tia/Dreamer/wrappers.py

541 lines
17 KiB
Python
Raw Normal View History

2023-07-17 08:48:01 +00:00
import atexit
import functools
import sys
import threading
import traceback
import gym
import numpy as np
from PIL import Image
from collections import deque
from numpy.core import overrides
class DMC2GYMWrapper:
def __init__(self, env):
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = {}
spaces['image'] = gym.spaces.Box(
0, 255, (self._env._height, self._env._width, 3,), dtype=np.uint8)
return gym.spaces.Dict(spaces)
def step(self, action):
image, reward, done, info = self._env.step(action)
obs = {'image': image}
return obs, reward, done, info
def reset(self):
image = self._env.reset()
obs = {'image': image}
return obs
class DeepMindControl:
def __init__(self, name, size=(64, 64), camera=None):
domain, task = name.split('_', 1)
if domain == 'cup': # Only domain with multiple words.
domain = 'ball_in_cup'
if isinstance(domain, str):
from dm_control import suite
self._env = suite.load(domain, task)
else:
assert task is None
self._env = domain()
self._size = size
if camera is None:
camera = dict(quadruped=2).get(domain, 0)
self._camera = camera
@property
def observation_space(self):
spaces = {}
for key, value in self._env.observation_spec().items():
spaces[key] = gym.spaces.Box(
-np.inf, np.inf, value.shape, dtype=np.float32)
spaces['image'] = gym.spaces.Box(
0, 255, self._size + (3,), dtype=np.uint8)
return gym.spaces.Dict(spaces)
@property
def action_space(self):
spec = self._env.action_spec()
return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
def step(self, action):
time_step = self._env.step(action)
obs = dict(time_step.observation)
obs['image'] = self.render()
reward = time_step.reward or 0
done = time_step.last()
info = {'discount': np.array(time_step.discount, np.float32)}
return obs, reward, done, info
def reset(self):
time_step = self._env.reset()
obs = dict(time_step.observation)
obs['image'] = self.render()
return obs
def render(self, *args, **kwargs):
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
return self._env.physics.render(*self._size, camera_id=self._camera)
class Atari:
LOCK = threading.Lock()
def __init__(
self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
life_done=False, sticky_actions=True):
import gym
version = 0 if sticky_actions else 4
name = ''.join(word.title() for word in name.split('_'))
with self.LOCK:
self._env = gym.make('{}NoFrameskip-v{}'.format(name, version))
self._action_repeat = action_repeat
self._size = size
self._grayscale = grayscale
self._noops = noops
self._life_done = life_done
self._lives = None
shape = self._env.observation_space.shape[:2] + \
(() if grayscale else (3,))
self._buffers = [np.empty(shape, dtype=np.uint8) for _ in range(2)]
self._random = np.random.RandomState(seed=None)
@property
def observation_space(self):
shape = self._size + (1 if self._grayscale else 3,)
space = gym.spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8)
return gym.spaces.Dict({'image': space})
@property
def action_space(self):
return self._env.action_space
def close(self):
return self._env.close()
def reset(self):
with self.LOCK:
self._env.reset()
noops = self._random.randint(1, self._noops + 1)
for _ in range(noops):
done = self._env.step(0)[2]
if done:
with self.LOCK:
self._env.reset()
self._lives = self._env.ale.lives()
if self._grayscale:
self._env.ale.getScreenGrayscale(self._buffers[0])
else:
self._env.ale.getScreenRGB2(self._buffers[0])
self._buffers[1].fill(0)
return self._get_obs()
def step(self, action):
total_reward = 0.0
for step in range(self._action_repeat):
_, reward, done, info = self._env.step(action)
total_reward += reward
if self._life_done:
lives = self._env.ale.lives()
done = done or lives < self._lives
self._lives = lives
if done:
break
elif step >= self._action_repeat - 2:
index = step - (self._action_repeat - 2)
if self._grayscale:
self._env.ale.getScreenGrayscale(self._buffers[index])
else:
self._env.ale.getScreenRGB2(self._buffers[index])
obs = self._get_obs()
return obs, total_reward, done, info
def render(self, mode):
return self._env.render(mode)
def _get_obs(self):
if self._action_repeat > 1:
np.maximum(self._buffers[0],
self._buffers[1], out=self._buffers[0])
image = np.array(Image.fromarray(self._buffers[0]).resize(
self._size, Image.BILINEAR))
image = np.clip(image, 0, 255).astype(np.uint8)
image = image[:, :, None] if self._grayscale else image
return {'image': image}
class Collect:
def __init__(self, env, callbacks=None, precision=32):
self._env = env
self._callbacks = callbacks or ()
self._precision = precision
self._episode = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {k: self._convert(v) for k, v in obs.items()}
transition = obs.copy()
transition['action'] = action
transition['reward'] = reward
transition['discount'] = info.get(
'discount', np.array(1 - float(done)))
self._episode.append(transition)
if done:
episode = {k: [t[k] for t in self._episode]
for k in self._episode[0]}
episode = {k: self._convert(v) for k, v in episode.items()}
info['episode'] = episode
for callback in self._callbacks:
callback(episode)
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
transition = obs.copy()
transition['action'] = np.zeros(self._env.action_space.shape)
transition['reward'] = 0.0
transition['discount'] = 1.0
self._episode = [transition]
return obs
def _convert(self, value):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
dtype = {16: np.float16, 32: np.float32,
64: np.float64}[self._precision]
elif np.issubdtype(value.dtype, np.signedinteger):
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
elif np.issubdtype(value.dtype, np.uint8):
dtype = np.uint8
else:
raise NotImplementedError(value.dtype)
return value.astype(dtype)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs, reward, done, info = self._env.step(action)
self._step += 1
if self._step >= self._duration:
done = True
if 'discount' not in info:
info['discount'] = np.array(1.0).astype(np.float32)
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
return self._env.reset()
class ActionRepeat:
def __init__(self, env, amount):
self._env = env
self._amount = amount
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
done = False
total_reward = 0
current_step = 0
while current_step < self._amount and not done:
obs, reward, done, info = self._env.step(action)
total_reward += reward
current_step += 1
return obs, total_reward, done, info
class NormalizeActions:
def __init__(self, env):
self._env = env
self._mask = np.logical_and(
np.isfinite(env.action_space.low),
np.isfinite(env.action_space.high))
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
return gym.spaces.Box(low, high, dtype=np.float32)
def step(self, action):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
return self._env.step(original)
class ObsDict:
def __init__(self, env, key='obs'):
self._env = env
self._key = key
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = {self._key: self._env.observation_space}
return gym.spaces.Dict(spaces)
@property
def action_space(self):
return self._env.action_space
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {self._key: np.array(obs)}
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs = {self._key: np.array(obs)}
return obs
class OneHotAction:
def __init__(self, env):
assert isinstance(env.action_space, gym.spaces.Discrete)
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
shape = (self._env.action_space.n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.sample = self._sample_action
return space
def step(self, action):
index = np.argmax(action).astype(int)
reference = np.zeros_like(action)
reference[index] = 1
if not np.allclose(reference, action):
raise ValueError(f'Invalid one-hot action:\n{action}')
return self._env.step(index)
def reset(self):
return self._env.reset()
def _sample_action(self):
actions = self._env.action_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class RewardObs:
def __init__(self, env):
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = self._env.observation_space.spaces
assert 'reward' not in spaces
spaces['reward'] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
return gym.spaces.Dict(spaces)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs['reward'] = reward
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs['reward'] = 0.0
return obs
class Async:
_ACCESS = 1
_CALL = 2
_RESULT = 3
_EXCEPTION = 4
_CLOSE = 5
def __init__(self, ctor, strategy='process'):
self._strategy = strategy
if strategy == 'none':
self._env = ctor()
elif strategy == 'thread':
import multiprocessing.dummy as mp
elif strategy == 'process':
import multiprocessing as mp
else:
raise NotImplementedError(strategy)
if strategy != 'none':
self._conn, conn = mp.Pipe()
self._process = mp.Process(target=self._worker, args=(ctor, conn))
atexit.register(self.close)
self._process.start()
self._obs_space = None
self._action_space = None
@property
def observation_space(self):
if not self._obs_space:
self._obs_space = self.__getattr__('observation_space')
return self._obs_space
@property
def action_space(self):
if not self._action_space:
self._action_space = self.__getattr__('action_space')
return self._action_space
def __getattr__(self, name):
if self._strategy == 'none':
return getattr(self._env, name)
self._conn.send((self._ACCESS, name))
return self._receive()
def call(self, name, *args, **kwargs):
blocking = kwargs.pop('blocking', True)
if self._strategy == 'none':
return functools.partial(getattr(self._env, name), *args, **kwargs)
payload = name, args, kwargs
self._conn.send((self._CALL, payload))
promise = self._receive
return promise() if blocking else promise
def close(self):
if self._strategy == 'none':
try:
self._env.close()
except AttributeError:
pass
return
try:
self._conn.send((self._CLOSE, None))
self._conn.close()
except IOError:
# The connection was already closed.
pass
self._process.join()
def step(self, action, blocking=True):
return self.call('step', action, blocking=blocking)
def reset(self, blocking=True):
return self.call('reset', blocking=blocking)
def _receive(self):
try:
message, payload = self._conn.recv()
except ConnectionResetError:
raise RuntimeError('Environment worker crashed.')
# Re-raise exceptions in the main process.
if message == self._EXCEPTION:
stacktrace = payload
raise Exception(stacktrace)
if message == self._RESULT:
return payload
raise KeyError(f'Received message of unexpected type {message}')
def _worker(self, ctor, conn):
try:
env = ctor()
while True:
try:
# Only block for short times to have keyboard exceptions be raised.
if not conn.poll(0.1):
continue
message, payload = conn.recv()
except (EOFError, KeyboardInterrupt):
break
if message == self._ACCESS:
name = payload
result = getattr(env, name)
conn.send((self._RESULT, result))
continue
if message == self._CALL:
name, args, kwargs = payload
result = getattr(env, name)(*args, **kwargs)
conn.send((self._RESULT, result))
continue
if message == self._CLOSE:
assert payload is None
break
raise KeyError(f'Received message of unknown type {message}')
except Exception:
stacktrace = ''.join(traceback.format_exception(*sys.exc_info()))
print(f'Error in environment process: {stacktrace}')
conn.send((self._EXCEPTION, stacktrace))
conn.close()
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
gym.Wrapper.__init__(self, env)
self._k = k
self._frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = gym.spaces.Box(
low=0,
high=1,
shape=((shp[0] * k,) + shp[1:]),
dtype=env.observation_space.dtype
)
self._max_episode_steps = env._max_episode_steps
def reset(self):
obs = self.env.reset()
for _ in range(self._k):
self._frames.append(obs)
return self._get_obs()
def step(self, action):
obs, reward, done, info = self.env.step(action)
self._frames.append(obs)
return self._get_obs(), reward, done, info
def _get_obs(self):
assert len(self._frames) == self._k
return np.concatenate(list(self._frames), axis=0)