128 lines
4.5 KiB
Python
128 lines
4.5 KiB
Python
|
# Copyright 2017 The dm_control Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
"""Acrobot domain."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import collections
|
||
|
|
||
|
from dm_control import mujoco
|
||
|
from dm_control.rl import control
|
||
|
from local_dm_control_suite import base
|
||
|
from local_dm_control_suite import common
|
||
|
from dm_control.utils import containers
|
||
|
from dm_control.utils import rewards
|
||
|
import numpy as np
|
||
|
|
||
|
_DEFAULT_TIME_LIMIT = 10
|
||
|
SUITE = containers.TaggedTasks()
|
||
|
|
||
|
|
||
|
def get_model_and_assets():
|
||
|
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||
|
return common.read_model('acrobot.xml'), common.ASSETS
|
||
|
|
||
|
|
||
|
@SUITE.add('benchmarking')
|
||
|
def swingup(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||
|
environment_kwargs=None):
|
||
|
"""Returns Acrobot balance task."""
|
||
|
physics = Physics.from_xml_string(*get_model_and_assets())
|
||
|
task = Balance(sparse=False, random=random)
|
||
|
environment_kwargs = environment_kwargs or {}
|
||
|
return control.Environment(
|
||
|
physics, task, time_limit=time_limit, **environment_kwargs)
|
||
|
|
||
|
|
||
|
@SUITE.add('benchmarking')
|
||
|
def swingup_sparse(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||
|
environment_kwargs=None):
|
||
|
"""Returns Acrobot sparse balance."""
|
||
|
physics = Physics.from_xml_string(*get_model_and_assets())
|
||
|
task = Balance(sparse=True, random=random)
|
||
|
environment_kwargs = environment_kwargs or {}
|
||
|
return control.Environment(
|
||
|
physics, task, time_limit=time_limit, **environment_kwargs)
|
||
|
|
||
|
|
||
|
class Physics(mujoco.Physics):
|
||
|
"""Physics simulation with additional features for the Acrobot domain."""
|
||
|
|
||
|
def horizontal(self):
|
||
|
"""Returns horizontal (x) component of body frame z-axes."""
|
||
|
return self.named.data.xmat[['upper_arm', 'lower_arm'], 'xz']
|
||
|
|
||
|
def vertical(self):
|
||
|
"""Returns vertical (z) component of body frame z-axes."""
|
||
|
return self.named.data.xmat[['upper_arm', 'lower_arm'], 'zz']
|
||
|
|
||
|
def to_target(self):
|
||
|
"""Returns the distance from the tip to the target."""
|
||
|
tip_to_target = (self.named.data.site_xpos['target'] -
|
||
|
self.named.data.site_xpos['tip'])
|
||
|
return np.linalg.norm(tip_to_target)
|
||
|
|
||
|
def orientations(self):
|
||
|
"""Returns the sines and cosines of the pole angles."""
|
||
|
return np.concatenate((self.horizontal(), self.vertical()))
|
||
|
|
||
|
|
||
|
class Balance(base.Task):
|
||
|
"""An Acrobot `Task` to swing up and balance the pole."""
|
||
|
|
||
|
def __init__(self, sparse, random=None):
|
||
|
"""Initializes an instance of `Balance`.
|
||
|
|
||
|
Args:
|
||
|
sparse: A `bool` specifying whether to use a sparse (indicator) reward.
|
||
|
random: Optional, either a `numpy.random.RandomState` instance, an
|
||
|
integer seed for creating a new `RandomState`, or None to select a seed
|
||
|
automatically (default).
|
||
|
"""
|
||
|
self._sparse = sparse
|
||
|
super(Balance, self).__init__(random=random)
|
||
|
|
||
|
def initialize_episode(self, physics):
|
||
|
"""Sets the state of the environment at the start of each episode.
|
||
|
|
||
|
Shoulder and elbow are set to a random position between [-pi, pi).
|
||
|
|
||
|
Args:
|
||
|
physics: An instance of `Physics`.
|
||
|
"""
|
||
|
physics.named.data.qpos[
|
||
|
['shoulder', 'elbow']] = self.random.uniform(-np.pi, np.pi, 2)
|
||
|
super(Balance, self).initialize_episode(physics)
|
||
|
|
||
|
def get_observation(self, physics):
|
||
|
"""Returns an observation of pole orientation and angular velocities."""
|
||
|
obs = collections.OrderedDict()
|
||
|
obs['orientations'] = physics.orientations()
|
||
|
obs['velocity'] = physics.velocity()
|
||
|
return obs
|
||
|
|
||
|
def _get_reward(self, physics, sparse):
|
||
|
target_radius = physics.named.model.site_size['target', 0]
|
||
|
return rewards.tolerance(physics.to_target(),
|
||
|
bounds=(0, target_radius),
|
||
|
margin=0 if sparse else 1)
|
||
|
|
||
|
def get_reward(self, physics):
|
||
|
"""Returns a sparse or a smooth reward, as specified in the constructor."""
|
||
|
return self._get_reward(physics, sparse=self._sparse)
|