"""Build COP time series for air- or ground-sourced heat pumps."""
import xarray as xr
def coefficient_of_performance(delta_T, source='air'):
"""
COP is function of temp difference source to sink.
The quadratic regression is based on Staffell et al. (2012)
https://doi.org/10.1039/C2EE22653G.
if source == 'air':
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
elif source == 'soil':
return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2
else:
raise NotImplementedError("'source' must be one of ['air', 'soil']")
if __name__ == '__main__':
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'build_cop_profiles',
simpl='',
clusters=48,
)
for area in ["total", "urban", "rural"]:
for source in ["air", "soil"]:
source_T = xr.open_dataarray(
snakemake.input[f"temp_{source}_{area}"])
delta_T = snakemake.config['sector']['heat_pump_sink_T'] - source_T
cop = coefficient_of_performance(delta_T, source)
cop.to_netcdf(snakemake.output[f"cop_{source}_{area}"])
Hosted by CPS Cyber Physical Systems .