pypsa-eur/scripts/build_clustered_population_layouts.py

33 lines
897 B
Python
Raw Normal View History

import geopandas as gpd
import xarray as xr
import pandas as pd
import atlite
import helper
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
cutout_dir=snakemake.config['atlite']['cutout_dir'])
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
helper.clean_invalid_geometries(clustered_busregions)
I = cutout.indicatormatrix(clustered_busregions)
items = ["total","urban","rural"]
pop = pd.DataFrame(columns=items,
index=clustered_busregions.index)
for item in items:
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
pop[item] = I.dot(pop_layout.stack(spatial=('y', 'x')))
pop.to_csv(snakemake.output.clustered_pop_layout)