pypsa-eur/scripts/build_artificial_load_data.py

50 lines
1.3 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: 2022 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
This rule downloads the load data.
"""
import logging
logger = logging.getLogger(__name__)
import pandas as pd
from _helpers import configure_logging
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_artificial_load_data", weather_year="")
configure_logging(snakemake)
weather_year = snakemake.wildcards.weather_year
if weather_year:
snapshots = dict(
start=weather_year, end=str(int(weather_year) + 1), inclusive="left"
)
else:
snapshots = snakemake.config["snapshots"]
snapshots = pd.date_range(freq="h", **snapshots)
fixed_year = snakemake.config["load"].get("fixed_year", False)
years = (
slice(str(fixed_year), str(fixed_year))
if fixed_year
else slice(snapshots[0], snapshots[-1])
)
countries = snakemake.config["countries"]
load = pd.read_csv(snakemake.input[0], index_col=0, parse_dates=True).loc[
snapshots, countries
]
assert not load.isna().any().any(), "Load data contains nans."
if fixed_year:
load.index = load.index.map(lambda t: t.replace(year=snapshots.year[0]))
load.to_csv(snakemake.output[0])