475 lines
16 KiB
Python
475 lines
16 KiB
Python
|
import datetime
|
||
|
import io
|
||
|
import pathlib
|
||
|
import pickle
|
||
|
import re
|
||
|
import uuid
|
||
|
|
||
|
import gym
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
import tensorflow.compat.v1 as tf1 # pylint: disable=E
|
||
|
import tensorflow_probability as tfp
|
||
|
from tensorflow.keras.mixed_precision import experimental as prec
|
||
|
from tensorflow_probability import distributions as tfd
|
||
|
|
||
|
|
||
|
class AttrDict(dict):
|
||
|
|
||
|
__setattr__ = dict.__setitem__
|
||
|
__getattr__ = dict.__getitem__
|
||
|
|
||
|
def from_dict(self, src_dict):
|
||
|
for key in src_dict:
|
||
|
setattr(self, key, src_dict[key])
|
||
|
|
||
|
|
||
|
class Module(tf.Module):
|
||
|
|
||
|
def save(self, filename):
|
||
|
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
|
||
|
with pathlib.Path(filename).open('wb') as f:
|
||
|
pickle.dump(values, f)
|
||
|
|
||
|
def load(self, filename):
|
||
|
with pathlib.Path(filename).open('rb') as f:
|
||
|
values = pickle.load(f)
|
||
|
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
|
||
|
|
||
|
def get(self, name, ctor, *args, **kwargs):
|
||
|
# Create or get layer by name to avoid mentioning it in the constructor.
|
||
|
if not hasattr(self, '_modules'):
|
||
|
self._modules = {}
|
||
|
if name not in self._modules:
|
||
|
self._modules[name] = ctor(*args, **kwargs)
|
||
|
return self._modules[name]
|
||
|
|
||
|
|
||
|
def nest_summary(structure):
|
||
|
if isinstance(structure, dict):
|
||
|
return {k: nest_summary(v) for k, v in structure.items()}
|
||
|
if isinstance(structure, list):
|
||
|
return [nest_summary(v) for v in structure]
|
||
|
if hasattr(structure, 'shape'):
|
||
|
return str(structure.shape).replace(', ', 'x').strip('(), ')
|
||
|
return '?'
|
||
|
|
||
|
|
||
|
def graph_summary(writer, fn, step, *args):
|
||
|
def inner(*args):
|
||
|
tf.summary.experimental.set_step(step)
|
||
|
with writer.as_default():
|
||
|
fn(*args)
|
||
|
return tf.numpy_function(inner, args, [])
|
||
|
|
||
|
|
||
|
def video_summary(name, video, step=None, fps=20):
|
||
|
if isinstance(name, type(np.zeros(1))):
|
||
|
name = str(name)
|
||
|
else:
|
||
|
name = name if isinstance(name, str) else name.decode('utf-8')
|
||
|
if np.issubdtype(video.dtype, np.floating):
|
||
|
video = np.clip(255 * video, 0, 255).astype(np.uint8)
|
||
|
B, T, H, W, C = video.shape
|
||
|
try:
|
||
|
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
|
||
|
summary = tf1.Summary()
|
||
|
image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
|
||
|
image.encoded_image_string = encode_gif(frames, fps)
|
||
|
summary.value.add(tag=name + '/gif', image=image)
|
||
|
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
|
||
|
except (IOError, OSError) as e:
|
||
|
print('GIF summaries require ffmpeg in $PATH.', e)
|
||
|
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
|
||
|
tf.summary.image(name + '/grid', frames, step)
|
||
|
|
||
|
|
||
|
def encode_gif(frames, fps):
|
||
|
from subprocess import Popen, PIPE
|
||
|
print(frames[0].shape)
|
||
|
if frames[0].shape[-1] > 3:
|
||
|
frames = np.transpose(frames, [0, 2, 3, 1])
|
||
|
h, w, c = frames[0].shape
|
||
|
print(frames[0].shape)
|
||
|
|
||
|
if c!=64:
|
||
|
pxfmt = {1: 'gray', 3: 'rgb24'}[c]
|
||
|
cmd = ' '.join([
|
||
|
f'ffmpeg -y -f rawvideo -vcodec rawvideo',
|
||
|
f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
|
||
|
f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
|
||
|
f'-r {fps:.02f} -f gif -'])
|
||
|
proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
|
||
|
for image in frames:
|
||
|
proc.stdin.write(image.tostring())
|
||
|
out, err = proc.communicate()
|
||
|
if proc.returncode:
|
||
|
raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
|
||
|
del proc
|
||
|
return out
|
||
|
|
||
|
|
||
|
def simulate(agent, envs, steps=0, episodes=0, state=None):
|
||
|
# Initialize or unpack simulation state.
|
||
|
if state is None:
|
||
|
step, episode = 0, 0
|
||
|
done = np.ones(len(envs), np.bool)
|
||
|
length = np.zeros(len(envs), np.int32)
|
||
|
obs = [None] * len(envs)
|
||
|
agent_state = None
|
||
|
else:
|
||
|
step, episode, done, length, obs, agent_state = state
|
||
|
while (steps and step < steps) or (episodes and episode < episodes):
|
||
|
# Reset envs if necessary.
|
||
|
if done.any():
|
||
|
indices = [index for index, d in enumerate(done) if d]
|
||
|
promises = [envs[i].reset(blocking=False) for i in indices]
|
||
|
for index, promise in zip(indices, promises):
|
||
|
obs[index] = promise()
|
||
|
# Step agents.
|
||
|
# if use augmentation, need to modify dreamer.policy or here.
|
||
|
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
|
||
|
obs['image'] = tf.transpose(obs['image'], [0, 3, 2, 1])
|
||
|
action, agent_state = agent(obs, done, agent_state)
|
||
|
action = np.array(action)
|
||
|
assert len(action) == len(envs)
|
||
|
# Step envs.
|
||
|
promises = [e.step(a, blocking=False) for e, a in zip(envs, action)]
|
||
|
obs, _, done = zip(*[p()[:3] for p in promises])
|
||
|
obs = list(obs)
|
||
|
done = np.stack(done)
|
||
|
episode += int(done.sum())
|
||
|
length += 1
|
||
|
step += (done * length).sum()
|
||
|
length *= (1 - done)
|
||
|
# Return new state to allow resuming the simulation.
|
||
|
return (step - steps, episode - episodes, done, length, obs, agent_state)
|
||
|
|
||
|
|
||
|
def count_episodes(directory):
|
||
|
filenames = directory.glob('*.npz')
|
||
|
lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames]
|
||
|
episodes, steps = len(lengths), sum(lengths)
|
||
|
return episodes, steps
|
||
|
|
||
|
|
||
|
def save_episodes(directory, episodes):
|
||
|
directory = pathlib.Path(directory).expanduser()
|
||
|
directory.mkdir(parents=True, exist_ok=True)
|
||
|
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
|
||
|
for episode in episodes:
|
||
|
identifier = str(uuid.uuid4().hex)
|
||
|
length = len(episode['reward'])
|
||
|
filename = directory / f'{timestamp}-{identifier}-{length}.npz'
|
||
|
with io.BytesIO() as f1:
|
||
|
np.savez_compressed(f1, **episode)
|
||
|
f1.seek(0)
|
||
|
with filename.open('wb') as f2:
|
||
|
f2.write(f1.read())
|
||
|
|
||
|
|
||
|
def load_episodes(directory, rescan, length=None, balance=False, seed=0):
|
||
|
directory = pathlib.Path(directory).expanduser()
|
||
|
random = np.random.RandomState(seed)
|
||
|
cache = {}
|
||
|
while True:
|
||
|
for filename in directory.glob('*.npz'):
|
||
|
if filename not in cache:
|
||
|
try:
|
||
|
with filename.open('rb') as f:
|
||
|
episode = np.load(f)
|
||
|
episode = {k: episode[k] for k in episode.keys()}
|
||
|
except Exception as e:
|
||
|
print(f'Could not load episode: {e}')
|
||
|
continue
|
||
|
cache[filename] = episode
|
||
|
keys = list(cache.keys())
|
||
|
for index in random.choice(len(keys), rescan):
|
||
|
episode = cache[keys[index]]
|
||
|
if length:
|
||
|
total = len(next(iter(episode.values())))
|
||
|
available = total - length
|
||
|
if available < 1:
|
||
|
print(f'Skipped short episode of length {available}({total}/{length}).')
|
||
|
continue
|
||
|
if balance:
|
||
|
index = min(random.randint(0, total), available)
|
||
|
else:
|
||
|
index = int(random.randint(0, available))
|
||
|
episode = {k: v[index: index + length]
|
||
|
for k, v in episode.items()}
|
||
|
yield episode
|
||
|
|
||
|
class DummyEnv:
|
||
|
|
||
|
def __init__(self):
|
||
|
self._random = np.random.RandomState(seed=0)
|
||
|
self._step = None
|
||
|
|
||
|
@property
|
||
|
def observation_space(self):
|
||
|
low = np.zeros([64, 64, 3], dtype=np.uint8)
|
||
|
high = 255 * np.ones([64, 64, 3], dtype=np.uint8)
|
||
|
spaces = {'image': gym.spaces.Box(low, high)}
|
||
|
return gym.spaces.Dict(spaces)
|
||
|
|
||
|
@property
|
||
|
def action_space(self):
|
||
|
low = -np.ones([5], dtype=np.float32)
|
||
|
high = np.ones([5], dtype=np.float32)
|
||
|
return gym.spaces.Box(low, high)
|
||
|
|
||
|
def reset(self):
|
||
|
self._step = 0
|
||
|
obs = self.observation_space.sample()
|
||
|
return obs
|
||
|
|
||
|
def step(self, action):
|
||
|
obs = self.observation_space.sample()
|
||
|
reward = self._random.uniform(0, 1)
|
||
|
self._step += 1
|
||
|
done = self._step >= 1000
|
||
|
info = {}
|
||
|
return obs, reward, done, info
|
||
|
|
||
|
|
||
|
class SampleDist:
|
||
|
|
||
|
def __init__(self, dist, samples=100):
|
||
|
self._dist = dist
|
||
|
self._samples = samples
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return 'SampleDist'
|
||
|
|
||
|
def __getattr__(self, name):
|
||
|
return getattr(self._dist, name)
|
||
|
|
||
|
def mean(self):
|
||
|
samples = self._dist.sample(self._samples)
|
||
|
return tf.reduce_mean(samples, 0)
|
||
|
|
||
|
def mode(self):
|
||
|
sample = self._dist.sample(self._samples)
|
||
|
logprob = self._dist.log_prob(sample)
|
||
|
return tf.gather(sample, tf.argmax(logprob))[0] # pylint: disable=E
|
||
|
|
||
|
def entropy(self):
|
||
|
sample = self._dist.sample(self._samples)
|
||
|
logprob = self.log_prob(sample)
|
||
|
return -tf.reduce_mean(logprob, 0)
|
||
|
|
||
|
|
||
|
class OneHotDist:
|
||
|
|
||
|
def __init__(self, logits=None, probs=None):
|
||
|
self._dist = tfd.Categorical(logits=logits, probs=probs)
|
||
|
self._num_classes = self.mean().shape[-1]
|
||
|
self._dtype = prec.global_policy().compute_dtype
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return 'OneHotDist'
|
||
|
|
||
|
def __getattr__(self, name):
|
||
|
return getattr(self._dist, name)
|
||
|
|
||
|
def prob(self, events):
|
||
|
indices = tf.argmax(events, axis=-1)
|
||
|
return self._dist.prob(indices)
|
||
|
|
||
|
def log_prob(self, events):
|
||
|
indices = tf.argmax(events, axis=-1)
|
||
|
return self._dist.log_prob(indices)
|
||
|
|
||
|
def mean(self):
|
||
|
return self._dist.probs_parameter()
|
||
|
|
||
|
def mode(self):
|
||
|
return self._one_hot(self._dist.mode())
|
||
|
|
||
|
def sample(self, amount=None):
|
||
|
amount = [amount] if amount else []
|
||
|
indices = self._dist.sample(*amount)
|
||
|
sample = self._one_hot(indices)
|
||
|
probs = self._dist.probs_parameter()
|
||
|
sample += tf.cast(probs - tf.stop_gradient(probs), self._dtype)
|
||
|
return sample
|
||
|
|
||
|
def _one_hot(self, indices):
|
||
|
return tf.one_hot(indices, self._num_classes, dtype=self._dtype) # pylint: disable=E
|
||
|
|
||
|
|
||
|
|
||
|
class TanhBijector(tfp.bijectors.Bijector):
|
||
|
|
||
|
def __init__(self, validate_args=False, name='tanh'):
|
||
|
super().__init__(
|
||
|
forward_min_event_ndims=0,
|
||
|
validate_args=validate_args,
|
||
|
name=name)
|
||
|
|
||
|
def _forward(self, x):
|
||
|
return tf.nn.tanh(x)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
dtype = y.dtype
|
||
|
y = tf.cast(y, tf.float32)
|
||
|
y = tf.where(
|
||
|
tf.less_equal(tf.abs(y), 1.),
|
||
|
tf.clip_by_value(y, -0.99999997, 0.99999997), y)
|
||
|
y = tf.atanh(y)
|
||
|
y = tf.cast(y, dtype)
|
||
|
return y
|
||
|
|
||
|
def _forward_log_det_jacobian(self, x):
|
||
|
log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype))
|
||
|
return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x))
|
||
|
|
||
|
|
||
|
def lambda_return(
|
||
|
reward, value, pcont, bootstrap, lambda_, axis):
|
||
|
# Setting lambda=1 gives a discounted Monte Carlo return.
|
||
|
# Setting lambda=0 gives a fixed 1-step return.
|
||
|
assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
|
||
|
if isinstance(pcont, (int, float)):
|
||
|
pcont = pcont * tf.ones_like(reward)
|
||
|
dims = list(range(reward.shape.ndims))
|
||
|
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
|
||
|
if axis != 0:
|
||
|
reward = tf.transpose(reward, dims)
|
||
|
value = tf.transpose(value, dims)
|
||
|
pcont = tf.transpose(pcont, dims)
|
||
|
if bootstrap is None:
|
||
|
bootstrap = tf.zeros_like(value[-1])
|
||
|
next_values = tf.concat([value[1:], bootstrap[None]], 0)
|
||
|
inputs = reward + pcont * next_values * (1 - lambda_)
|
||
|
returns = static_scan(
|
||
|
lambda agg, cur: cur[0] + cur[1] * lambda_ * agg,
|
||
|
(inputs, pcont), bootstrap, reverse=True)
|
||
|
if axis != 0:
|
||
|
returns = tf.transpose(returns, dims)
|
||
|
return returns
|
||
|
|
||
|
|
||
|
class Adam(tf.Module):
|
||
|
|
||
|
def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'):
|
||
|
self._name = name
|
||
|
self._modules = modules
|
||
|
self._clip = clip
|
||
|
self._wd = wd
|
||
|
self._wdpattern = wdpattern
|
||
|
self._opt = tf.optimizers.Adam(lr)
|
||
|
self._opt = prec.LossScaleOptimizer(self._opt, 'dynamic')
|
||
|
self._variables = None
|
||
|
|
||
|
@property
|
||
|
def variables(self):
|
||
|
return self._opt.variables()
|
||
|
|
||
|
def __call__(self, tape, loss):
|
||
|
if self._variables is None:
|
||
|
variables = [module.variables for module in self._modules]
|
||
|
self._variables = tf.nest.flatten(variables)
|
||
|
count = sum(np.prod(x.shape) for x in self._variables)
|
||
|
print(f'Found {count} {self._name} parameters.')
|
||
|
assert len(loss.shape) == 0, loss.shape
|
||
|
with tape:
|
||
|
loss = self._opt.get_scaled_loss(loss)
|
||
|
grads = tape.gradient(loss, self._variables)
|
||
|
grads = self._opt.get_unscaled_gradients(grads)
|
||
|
norm = tf.linalg.global_norm(grads)
|
||
|
if self._clip:
|
||
|
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
|
||
|
if self._wd:
|
||
|
context = tf.distribute.get_replica_context()
|
||
|
context.merge_call(self._apply_weight_decay)
|
||
|
self._opt.apply_gradients(zip(grads, self._variables))
|
||
|
return norm
|
||
|
|
||
|
def _apply_weight_decay(self, strategy):
|
||
|
print('Applied weight decay to variables:')
|
||
|
for var in self._variables:
|
||
|
if re.search(self._wdpattern, self._name + '/' + var.name):
|
||
|
print('- ' + self._name + '/' + var.name)
|
||
|
strategy.extended.update(var, lambda var: self._wd * var)
|
||
|
|
||
|
|
||
|
def args_type(default):
|
||
|
if isinstance(default, bool):
|
||
|
return lambda x: bool(['False', 'True'].index(x))
|
||
|
if isinstance(default, int):
|
||
|
return lambda x: float(x) if ('e' in x or '.' in x) else int(x)
|
||
|
if isinstance(default, pathlib.Path):
|
||
|
return lambda x: pathlib.Path(x).expanduser()
|
||
|
return type(default)
|
||
|
|
||
|
|
||
|
def static_scan(fn, inputs, start, reverse=False):
|
||
|
last = start
|
||
|
outputs = [[] for _ in tf.nest.flatten(start)]
|
||
|
indices = range(len(tf.nest.flatten(inputs)[0]))
|
||
|
if reverse:
|
||
|
indices = reversed(indices)
|
||
|
for index in indices:
|
||
|
inp = tf.nest.map_structure(lambda x: x[index], inputs)
|
||
|
last = fn(last, inp)
|
||
|
[o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
|
||
|
if reverse:
|
||
|
outputs = [list(reversed(x)) for x in outputs]
|
||
|
outputs = [tf.stack(x, 0) for x in outputs]
|
||
|
return tf.nest.pack_sequence_as(start, outputs)
|
||
|
|
||
|
|
||
|
def _mnd_sample(self, sample_shape=(), seed=None, name='sample'):
|
||
|
return tf.random.normal(
|
||
|
tuple(sample_shape) + tuple(self.event_shape),
|
||
|
self.mean(), self.stddev(), self.dtype, seed, name)
|
||
|
|
||
|
|
||
|
tfd.MultivariateNormalDiag.sample = _mnd_sample
|
||
|
|
||
|
|
||
|
def _cat_sample(self, sample_shape=(), seed=None, name='sample'):
|
||
|
assert len(sample_shape) in (0, 1), sample_shape
|
||
|
assert len(self.logits_parameter().shape) == 2
|
||
|
indices = tf.random.categorical(
|
||
|
self.logits_parameter(), sample_shape[0] if sample_shape else 1,
|
||
|
self.dtype, seed, name)
|
||
|
if not sample_shape:
|
||
|
indices = indices[..., 0]
|
||
|
return indices
|
||
|
|
||
|
|
||
|
tfd.Categorical.sample = _cat_sample
|
||
|
|
||
|
|
||
|
class Every:
|
||
|
|
||
|
def __init__(self, every):
|
||
|
self._every = every
|
||
|
self._last = None
|
||
|
|
||
|
def __call__(self, step):
|
||
|
if self._last is None:
|
||
|
self._last = step
|
||
|
return True
|
||
|
if step >= self._last + self._every:
|
||
|
self._last += self._every
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
class Once:
|
||
|
|
||
|
def __init__(self):
|
||
|
self._once = True
|
||
|
|
||
|
def __call__(self):
|
||
|
if self._once:
|
||
|
self._once = False
|
||
|
return True
|
||
|
return False
|