pypsa-eur/scripts/plot_p_nom_max.py

88 lines
2.5 KiB
Python
Raw Normal View History

"""
2019-08-11 20:34:18 +00:00
Plots renewable installation potentials per capacity factor.
2019-08-11 09:40:47 +00:00
Relevant Settings
-----------------
Inputs
------
Outputs
-------
Description
-----------
"""
import pypsa
import pandas as pd
import matplotlib.pyplot as plt
def cum_p_nom_max(net, tech, country=None):
carrier_b = net.generators.carrier == tech
generators = \
pd.DataFrame(dict(
p_nom_max=net.generators.loc[carrier_b, 'p_nom_max'],
p_max_pu=net.generators_t.p_max_pu.loc[:,carrier_b].mean(),
country=net.generators.loc[carrier_b, 'bus'].map(net.buses.country)
)).sort_values("p_max_pu", ascending=False)
if country is not None:
generators = generators.loc[generators.country == country]
generators["cum_p_nom_max"] = generators["p_nom_max"].cumsum() / 1e6
return generators
if __name__ == __main__:
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
path='..',
wildcards={'clusters': '45,90,181,full',
'country': 'all'},
params=dict(techs=['onwind', 'offwind-ac', 'offwind-dc', 'solar']),
input=Dict(
**{
'full': 'networks/elec_s.nc',
'45': 'networks/elec_s_45.nc',
'90': 'networks/elec_s_90.nc',
'181': 'networks/elec_s_181.nc',
}
),
output=['results/plots/cum_p_nom_max_{clusters}_{country}.pdf']
)
logging.basicConfig(level=snakemake.config['logging_level'])
plot_kwds = dict(drawstyle="steps-post")
clusters = snakemake.wildcards.clusters.split(',')
techs = snakemake.params.techs
country = snakemake.wildcards.country
if country == 'all':
country = None
else:
plot_kwds['marker'] = 'x'
fig, axes = plt.subplots(1, len(techs))
for cluster in clusters:
net = pypsa.Network(getattr(snakemake.input, cluster))
for i, tech in enumerate(techs):
cum_p_nom_max(net, tech, country).plot(x="p_max_pu", y="c_p_nom_max", label=cluster, ax=axes[0][i], **plot_kwds)
for i, tech in enumerate(techs):
ax = axes[0][i]
ax.set_xlabel(f"Capacity factor of {tech}")
ax.set_ylabel("Cumulative installable capacity / TW")
plt.legend(title="Cluster level")
fig.savefig(snakemake.output[0], transparent=True, bbox_inches='tight')