Also unlike PyPSA-Eur, PyPSA-Eur-Sec subtracts existing electrified heating from the existing electricity demand, so that power-to-heat can be optimised separately.
The remaining electricity demand for households and services is distributed inside each country proportional to GDP and population.
They have coefficient of performance (COP) based on either the
external air or the soil hourly temperature.
Ground-source heat pumps are only allowed in rural areas because of
space constraints.
Only air-source heat pumps are allowed in urban areas. This is a
conservative assumption, since there are many possible sources of
low-temperature heat that could be tapped in cities (waste water,
rivers, lakes, seas, etc.).
Resistive heaters
--------------------
Large Combined Heat and Power (CHP) plants
--------------------------------------------
A good summary of CHP options that can be implemented in PyPSA can be found in the paper `Cost sensitivity of optimal sector-coupled district heating production systems <https://doi.org/10.1016/j.energy.2018.10.044>`_.
PyPSA-Eur-Sec includes CHP plants fuelled by methane, hydrogen and solid biomass from waste and residues.
Hydrogen CHPs are fuel cells.
Methane and biomass CHPs are based on back pressure plants operating with a fixed ratio of electricity to heat output. The methane CHP is modelled on the Danish Energy Agency (DEA) "Gas turbine simple cycle (large)" while the solid biomass CHP is based on the DEA's "09b Wood Pellets Medium".
The efficiencies of each are given on the back pressure line, where the back pressure coefficient ``c_b`` is the electricity output divided by the heat output. The plants are not allowed to deviate from the back pressure line and are implement as ``Link`` objects with a fixed ratio of heat to electricity output.
NB: The old PyPSA-Eur-Sec-30 model assumed an extraction plant (like the DEA coal CHP) for gas which has flexible production of heat and electricity within the feasibility diagram of Figure 4 in the `Synergies paper <https://arxiv.org/abs/1801.05290>`_. We have switched to the DEA back pressure plants since these are more common for smaller plants for biomass, and because the extraction plants were on the back pressure line for 99.5% of the time anyway. The plants were all changed to back pressure in PyPSA-Eur-Sec v0.4.0.
Micro-CHP for individual buildings
-----------------------------------
Optional.
Waste heat from Fuel Cells, Methanation and Fischer-Tropsch plants
Hydrogen is consumed in the industry sector (link to industry) to produce ammonia [link to ammonia industry section] and direct reduced iron (DRI) [link to DRI industry section]. Hydrogen is also consumed to produce synthetic methane [link to section “Methane supply”] and liquid hydrocarbons [link to fossil-oil based supply”] which have multiple uses in industry and other sectors.
Hydrogen is also used for transport applications (link to transport), where it is exogenously fixed. It is used in `heavy-duty land transport <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L181>`_ and as liquified hydrogen in the shipping sector [add link to shipping sector]. Furthermore, stationary fuel cells may re-electrify hydrogen (with waste heat as a byproduct) to balance renewable fluctuations [Add a link to the section where we describe the Electricity sector and how storage is modelled there]. The waste heat from the stationary fuel cells can be used in `district-heating systems <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L256>`_.
PyPSA-Eur-Sec allows this route of H2 production with and without [carbon capture (CC)] (Link to section on Carbon Capture Storage and Utilization). These routes are often referred to as blue and grey hydrogen. Here, methane input can be both of fossil or synthetic origin.
For the electrolysis, alkaline electrolysers are chosen since they have lower cost and higher cumulative installed capacity than polymer electrolyte membrane (PEM) electrolysers. The techno-economic assumptions are taken from the technology-data repository. Waste heat from electrolysis is not leveraged in the model.
Hydrogen is transported by pipelines. H2 pipelines are endogenously generated, either via a greenfield H2 network, or by `retrofitting natural gas pipelines <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L262>`_). Retrofitting is implemented in such a way that for every unit of decommissioned gas pipeline, a share (60% is used in [link to H2 backbone study]) of its nominal capacity (exogenously determined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L266>`_.) is available for hydrogen transport. When the gas network is not resolved, this input denotes the potential for gas pipelines repurposed into hydrogen pipelines.
New pipelines can be built additionally on all routes where there currently is a gas or electricity network connection. These new pipelines will be built where no sufficient retrofitting options are available. The capacities of new and repurposed pipelines are a result of the optimisation.
Hydrogen can be stored in overground steel tanks or `underground salt caverns <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L250>`_. For the latter, energy storage capacities in every country are limited to the potential estimation for onshore salt caverns within `50 km <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L251>`_ of shore to avoid environmental issues associated with brine solution disposal. Underground storage potentials for hydrogen in European salt caverns is acquired from `Caglayan et al. <https://doi.org/10.1016/j.ijhydene.2019.12.161>`_
Based on materials demand from JRC-IDEES and other sources such as the USGS for ammonia.
Industry is split into many sectors, including iron and steel, ammonia, other basic chemicals, cement, non-metalic minerals, alumuninium, other non-ferrous metals, pulp, paper and printing, food, beverages and tobacco, and other more minor sectors.
Inside each country the industrial demand is distributed using the `Hotmaps Industrial Database <https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_.