec['Biomass']
df.loc['methane', sector] += s_fec['Cement: Clinker production (kilns)'] - s_fec['Biomass']
df.loc['elec', sector] += s_fec['Cement: Grinding, packaging']
#### Process-emission came from the calcination of limestone to chemically reactive calcium oxide (lime).
#> Calcium carbonate -> lime + CO2
#
#> CaCO3 -> CaO + CO2
s_emi = excel_emi.iloc[3:44,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[7:8,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] +=s_emi['Process emissions']/s_out.values # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out.values # unit MWh/t material
### Ceramics & other NMM
#
#> This sector has process emissions.
#
#> Includes four subcategories: (a) Mixing of raw material, (b) Drying and sintering of raw material, (c) Primary production process, (d) Product finishing. (b)represents 65% of fec and (a) 4%. So (a) is joined to (b).
#
#> Everything is electrified
sector = 'Ceramics & other NMM'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[45:94,year]
s_ued = excel_ued.iloc[45:94,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Ceramics: Microwave drying and sintering']/s_fec['Ceramics: Microwave drying and sintering']
df.loc['elec', sector] += s_ued[['Ceramics: Mixing of raw material','Ceramics: Drying and sintering of raw material']].sum()/eff_elec
eff_elec=s_ued['Ceramics: Electric kiln']/s_fec['Ceramics: Electric kiln']
df.loc['elec', sector] += s_ued['Ceramics: Primary production process']/eff_elec
eff_elec=s_ued['Ceramics: Electric furnace']/s_fec['Ceramics: Electric furnace']
df.loc['elec', sector] += s_ued['Ceramics: Product finishing']/eff_elec
s_emi = excel_emi.iloc[45:94,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[8:9,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] += s_emi['Process emissions']/s_out.values # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out.values # unit MWh/t material
# 1 ktoe = 11630 MWh
### Glass production
#
#> This sector has process emissions.
#
#> Includes four subcategories: (a) Melting tank, (b) Forming, (c) Annealing, (d) Finishing processes. (a)represents 73%. (b), (d) are joined to (c).
#
#> Everything is electrified.
sector = 'Glass production'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[95:123,year]
s_ued = excel_ued.iloc[95:123,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Glass: Electric melting tank']/s_fec['Glass: Electric melting tank']
df.loc['elec', sector] += s_ued['Glass: Melting tank']/eff_elec
eff_elec=s_ued['Glass: Annealing - electric']/s_fec['Glass: Annealing - electric']
df.loc['elec', sector] += s_ued[['Glass: Forming','Glass: Annealing','Glass: Finishing processes']].sum()/eff_elec
s_emi = excel_emi.iloc[95:124,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[9:10,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] += s_emi['Process emissions']/s_out.values # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out.values # unit MWh/t material
## Pulp, paper and printing
#
#> Pulp, paper and printing can be completely electrified.
#
#> There are no process emissions associated to this sector.
sector = 'Pulp, paper and printing'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
### Pulp production
#
#> Includes three subcategories: (a) Wood preparation, grinding; (b) Pulping; (c) Cleaning.
#
#> (b) Pulping is either biomass or electric; left like this (dominated by biomass).
#
#> (a) Wood preparation, grinding and (c) Cleaning represent only 10% their current energy consumption is assumed to be electrified without any change in efficiency
sector = 'Pulp production'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:28,year]
s_ued = excel_ued.iloc[3:28,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Industry-specific
df.loc['elec', sector] += s_fec[['Pulp: Wood preparation, grinding', 'Pulp: Cleaning', 'Pulp: Pulping electric']].sum()
# Efficiency changes due to biomass
eff_bio=s_ued['Biomass']/s_fec['Biomass']
df.loc['biomass', sector] += s_ued['Pulp: Pulping thermal']/eff_bio
s_out = excel_out.iloc[8:9,year]
assert sector in str(s_out.index)
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Pulp production (kt)'] # unit MWh/t material
### Paper production
#
#> Includes three subcategories: (a) Stock preparation; (b) Paper machine; (c) Product finishing.
#
#> (b) Paper machine and (c) Product finishing are left electric and thermal is moved to biomass. The efficiency is calculated from the pulping process that is already biomass.
#
#> (a) Stock preparation represents only 7% and its current energy consumption is assumed to be electrified without any change in efficiency.
sector = 'Paper production'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[29:78,year]
s_ued = excel_ued.iloc[29:78,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Industry-specific
df.loc['elec', sector] += s_fec['Paper: Stock preparation']
# add electricity from process that is already electrified
df.loc['elec', sector] += s_fec['Paper: Paper machine - Electricity']
# add electricity from process that is already electrified
df.loc['elec', sector] += s_fec['Paper: Product finishing - Electricity']
s_fec = excel_fec.iloc[53:64,year]
s_ued = excel_ued.iloc[53:64,year]
assert s_fec.index[0] == 'Paper: Paper machine - Steam use'
# Efficiency changes due to biomass
eff_bio=s_ued['Biomass']/s_fec['Biomass']
df.loc['biomass', sector] += s_ued['Paper: Paper machine - Steam use']/eff_bio
s_fec = excel_fec.iloc[66:77,year]
s_ued = excel_ued.iloc[66:77,year]
assert s_fec.index[0] == 'Paper: Product finishing - Steam use'
# Efficiency changes due to biomass
eff_bio=s_ued['Biomass']/s_fec['Biomass']
df.loc['biomass', sector] += s_ued['Paper: Product finishing - Steam use']/eff_bio
# read the corresponding lines
s_out = excel_out.iloc[9:10,year]
assert sector in str(s_out.index)
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out.values # unit MWh/t material\
### Printing and media reproduction
#
#> (a) Printing and publishing is assumed to be electrified without any change in efficiency.
sector='Printing and media reproduction'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[79:90,year]
s_ued = excel_ued.iloc[79:90,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec',sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
df.loc['elec',sector] += s_ued[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat',sector] += s_fec['Low enthalpy heat']
df.loc['heat',sector] += s_ued['Low enthalpy heat']
# Industry-specific
df.loc['elec', sector] += s_fec['Printing and publishing']
df.loc['elec', sector] += s_ued['Printing and publishing']
# read the corresponding lines
s_out = excel_out.iloc[10:11,year]
assert sector in str(s_out.index)
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out.values # unit MWh/t material
## Food, beverages and tobaco
#
#> Food, beverages and tobaco can be completely electrified.
#
#> There are no process emissions associated to this sector.
sector = 'Food, beverages and tobacco'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:78,year]
s_ued = excel_ued.iloc[3:78,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Food: Direct Heat - Electric']/s_fec['Food: Direct Heat - Electric']
df.loc['elec', sector] += s_ued['Food: Oven (direct heat)']/eff_elec
eff_elec=s_ued['Food: Process Heat - Electric']/s_fec['Food: Process Heat - Electric']
df.loc['elec', sector] += s_ued['Food: Specific process heat']/eff_elec
eff_elec=s_ued['Food: Electric drying']/s_fec['Food: Electric drying']
df.loc['elec', sector] += s_ued['Food: Drying']/eff_elec
eff_elec=s_ued['Food: Electric cooling']/s_fec['Food: Electric cooling']
df.loc['elec', sector] += s_ued['Food: Process cooling and refrigeration']/eff_elec
# Steam processing goes all to biomass without change in efficiency
df.loc['biomass', sector] += s_fec['Food: Steam processing']
# add electricity from process that is already electrified
df.loc['elec', sector] += s_fec['Food: Electric machinery']
# read the corresponding lines
s_out = excel_out.iloc[3:4,year]
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Physical output (index)'] # unit MWh/t material
## Non Ferrous Metals
sector = 'Non Ferrous Metals'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
### Alumina
#
#> High enthalpy heat is converted to methane. Process heat at T>500ºC is required here.
#
#> Refining is electrified.
#
#> There are no process emissions associated to Alumina manufacturing
sector = 'Alumina production'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:31,year]
s_ued = excel_ued.iloc[3:31,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# High-enthalpy heat is transformed into methane
s_fec = excel_fec.iloc[13:24,year]
s_ued = excel_ued.iloc[13:24,year]
assert s_fec.index[0] == 'Alumina production: High enthalpy heat'
eff_met=s_ued['Natural gas (incl. biogas)']/s_fec['Natural gas (incl. biogas)']
df.loc['methane', sector] += s_fec['Alumina production: High enthalpy heat']/eff_met
# Efficiency changes due to electrification
s_fec = excel_fec.iloc[24:30,year]
s_ued = excel_ued.iloc[24:30,year]
assert s_fec.index[0] == 'Alumina production: Refining'
eff_elec=s_ued['Electricity']/s_fec['Electricity']
df.loc['elec', sector] += s_ued['Alumina production: Refining']/eff_elec
# read the corresponding lines
s_out = excel_out.iloc[9:10,year]
assert sector in str(s_out.index)
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Alumina production (kt)'] # unit MWh/t material
### Aluminium primary route
#
#> Production through the primary route is divided into 50% remains as today and 50% is transformed into secondary route
sector = 'Aluminium - primary production'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[31:66,year]
s_ued = excel_ued.iloc[31:66,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Add aluminium electrolysis (smelting
df.loc['elec', sector] += s_fec['Aluminium electrolysis (smelting)']
# Efficiency changes due to electrification
eff_elec=s_ued['Aluminium processing - Electric']/s_fec['Aluminium processing - Electric']
df.loc['elec', sector] += s_ued['Aluminium processing (metallurgy e.g. cast house, reheating)']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Aluminium finishing - Electric']/s_fec['Aluminium finishing - Electric']
df.loc['elec', sector] += s_ued['Aluminium finishing']/eff_elec
s_emi = excel_emi.iloc[31:67,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[11:12,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] = s_emi['Process emissions']/s_out['Aluminium - primary production'] # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Aluminium - primary production'] # unit MWh/t material
### Aluminium secondary route
#
#> All is coverted into secondary route fully electrified
sector = 'Aluminium - secondary production'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[68:109,year]
s_ued = excel_ued.iloc[68:109,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Secondary aluminium - Electric']/s_fec['Secondary aluminium - Electric']
df.loc['elec', sector] += s_ued['Secondary aluminium (incl. pre-treatment, remelting)']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Aluminium processing - Electric']/s_fec['Aluminium processing - Electric']
df.loc['elec', sector] += s_ued['Aluminium processing (metallurgy e.g. cast house, reheating)']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Aluminium finishing - Electric']/s_fec['Aluminium finishing - Electric']
df.loc['elec', sector] += s_ued['Aluminium finishing']/eff_elec
# read the corresponding lines
s_out = excel_out.iloc[12:13,year]
assert sector in str(s_out.index)
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Aluminium - secondary production'] # unit MWh/t material
# 1 ktoe = 11630 MWh
### Other non-ferrous metals
sector = 'Other non-ferrous metals'
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[110:152,year]
s_ued = excel_ued.iloc[110:152,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Metal production - Electric']/s_fec['Metal production - Electric']
df.loc['elec', sector] += s_ued['Other Metals: production']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Metal processing - Electric']/s_fec['Metal processing - Electric']
df.loc['elec', sector] += s_ued['Metal processing (metallurgy e.g. cast house, reheating)']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Metal finishing - Electric']/s_fec['Metal finishing - Electric']
df.loc['elec', sector] += s_ued['Metal finishing']/eff_elec
s_emi = excel_emi.iloc[110:153,year]
assert s_emi.index[0] == sector
s_out = excel_out.iloc[13:14,year]
assert sector in str(s_out.index)
df.loc['process emission',sector] = s_emi['Process emissions']/s_out['Other non-ferrous metals (kt lead eq.)'] # unit tCO2/t material
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Other non-ferrous metals (kt lead eq.)'] # unit MWh/t material
## Transport Equipment
sector = 'Transport Equipment'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:45,year]
s_ued = excel_ued.iloc[3:45,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Trans. Eq.: Electric Foundries']/s_fec['Trans. Eq.: Electric Foundries']
df.loc['elec', sector] += s_ued['Trans. Eq.: Foundries']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Trans. Eq.: Electric connection']/s_fec['Trans. Eq.: Electric connection']
df.loc['elec', sector] += s_ued['Trans. Eq.: Connection techniques']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Trans. Eq.: Heat treatment - Electric']/s_fec['Trans. Eq.: Heat treatment - Electric']
df.loc['elec', sector] += s_ued['Trans. Eq.: Heat treatment']/eff_elec
df.loc['elec', sector] += s_fec['Trans. Eq.: General machinery']
df.loc['elec', sector] += s_fec['Trans. Eq.: Product finishing']
# Steam processing is supplied with biomass
eff_biomass=s_ued['Biomass']/s_fec['Biomass']
df.loc['biomass', sector] += s_ued['Trans. Eq.: Steam processing']/eff_biomass
# read the corresponding lines
s_out = excel_out.iloc[3:4,year]
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Physical output (index)'] # unit MWh/t material
# 1 ktoe = 11630 MWh
## Machinery Equipment
sector = 'Machinery Equipment'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:45,year]
s_ued = excel_ued.iloc[3:45,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Mach. Eq.: Electric Foundries']/s_fec['Mach. Eq.: Electric Foundries']
df.loc['elec', sector] += s_ued['Mach. Eq.: Foundries']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Mach. Eq.: Electric connection']/s_fec['Mach. Eq.: Electric connection']
df.loc['elec', sector] += s_ued['Mach. Eq.: Connection techniques']/eff_elec
# Efficiency changes due to electrification
eff_elec=s_ued['Mach. Eq.: Heat treatment - Electric']/s_fec['Mach. Eq.: Heat treatment - Electric']
df.loc['elec', sector] += s_ued['Mach. Eq.: Heat treatment']/eff_elec
df.loc['elec', sector] += s_fec['Mach. Eq.: General machinery']
df.loc['elec', sector] += s_fec['Mach. Eq.: Product finishing']
# Steam processing is supplied with biomass
eff_biomass=s_ued['Biomass']/s_fec['Biomass']
df.loc['biomass', sector] += s_ued['Mach. Eq.: Steam processing']/eff_biomass
# read the corresponding lines
s_out = excel_out.iloc[3:4,year]
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Physical output (index)'] # unit MWh/t material
## Textiles and leather
sector = 'Textiles and leather'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:57,year]
s_ued = excel_ued.iloc[3:57,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Textiles: Electric drying']/s_fec['Textiles: Electric drying']
df.loc['elec', sector] += s_ued['Textiles: Drying']/eff_elec
df.loc['elec', sector] += s_fec['Textiles: Electric general machinery']
df.loc['elec', sector] += s_fec['Textiles: Finishing Electric']
# Steam processing is supplied with biomass
eff_biomass=s_ued[15:26]['Biomass']/s_fec[15:26]['Biomass']
df.loc['biomass', sector] += s_ued['Textiles: Pretreatment with steam']/eff_biomass
df.loc['biomass', sector] += s_ued['Textiles: Wet processing with steam']/eff_biomass
# read the corresponding lines
s_out = excel_out.iloc[3:4,year]
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Physical output (index)'] # unit MWh/t material
## Wood and wood products
sector = 'Wood and wood products'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:46,year]
s_ued = excel_ued.iloc[3:46,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Wood: Electric drying']/s_fec['Wood: Electric drying']
df.loc['elec', sector] += s_ued['Wood: Drying']/eff_elec
df.loc['elec', sector] += s_fec['Wood: Electric mechanical processes']
df.loc['elec', sector] += s_fec['Wood: Finishing Electric']
# Steam processing is supplied with biomass
eff_biomass=s_ued[15:25]['Biomass']/s_fec[15:25]['Biomass']
df.loc['biomass', sector] += s_ued['Wood: Specific processes with steam']/eff_biomass
# read the corresponding lines
s_out = excel_out.iloc[3:4,year]
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Physical output (index)'] # unit MWh/t material
## Other Industrial Sectors
sector = 'Other Industrial Sectors'
# read the input sheets
excel_fec = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_fec',
index_col=0,header=0,squeeze=True)
excel_ued = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_ued',
index_col=0,header=0,squeeze=True)
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector],
index_col=0,header=0,squeeze=True)
excel_emi = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(base_dir,country), sheet_name=sub_sheet_name_dict[sector]+'_emi',
index_col=0,header=0,squeeze=True) # the emission sheet
df[sector] = 0
# read the corresponding lines
s_fec = excel_fec.iloc[3:67,year]
s_ued = excel_ued.iloc[3:67,year]
assert s_fec.index[0] == sector
# Lighting, Air compressors, Motor drives, Fans and pumps
df.loc['elec', sector] += s_fec[['Lighting','Air compressors','Motor drives','Fans and pumps']].sum()
# Low enthalpy heat
df.loc['heat', sector] += s_fec['Low enthalpy heat']
# Efficiency changes due to electrification
eff_elec=s_ued['Other Industrial sectors: Electric processing']/s_fec['Other Industrial sectors: Electric processing']
df.loc['elec', sector] += s_ued['Other Industrial sectors: Process heating']/eff_elec
eff_elec=s_ued['Other Industries: Electric drying']/s_fec['Other Industries: Electric drying']
df.loc['elec', sector] += s_ued['Other Industrial sectors: Drying']/eff_elec
eff_elec=s_ued['Other Industries: Electric cooling']/s_fec['Other Industries: Electric cooling']
df.loc['elec', sector] += s_ued['Other Industrial sectors: Process Cooling']/eff_elec
# Diesel motors are electrified
df.loc['elec', sector] += s_fec['Other Industrial sectors: Diesel motors (incl. biofuels)']
df.loc['elec', sector] += s_fec['Other Industrial sectors: Electric machinery']
# Steam processing is supplied with biomass
eff_biomass=s_ued[15:25]['Biomass']/s_fec[15:25]['Biomass']
df.loc['biomass', sector] += s_ued['Other Industrial sectors: Steam processing']/eff_biomass
# read the corresponding lines
s_out = excel_out.iloc[3:4,year]
# final energy consumption per t
sources=['elec','biomass', 'methane', 'hydrogen', 'heat','naphtha']
df.loc[sources,sector] = df.loc[sources,sector]*conv_factor/s_out['Physical output (index)'] # unit MWh/t material
df.index.name = "MWh/tMaterial"
df.to_csv('resources/industry_sector_ratios.csv')