tia/Dreamer/wrappers.py
2021-06-29 21:20:44 -04:00

541 lines
17 KiB
Python

import atexit
import functools
import sys
import threading
import traceback
import gym
import numpy as np
from PIL import Image
from collections import deque
from numpy.core import overrides
class DMC2GYMWrapper:
def __init__(self, env):
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = {}
spaces['image'] = gym.spaces.Box(
0, 255, (self._env._height, self._env._width, 3,), dtype=np.uint8)
return gym.spaces.Dict(spaces)
def step(self, action):
image, reward, done, info = self._env.step(action)
obs = {'image': image}
return obs, reward, done, info
def reset(self):
image = self._env.reset()
obs = {'image': image}
return obs
class DeepMindControl:
def __init__(self, name, size=(64, 64), camera=None):
domain, task = name.split('_', 1)
if domain == 'cup': # Only domain with multiple words.
domain = 'ball_in_cup'
if isinstance(domain, str):
from dm_control import suite
self._env = suite.load(domain, task)
else:
assert task is None
self._env = domain()
self._size = size
if camera is None:
camera = dict(quadruped=2).get(domain, 0)
self._camera = camera
@property
def observation_space(self):
spaces = {}
for key, value in self._env.observation_spec().items():
spaces[key] = gym.spaces.Box(
-np.inf, np.inf, value.shape, dtype=np.float32)
spaces['image'] = gym.spaces.Box(
0, 255, self._size + (3,), dtype=np.uint8)
return gym.spaces.Dict(spaces)
@property
def action_space(self):
spec = self._env.action_spec()
return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
def step(self, action):
time_step = self._env.step(action)
obs = dict(time_step.observation)
obs['image'] = self.render()
reward = time_step.reward or 0
done = time_step.last()
info = {'discount': np.array(time_step.discount, np.float32)}
return obs, reward, done, info
def reset(self):
time_step = self._env.reset()
obs = dict(time_step.observation)
obs['image'] = self.render()
return obs
def render(self, *args, **kwargs):
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
return self._env.physics.render(*self._size, camera_id=self._camera)
class Atari:
LOCK = threading.Lock()
def __init__(
self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
life_done=False, sticky_actions=True):
import gym
version = 0 if sticky_actions else 4
name = ''.join(word.title() for word in name.split('_'))
with self.LOCK:
self._env = gym.make('{}NoFrameskip-v{}'.format(name, version))
self._action_repeat = action_repeat
self._size = size
self._grayscale = grayscale
self._noops = noops
self._life_done = life_done
self._lives = None
shape = self._env.observation_space.shape[:2] + \
(() if grayscale else (3,))
self._buffers = [np.empty(shape, dtype=np.uint8) for _ in range(2)]
self._random = np.random.RandomState(seed=None)
@property
def observation_space(self):
shape = self._size + (1 if self._grayscale else 3,)
space = gym.spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8)
return gym.spaces.Dict({'image': space})
@property
def action_space(self):
return self._env.action_space
def close(self):
return self._env.close()
def reset(self):
with self.LOCK:
self._env.reset()
noops = self._random.randint(1, self._noops + 1)
for _ in range(noops):
done = self._env.step(0)[2]
if done:
with self.LOCK:
self._env.reset()
self._lives = self._env.ale.lives()
if self._grayscale:
self._env.ale.getScreenGrayscale(self._buffers[0])
else:
self._env.ale.getScreenRGB2(self._buffers[0])
self._buffers[1].fill(0)
return self._get_obs()
def step(self, action):
total_reward = 0.0
for step in range(self._action_repeat):
_, reward, done, info = self._env.step(action)
total_reward += reward
if self._life_done:
lives = self._env.ale.lives()
done = done or lives < self._lives
self._lives = lives
if done:
break
elif step >= self._action_repeat - 2:
index = step - (self._action_repeat - 2)
if self._grayscale:
self._env.ale.getScreenGrayscale(self._buffers[index])
else:
self._env.ale.getScreenRGB2(self._buffers[index])
obs = self._get_obs()
return obs, total_reward, done, info
def render(self, mode):
return self._env.render(mode)
def _get_obs(self):
if self._action_repeat > 1:
np.maximum(self._buffers[0],
self._buffers[1], out=self._buffers[0])
image = np.array(Image.fromarray(self._buffers[0]).resize(
self._size, Image.BILINEAR))
image = np.clip(image, 0, 255).astype(np.uint8)
image = image[:, :, None] if self._grayscale else image
return {'image': image}
class Collect:
def __init__(self, env, callbacks=None, precision=32):
self._env = env
self._callbacks = callbacks or ()
self._precision = precision
self._episode = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {k: self._convert(v) for k, v in obs.items()}
transition = obs.copy()
transition['action'] = action
transition['reward'] = reward
transition['discount'] = info.get(
'discount', np.array(1 - float(done)))
self._episode.append(transition)
if done:
episode = {k: [t[k] for t in self._episode]
for k in self._episode[0]}
episode = {k: self._convert(v) for k, v in episode.items()}
info['episode'] = episode
for callback in self._callbacks:
callback(episode)
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
transition = obs.copy()
transition['action'] = np.zeros(self._env.action_space.shape)
transition['reward'] = 0.0
transition['discount'] = 1.0
self._episode = [transition]
return obs
def _convert(self, value):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
dtype = {16: np.float16, 32: np.float32,
64: np.float64}[self._precision]
elif np.issubdtype(value.dtype, np.signedinteger):
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
elif np.issubdtype(value.dtype, np.uint8):
dtype = np.uint8
else:
raise NotImplementedError(value.dtype)
return value.astype(dtype)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs, reward, done, info = self._env.step(action)
self._step += 1
if self._step >= self._duration:
done = True
if 'discount' not in info:
info['discount'] = np.array(1.0).astype(np.float32)
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
return self._env.reset()
class ActionRepeat:
def __init__(self, env, amount):
self._env = env
self._amount = amount
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
done = False
total_reward = 0
current_step = 0
while current_step < self._amount and not done:
obs, reward, done, info = self._env.step(action)
total_reward += reward
current_step += 1
return obs, total_reward, done, info
class NormalizeActions:
def __init__(self, env):
self._env = env
self._mask = np.logical_and(
np.isfinite(env.action_space.low),
np.isfinite(env.action_space.high))
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
return gym.spaces.Box(low, high, dtype=np.float32)
def step(self, action):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
return self._env.step(original)
class ObsDict:
def __init__(self, env, key='obs'):
self._env = env
self._key = key
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = {self._key: self._env.observation_space}
return gym.spaces.Dict(spaces)
@property
def action_space(self):
return self._env.action_space
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {self._key: np.array(obs)}
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs = {self._key: np.array(obs)}
return obs
class OneHotAction:
def __init__(self, env):
assert isinstance(env.action_space, gym.spaces.Discrete)
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
shape = (self._env.action_space.n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.sample = self._sample_action
return space
def step(self, action):
index = np.argmax(action).astype(int)
reference = np.zeros_like(action)
reference[index] = 1
if not np.allclose(reference, action):
raise ValueError(f'Invalid one-hot action:\n{action}')
return self._env.step(index)
def reset(self):
return self._env.reset()
def _sample_action(self):
actions = self._env.action_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class RewardObs:
def __init__(self, env):
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = self._env.observation_space.spaces
assert 'reward' not in spaces
spaces['reward'] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
return gym.spaces.Dict(spaces)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs['reward'] = reward
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs['reward'] = 0.0
return obs
class Async:
_ACCESS = 1
_CALL = 2
_RESULT = 3
_EXCEPTION = 4
_CLOSE = 5
def __init__(self, ctor, strategy='process'):
self._strategy = strategy
if strategy == 'none':
self._env = ctor()
elif strategy == 'thread':
import multiprocessing.dummy as mp
elif strategy == 'process':
import multiprocessing as mp
else:
raise NotImplementedError(strategy)
if strategy != 'none':
self._conn, conn = mp.Pipe()
self._process = mp.Process(target=self._worker, args=(ctor, conn))
atexit.register(self.close)
self._process.start()
self._obs_space = None
self._action_space = None
@property
def observation_space(self):
if not self._obs_space:
self._obs_space = self.__getattr__('observation_space')
return self._obs_space
@property
def action_space(self):
if not self._action_space:
self._action_space = self.__getattr__('action_space')
return self._action_space
def __getattr__(self, name):
if self._strategy == 'none':
return getattr(self._env, name)
self._conn.send((self._ACCESS, name))
return self._receive()
def call(self, name, *args, **kwargs):
blocking = kwargs.pop('blocking', True)
if self._strategy == 'none':
return functools.partial(getattr(self._env, name), *args, **kwargs)
payload = name, args, kwargs
self._conn.send((self._CALL, payload))
promise = self._receive
return promise() if blocking else promise
def close(self):
if self._strategy == 'none':
try:
self._env.close()
except AttributeError:
pass
return
try:
self._conn.send((self._CLOSE, None))
self._conn.close()
except IOError:
# The connection was already closed.
pass
self._process.join()
def step(self, action, blocking=True):
return self.call('step', action, blocking=blocking)
def reset(self, blocking=True):
return self.call('reset', blocking=blocking)
def _receive(self):
try:
message, payload = self._conn.recv()
except ConnectionResetError:
raise RuntimeError('Environment worker crashed.')
# Re-raise exceptions in the main process.
if message == self._EXCEPTION:
stacktrace = payload
raise Exception(stacktrace)
if message == self._RESULT:
return payload
raise KeyError(f'Received message of unexpected type {message}')
def _worker(self, ctor, conn):
try:
env = ctor()
while True:
try:
# Only block for short times to have keyboard exceptions be raised.
if not conn.poll(0.1):
continue
message, payload = conn.recv()
except (EOFError, KeyboardInterrupt):
break
if message == self._ACCESS:
name = payload
result = getattr(env, name)
conn.send((self._RESULT, result))
continue
if message == self._CALL:
name, args, kwargs = payload
result = getattr(env, name)(*args, **kwargs)
conn.send((self._RESULT, result))
continue
if message == self._CLOSE:
assert payload is None
break
raise KeyError(f'Received message of unknown type {message}')
except Exception:
stacktrace = ''.join(traceback.format_exception(*sys.exc_info()))
print(f'Error in environment process: {stacktrace}')
conn.send((self._EXCEPTION, stacktrace))
conn.close()
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
gym.Wrapper.__init__(self, env)
self._k = k
self._frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = gym.spaces.Box(
low=0,
high=1,
shape=((shp[0] * k,) + shp[1:]),
dtype=env.observation_space.dtype
)
self._max_episode_steps = env._max_episode_steps
def reset(self):
obs = self.env.reset()
for _ in range(self._k):
self._frames.append(obs)
return self._get_obs()
def step(self, action):
obs, reward, done, info = self.env.step(action)
self._frames.append(obs)
return self._get_obs(), reward, done, info
def _get_obs(self):
assert len(self._frames) == self._k
return np.concatenate(list(self._frames), axis=0)