tia/DreamerV2/wrappers.py

281 lines
8.0 KiB
Python
Raw Permalink Normal View History

2021-06-30 01:20:44 +00:00
import threading
import gym
import numpy as np
class DeepMindControl:
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None):
domain, task = name.split('_', 1)
if domain == 'cup': # Only domain with multiple words.
domain = 'ball_in_cup'
if isinstance(domain, str):
from dm_control import suite
self._env = suite.load(domain, task)
else:
assert task is None
self._env = domain()
self._action_repeat = action_repeat
self._size = size
if camera is None:
camera = dict(quadruped=2).get(domain, 0)
self._camera = camera
@property
def observation_space(self):
spaces = {}
for key, value in self._env.observation_spec().items():
spaces[key] = gym.spaces.Box(
-np.inf, np.inf, value.shape, dtype=np.float32)
spaces['image'] = gym.spaces.Box(
0, 255, self._size + (3,), dtype=np.uint8)
return gym.spaces.Dict(spaces)
@property
def action_space(self):
spec = self._env.action_spec()
return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
def step(self, action):
assert np.isfinite(action).all(), action
reward = 0
for _ in range(self._action_repeat):
time_step = self._env.step(action)
reward += time_step.reward or 0
if time_step.last():
break
obs = dict(time_step.observation)
obs['image'] = self.render()
done = time_step.last()
info = {'discount': np.array(time_step.discount, np.float32)}
return obs, reward, done, info
def reset(self):
time_step = self._env.reset()
obs = dict(time_step.observation)
obs['image'] = self.render()
return obs
def render(self, *args, **kwargs):
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
return self._env.physics.render(*self._size, camera_id=self._camera)
class Atari:
LOCK = threading.Lock()
def __init__(
self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30,
life_done=False, sticky_actions=True, all_actions=False):
assert size[0] == size[1]
import gym.wrappers
import gym.envs.atari
with self.LOCK:
env = gym.envs.atari.AtariEnv(
game=name, obs_type='image', frameskip=1,
repeat_action_probability=0.25 if sticky_actions else 0.0,
full_action_space=all_actions)
# Avoid unnecessary rendering in inner env.
env._get_obs = lambda: None
# Tell wrapper that the inner env has no action repeat.
env.spec = gym.envs.registration.EnvSpec('NoFrameskip-v0')
env = gym.wrappers.AtariPreprocessing(
env, noops, action_repeat, size[0], life_done, grayscale)
self._env = env
self._grayscale = grayscale
@property
def observation_space(self):
return gym.spaces.Dict({
'image': self._env.observation_space,
'ram': gym.spaces.Box(0, 255, (128,), np.uint8),
})
@property
def action_space(self):
return self._env.action_space
def close(self):
return self._env.close()
def reset(self):
with self.LOCK:
image = self._env.reset()
if self._grayscale:
image = image[..., None]
obs = {'image': image, 'ram': self._env.env._get_ram()}
return obs
def step(self, action):
image, reward, done, info = self._env.step(action)
if self._grayscale:
image = image[..., None]
obs = {'image': image, 'ram': self._env.env._get_ram()}
return obs, reward, done, info
def render(self, mode):
return self._env.render(mode)
class CollectDataset:
def __init__(self, env, callbacks=None, precision=32):
self._env = env
self._callbacks = callbacks or ()
self._precision = precision
self._episode = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = {k: self._convert(v) for k, v in obs.items()}
transition = obs.copy()
transition['action'] = action
transition['reward'] = reward
transition['discount'] = info.get('discount', np.array(1 - float(done)))
self._episode.append(transition)
if done:
episode = {k: [t[k] for t in self._episode] for k in self._episode[0]}
episode = {k: self._convert(v) for k, v in episode.items()}
info['episode'] = episode
for callback in self._callbacks:
callback(episode)
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
transition = obs.copy()
transition['action'] = np.zeros(self._env.action_space.shape)
transition['reward'] = 0.0
transition['discount'] = 1.0
self._episode = [transition]
return obs
def _convert(self, value):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self._precision]
elif np.issubdtype(value.dtype, np.signedinteger):
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
elif np.issubdtype(value.dtype, np.uint8):
dtype = np.uint8
else:
raise NotImplementedError(value.dtype)
return value.astype(dtype)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs, reward, done, info = self._env.step(action)
self._step += 1
if self._step >= self._duration:
done = True
if 'discount' not in info:
info['discount'] = np.array(1.0).astype(np.float32)
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
return self._env.reset()
class NormalizeActions:
def __init__(self, env):
self._env = env
self._mask = np.logical_and(
np.isfinite(env.action_space.low),
np.isfinite(env.action_space.high))
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
return gym.spaces.Box(low, high, dtype=np.float32)
def step(self, action):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
return self._env.step(original)
class OneHotAction:
def __init__(self, env):
assert isinstance(env.action_space, gym.spaces.Discrete)
self._env = env
self._random = np.random.RandomState()
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
shape = (self._env.action_space.n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.sample = self._sample_action
return space
def step(self, action):
index = np.argmax(action).astype(int)
reference = np.zeros_like(action)
reference[index] = 1
if not np.allclose(reference, action):
raise ValueError(f'Invalid one-hot action:\n{action}')
return self._env.step(index)
def reset(self):
return self._env.reset()
def _sample_action(self):
actions = self._env.action_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class RewardObs:
def __init__(self, env):
self._env = env
def __getattr__(self, name):
return getattr(self._env, name)
@property
def observation_space(self):
spaces = self._env.observation_space.spaces
assert 'reward' not in spaces
spaces['reward'] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
return gym.spaces.Dict(spaces)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs['reward'] = reward
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs['reward'] = 0.0
return obs