pypsa-eur/scripts/plot_summary.py

171 lines
4.6 KiB
Python
Raw Normal View History

import os
import pandas as pd
import matplotlib.pyplot as plt
#consolidate and rename
def rename_techs(label):
if label.startswith("central "):
label = label[len("central "):]
elif label.startswith("urban "):
label = label[len("urban "):]
if "retrofitting" in label:
label = "building retrofitting"
elif "H2" in label:
label = "hydrogen storage"
elif "CHP" in label:
label = "CHP"
elif "water tank" in label:
label = "water tanks"
elif label == "water tanks":
label = "hot water storage"
elif "gas" in label and label != "gas boiler":
label = "natural gas"
elif "solar thermal" in label:
label = "solar thermal"
elif label == "solar":
label = "solar PV"
elif label == "heat pump":
label = "air heat pump"
elif label == "Sabatier":
label = "methanation"
elif label == "offwind":
label = "offshore wind"
2019-01-16 11:08:46 +00:00
elif label == "offwind-ac":
label = "offshore wind ac"
elif label == "offwind-dc":
label = "offshore wind dc"
elif label == "onwind":
label = "onshore wind"
elif label == "ror":
label = "hydroelectricity"
elif label == "hydro":
label = "hydroelectricity"
elif label == "PHS":
label = "hydroelectricity"
elif label == "co2 Store":
label = "DAC"
elif "battery" in label:
label = "battery storage"
return label
2019-01-16 11:08:46 +00:00
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","onshore wind","offshore wind ac", "offshore wind dc","solar PV","solar thermal","building retrofitting","ground heat pump","air heat pump","resistive heater","CHP","OCGT","gas boiler","gas","natural gas","methanation","hydrogen storage","battery storage","hot water storage"])
def plot_costs(infn, fn=None):
## For now ignore the simpl header
cost_df = pd.read_csv(infn,index_col=list(range(3)),header=[1,2,3])
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
#convert to billions
df = df/1e9
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.max(axis=1) < snakemake.config['plotting']['costs_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.sum().sort_values().index
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([0,snakemake.config['plotting']['costs_max']])
ax.set_ylabel("System Cost [EUR billion per year]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
if fn is not None:
fig.savefig(fn, transparent=True)
def plot_energy(infn, fn=None):
energy_df = pd.read_csv(infn, index_col=list(range(2)),header=[1,2,3])
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
#convert MWh to TWh
df = df/1e6
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.columns.sort_values()
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([snakemake.config['plotting']['energy_min'],snakemake.config['plotting']['energy_max']])
ax.set_ylabel("Energy [TWh/a]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
if fn is not None:
fig.savefig(fn, transparent=True)
if __name__ == "__main__":
summary = snakemake.wildcards.summary
try:
func = globals()[f"plot_{summary}"]
except KeyError:
raise RuntimeError(f"plotting function for {summary} has not been defined")
func(os.path.join(snakemake.input[0], f"{summary}.csv"), snakemake.output[0])