This release introduces pathway optimization over many years (e.g. 2020, 2030, 2040, 2050) with myopic foresight, as well as outsourcing the technology assumptions to the `technology-data <https://github.com/PyPSA/technology-data>`_ repository.
* Option for pathway optimization with myopic foresight, based on the paper `Early decarbonisation of the European Energy system pays off (2020) <https://arxiv.org/abs/2004.11009>`_. Investments are optimized sequentially for multiple years (e.g. 2020, 2030, 2040, 2050) taking account of existing assets built in previous years and their lifetimes. The script uses data on the existing assets for electricity and building heating technologies, but there are no assumptions yet for existing transport and industry (if you include these, the model will greenfield them). There are also some `outstanding issues <https://github.com/PyPSA/pypsa-eur-sec/issues/19#issuecomment-678194802>`_ on e.g. the distribution of existing wind, solar and heating technologies within each country. To use myopic foresight, set ``foresight : 'myopic'`` in the ``config.yaml`` instead of the default ``foresight : 'overnight'``. An example configuration can be found in ``config.myopic.yaml``. More details on the implementation can be found in :doc:`myopic`.
* Technology assumptions (costs, efficiencies, etc.) are no longer stored in the repository. Instead, you have to install the `technology-data <https://github.com/PyPSA/technology-data>`_ database in a parallel directory. These assumptions are largely based on the `Danish Energy Agency Technology Data <https://ens.dk/en/our-services/projections-and-models/technology-data>`_. More details on the installation can be found in :doc:`installation`.
* Logs and benchmarks are now stored with the other model outputs in ``results/run-name/``.
* All buses now have a ``location`` attribute, e.g. bus ``DE0 3 urban central heat`` has a ``location`` of ``DE0 3``.
* All assets have a ``lifetime`` attribute (integer in years). For the myopic foresight, a ``build_year`` attribute is also stored.
* Costs for solar and onshore and offshore wind are recalculated by PyPSA-Eur-Sec based on the investment year, including the AC or DC connection costs for offshore wind.
Many thanks to Marta Victoria for implementing the myopic foresight, and Marta Victoria, Kun Zhu and Lisa Zeyen for developing the technology assumptions database.
This is the first release of PyPSA-Eur-Sec, a model of the European energy system at the transmission network level that covers the full ENTSO-E area.
It is known to work with PyPSA-Eur v0.1.0 (commit bb3477cd69) and PyPSA v0.17.0.
We are making this release since in version 0.2.0 we will introduce changes to allow myopic investment planning that will require minor changes for users of the overnight investment planning.
PyPSA-Eur-Sec builds on the electricity generation and transmission
model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ to add demand
and supply for the following sectors: transport, space and water
heating, biomass, industry and industrial feedstocks. This completes
the energy system and includes all greenhouse gas emitters except
waste management, agriculture, forestry and land use.
PyPSA-Eur-Sec was initially based on the model PyPSA-Eur-Sec-30 described
in the paper `Synergies of sector coupling and transmission
reinforcement in a cost-optimised, highly renewable European energy
system <https://arxiv.org/abs/1801.05290>`_ (2018) but it differs by
being based on the higher resolution electricity transmission model
`PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ rather than a
one-node-per-country model, and by including biomass, industry,
* Make a `GitHub release <https://github.com/PyPSA/pypsa-eur-sec/releases>`_, which automatically triggers archiving by `zenodo <https://doi.org/10.5281/zenodo.3938042>`_.