tia/Dreamer/tools.py

475 lines
16 KiB
Python
Raw Normal View History

2023-07-17 08:48:01 +00:00
import datetime
import io
import pathlib
import pickle
import re
import uuid
import gym
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1 # pylint: disable=E
import tensorflow_probability as tfp
from tensorflow.keras.mixed_precision import experimental as prec
from tensorflow_probability import distributions as tfd
class AttrDict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
def from_dict(self, src_dict):
for key in src_dict:
setattr(self, key, src_dict[key])
class Module(tf.Module):
def save(self, filename):
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
with pathlib.Path(filename).open('wb') as f:
pickle.dump(values, f)
def load(self, filename):
with pathlib.Path(filename).open('rb') as f:
values = pickle.load(f)
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
def get(self, name, ctor, *args, **kwargs):
# Create or get layer by name to avoid mentioning it in the constructor.
if not hasattr(self, '_modules'):
self._modules = {}
if name not in self._modules:
self._modules[name] = ctor(*args, **kwargs)
return self._modules[name]
def nest_summary(structure):
if isinstance(structure, dict):
return {k: nest_summary(v) for k, v in structure.items()}
if isinstance(structure, list):
return [nest_summary(v) for v in structure]
if hasattr(structure, 'shape'):
return str(structure.shape).replace(', ', 'x').strip('(), ')
return '?'
def graph_summary(writer, fn, step, *args):
def inner(*args):
tf.summary.experimental.set_step(step)
with writer.as_default():
fn(*args)
return tf.numpy_function(inner, args, [])
def video_summary(name, video, step=None, fps=20):
if isinstance(name, type(np.zeros(1))):
name = str(name)
else:
name = name if isinstance(name, str) else name.decode('utf-8')
if np.issubdtype(video.dtype, np.floating):
video = np.clip(255 * video, 0, 255).astype(np.uint8)
B, T, H, W, C = video.shape
try:
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
summary = tf1.Summary()
image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
image.encoded_image_string = encode_gif(frames, fps)
summary.value.add(tag=name + '/gif', image=image)
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
except (IOError, OSError) as e:
print('GIF summaries require ffmpeg in $PATH.', e)
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
tf.summary.image(name + '/grid', frames, step)
def encode_gif(frames, fps):
from subprocess import Popen, PIPE
print(frames[0].shape)
if frames[0].shape[-1] > 3:
frames = np.transpose(frames, [0, 2, 3, 1])
h, w, c = frames[0].shape
print(frames[0].shape)
if c!=64:
pxfmt = {1: 'gray', 3: 'rgb24'}[c]
cmd = ' '.join([
f'ffmpeg -y -f rawvideo -vcodec rawvideo',
f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
f'-r {fps:.02f} -f gif -'])
proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
for image in frames:
proc.stdin.write(image.tostring())
out, err = proc.communicate()
if proc.returncode:
raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
del proc
return out
def simulate(agent, envs, steps=0, episodes=0, state=None):
# Initialize or unpack simulation state.
if state is None:
step, episode = 0, 0
done = np.ones(len(envs), np.bool)
length = np.zeros(len(envs), np.int32)
obs = [None] * len(envs)
agent_state = None
else:
step, episode, done, length, obs, agent_state = state
while (steps and step < steps) or (episodes and episode < episodes):
# Reset envs if necessary.
if done.any():
indices = [index for index, d in enumerate(done) if d]
promises = [envs[i].reset(blocking=False) for i in indices]
for index, promise in zip(indices, promises):
obs[index] = promise()
# Step agents.
# if use augmentation, need to modify dreamer.policy or here.
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
obs['image'] = tf.transpose(obs['image'], [0, 3, 2, 1])
action, agent_state = agent(obs, done, agent_state)
action = np.array(action)
assert len(action) == len(envs)
# Step envs.
promises = [e.step(a, blocking=False) for e, a in zip(envs, action)]
obs, _, done = zip(*[p()[:3] for p in promises])
obs = list(obs)
done = np.stack(done)
episode += int(done.sum())
length += 1
step += (done * length).sum()
length *= (1 - done)
# Return new state to allow resuming the simulation.
return (step - steps, episode - episodes, done, length, obs, agent_state)
def count_episodes(directory):
filenames = directory.glob('*.npz')
lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames]
episodes, steps = len(lengths), sum(lengths)
return episodes, steps
def save_episodes(directory, episodes):
directory = pathlib.Path(directory).expanduser()
directory.mkdir(parents=True, exist_ok=True)
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
for episode in episodes:
identifier = str(uuid.uuid4().hex)
length = len(episode['reward'])
filename = directory / f'{timestamp}-{identifier}-{length}.npz'
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open('wb') as f2:
f2.write(f1.read())
def load_episodes(directory, rescan, length=None, balance=False, seed=0):
directory = pathlib.Path(directory).expanduser()
random = np.random.RandomState(seed)
cache = {}
while True:
for filename in directory.glob('*.npz'):
if filename not in cache:
try:
with filename.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f'Could not load episode: {e}')
continue
cache[filename] = episode
keys = list(cache.keys())
for index in random.choice(len(keys), rescan):
episode = cache[keys[index]]
if length:
total = len(next(iter(episode.values())))
available = total - length
if available < 1:
print(f'Skipped short episode of length {available}({total}/{length}).')
continue
if balance:
index = min(random.randint(0, total), available)
else:
index = int(random.randint(0, available))
episode = {k: v[index: index + length]
for k, v in episode.items()}
yield episode
class DummyEnv:
def __init__(self):
self._random = np.random.RandomState(seed=0)
self._step = None
@property
def observation_space(self):
low = np.zeros([64, 64, 3], dtype=np.uint8)
high = 255 * np.ones([64, 64, 3], dtype=np.uint8)
spaces = {'image': gym.spaces.Box(low, high)}
return gym.spaces.Dict(spaces)
@property
def action_space(self):
low = -np.ones([5], dtype=np.float32)
high = np.ones([5], dtype=np.float32)
return gym.spaces.Box(low, high)
def reset(self):
self._step = 0
obs = self.observation_space.sample()
return obs
def step(self, action):
obs = self.observation_space.sample()
reward = self._random.uniform(0, 1)
self._step += 1
done = self._step >= 1000
info = {}
return obs, reward, done, info
class SampleDist:
def __init__(self, dist, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def mean(self):
samples = self._dist.sample(self._samples)
return tf.reduce_mean(samples, 0)
def mode(self):
sample = self._dist.sample(self._samples)
logprob = self._dist.log_prob(sample)
return tf.gather(sample, tf.argmax(logprob))[0] # pylint: disable=E
def entropy(self):
sample = self._dist.sample(self._samples)
logprob = self.log_prob(sample)
return -tf.reduce_mean(logprob, 0)
class OneHotDist:
def __init__(self, logits=None, probs=None):
self._dist = tfd.Categorical(logits=logits, probs=probs)
self._num_classes = self.mean().shape[-1]
self._dtype = prec.global_policy().compute_dtype
@property
def name(self):
return 'OneHotDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def prob(self, events):
indices = tf.argmax(events, axis=-1)
return self._dist.prob(indices)
def log_prob(self, events):
indices = tf.argmax(events, axis=-1)
return self._dist.log_prob(indices)
def mean(self):
return self._dist.probs_parameter()
def mode(self):
return self._one_hot(self._dist.mode())
def sample(self, amount=None):
amount = [amount] if amount else []
indices = self._dist.sample(*amount)
sample = self._one_hot(indices)
probs = self._dist.probs_parameter()
sample += tf.cast(probs - tf.stop_gradient(probs), self._dtype)
return sample
def _one_hot(self, indices):
return tf.one_hot(indices, self._num_classes, dtype=self._dtype) # pylint: disable=E
class TanhBijector(tfp.bijectors.Bijector):
def __init__(self, validate_args=False, name='tanh'):
super().__init__(
forward_min_event_ndims=0,
validate_args=validate_args,
name=name)
def _forward(self, x):
return tf.nn.tanh(x)
def _inverse(self, y):
dtype = y.dtype
y = tf.cast(y, tf.float32)
y = tf.where(
tf.less_equal(tf.abs(y), 1.),
tf.clip_by_value(y, -0.99999997, 0.99999997), y)
y = tf.atanh(y)
y = tf.cast(y, dtype)
return y
def _forward_log_det_jacobian(self, x):
log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype))
return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x))
def lambda_return(
reward, value, pcont, bootstrap, lambda_, axis):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
if isinstance(pcont, (int, float)):
pcont = pcont * tf.ones_like(reward)
dims = list(range(reward.shape.ndims))
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
if axis != 0:
reward = tf.transpose(reward, dims)
value = tf.transpose(value, dims)
pcont = tf.transpose(pcont, dims)
if bootstrap is None:
bootstrap = tf.zeros_like(value[-1])
next_values = tf.concat([value[1:], bootstrap[None]], 0)
inputs = reward + pcont * next_values * (1 - lambda_)
returns = static_scan(
lambda agg, cur: cur[0] + cur[1] * lambda_ * agg,
(inputs, pcont), bootstrap, reverse=True)
if axis != 0:
returns = tf.transpose(returns, dims)
return returns
class Adam(tf.Module):
def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'):
self._name = name
self._modules = modules
self._clip = clip
self._wd = wd
self._wdpattern = wdpattern
self._opt = tf.optimizers.Adam(lr)
self._opt = prec.LossScaleOptimizer(self._opt, 'dynamic')
self._variables = None
@property
def variables(self):
return self._opt.variables()
def __call__(self, tape, loss):
if self._variables is None:
variables = [module.variables for module in self._modules]
self._variables = tf.nest.flatten(variables)
count = sum(np.prod(x.shape) for x in self._variables)
print(f'Found {count} {self._name} parameters.')
assert len(loss.shape) == 0, loss.shape
with tape:
loss = self._opt.get_scaled_loss(loss)
grads = tape.gradient(loss, self._variables)
grads = self._opt.get_unscaled_gradients(grads)
norm = tf.linalg.global_norm(grads)
if self._clip:
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
if self._wd:
context = tf.distribute.get_replica_context()
context.merge_call(self._apply_weight_decay)
self._opt.apply_gradients(zip(grads, self._variables))
return norm
def _apply_weight_decay(self, strategy):
print('Applied weight decay to variables:')
for var in self._variables:
if re.search(self._wdpattern, self._name + '/' + var.name):
print('- ' + self._name + '/' + var.name)
strategy.extended.update(var, lambda var: self._wd * var)
def args_type(default):
if isinstance(default, bool):
return lambda x: bool(['False', 'True'].index(x))
if isinstance(default, int):
return lambda x: float(x) if ('e' in x or '.' in x) else int(x)
if isinstance(default, pathlib.Path):
return lambda x: pathlib.Path(x).expanduser()
return type(default)
def static_scan(fn, inputs, start, reverse=False):
last = start
outputs = [[] for _ in tf.nest.flatten(start)]
indices = range(len(tf.nest.flatten(inputs)[0]))
if reverse:
indices = reversed(indices)
for index in indices:
inp = tf.nest.map_structure(lambda x: x[index], inputs)
last = fn(last, inp)
[o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
if reverse:
outputs = [list(reversed(x)) for x in outputs]
outputs = [tf.stack(x, 0) for x in outputs]
return tf.nest.pack_sequence_as(start, outputs)
def _mnd_sample(self, sample_shape=(), seed=None, name='sample'):
return tf.random.normal(
tuple(sample_shape) + tuple(self.event_shape),
self.mean(), self.stddev(), self.dtype, seed, name)
tfd.MultivariateNormalDiag.sample = _mnd_sample
def _cat_sample(self, sample_shape=(), seed=None, name='sample'):
assert len(sample_shape) in (0, 1), sample_shape
assert len(self.logits_parameter().shape) == 2
indices = tf.random.categorical(
self.logits_parameter(), sample_shape[0] if sample_shape else 1,
self.dtype, seed, name)
if not sample_shape:
indices = indices[..., 0]
return indices
tfd.Categorical.sample = _cat_sample
class Every:
def __init__(self, every):
self._every = every
self._last = None
def __call__(self, step):
if self._last is None:
self._last = step
return True
if step >= self._last + self._every:
self._last += self._every
return True
return False
class Once:
def __init__(self):
self._once = True
def __call__(self):
if self._once:
self._once = False
return True
return False