tia/DreamerV2/tools.py

695 lines
22 KiB
Python
Raw Permalink Normal View History

2021-06-30 01:20:44 +00:00
import datetime
import io
import json
import pathlib
import pickle
import re
import time
import uuid
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import tensorflow_probability as tfp
from tensorflow.keras.mixed_precision import experimental as prec
from tensorflow_probability import distributions as tfd
# Patch to ignore seed to avoid synchronization across GPUs.
_orig_random_categorical = tf.random.categorical
def random_categorical(*args, **kwargs):
kwargs['seed'] = None
return _orig_random_categorical(*args, **kwargs)
tf.random.categorical = random_categorical
# Patch to ignore seed to avoid synchronization across GPUs.
_orig_random_normal = tf.random.normal
def random_normal(*args, **kwargs):
kwargs['seed'] = None
return _orig_random_normal(*args, **kwargs)
tf.random.normal = random_normal
class AttrDict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
class Module(tf.Module):
def save(self, filename):
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
amount = len(tf.nest.flatten(values))
count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values)))
print(f'Save checkpoint with {amount} tensors and {count} parameters.')
with pathlib.Path(filename).open('wb') as f:
pickle.dump(values, f)
def load(self, filename):
with pathlib.Path(filename).open('rb') as f:
values = pickle.load(f)
amount = len(tf.nest.flatten(values))
count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values)))
print(f'Load checkpoint with {amount} tensors and {count} parameters.')
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
def get(self, name, ctor, *args, **kwargs):
# Create or get layer by name to avoid mentioning it in the constructor.
if not hasattr(self, '_modules'):
self._modules = {}
if name not in self._modules:
self._modules[name] = ctor(*args, **kwargs)
return self._modules[name]
def var_nest_names(nest):
if isinstance(nest, dict):
items = ' '.join(f'{k}:{var_nest_names(v)}' for k, v in nest.items())
return '{' + items + '}'
if isinstance(nest, (list, tuple)):
items = ' '.join(var_nest_names(v) for v in nest)
return '[' + items + ']'
if hasattr(nest, 'name') and hasattr(nest, 'shape'):
return nest.name + str(nest.shape).replace(', ', 'x')
if hasattr(nest, 'shape'):
return str(nest.shape).replace(', ', 'x')
return '?'
class Logger:
def __init__(self, logdir, step):
self._logdir = logdir
self._writer = tf.summary.create_file_writer(str(logdir), max_queue=1000)
self._last_step = None
self._last_time = None
self._scalars = {}
self._images = {}
self._videos = {}
self.step = step
def scalar(self, name, value):
self._scalars[name] = float(value)
def image(self, name, value):
self._images[name] = np.array(value)
def video(self, name, value):
self._videos[name] = np.array(value)
def write(self, fps=False):
scalars = list(self._scalars.items())
if fps:
scalars.append(('fps', self._compute_fps(self.step)))
print(f'[{self.step}]', ' / '.join(f'{k} {v:.1f}' for k, v in scalars))
with (self._logdir / 'metrics.jsonl').open('a') as f:
f.write(json.dumps({'step': self.step, ** dict(scalars)}) + '\n')
with self._writer.as_default():
for name, value in scalars:
tf.summary.scalar('scalars/' + name, value, self.step)
for name, value in self._images.items():
tf.summary.image(name, value, self.step)
for name, value in self._videos.items():
video_summary(name, value, self.step)
self._writer.flush()
self._scalars = {}
self._images = {}
self._videos = {}
def _compute_fps(self, step):
if self._last_step is None:
self._last_time = time.time()
self._last_step = step
return 0
steps = step - self._last_step
duration = time.time() - self._last_time
self._last_time += duration
self._last_step = step
return steps / duration
def graph_summary(writer, step, fn, *args):
def inner(*args):
tf.summary.experimental.set_step(step.numpy().item())
with writer.as_default():
fn(*args)
return tf.numpy_function(inner, args, [])
def video_summary(name, video, step=None, fps=20):
name = name if isinstance(name, str) else name.decode('utf-8')
if np.issubdtype(video.dtype, np.floating):
video = np.clip(255 * video, 0, 255).astype(np.uint8)
B, T, H, W, C = video.shape
try:
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
summary = tf1.Summary()
image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
image.encoded_image_string = encode_gif(frames, fps)
summary.value.add(tag=name, image=image)
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
except (IOError, OSError) as e:
print('GIF summaries require ffmpeg in $PATH.', e)
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
tf.summary.image(name, frames, step)
def encode_gif(frames, fps):
from subprocess import Popen, PIPE
h, w, c = frames[0].shape
pxfmt = {1: 'gray', 3: 'rgb24'}[c]
cmd = ' '.join([
f'ffmpeg -y -f rawvideo -vcodec rawvideo',
f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
f'-r {fps:.02f} -f gif -'])
proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
for image in frames:
proc.stdin.write(image.tostring())
out, err = proc.communicate()
if proc.returncode:
raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
del proc
return out
def simulate(agent, envs, steps=0, episodes=0, state=None):
# Initialize or unpack simulation state.
if state is None:
step, episode = 0, 0
done = np.ones(len(envs), np.bool)
length = np.zeros(len(envs), np.int32)
obs = [None] * len(envs)
agent_state = None
else:
step, episode, done, length, obs, agent_state = state
while (steps and step < steps) or (episodes and episode < episodes):
# Reset envs if necessary.
if done.any():
indices = [index for index, d in enumerate(done) if d]
results = [envs[i].reset() for i in indices]
for index, result in zip(indices, results):
obs[index] = result
# Step agents.
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
action, agent_state = agent(obs, done, agent_state)
if isinstance(action, dict):
action = [
{k: np.array(action[k][i]) for k in action}
for i in range(len(envs))]
else:
action = np.array(action)
assert len(action) == len(envs)
# Step envs.
results = [e.step(a) for e, a in zip(envs, action)]
obs, _, done = zip(*[p[:3] for p in results])
obs = list(obs)
done = np.stack(done)
episode += int(done.sum())
length += 1
step += (done * length).sum()
length *= (1 - done)
# import pdb
# pdb.set_trace()
# Return new state to allow resuming the simulation.
return (step - steps, episode - episodes, done, length, obs, agent_state)
def save_episodes(directory, episodes):
directory = pathlib.Path(directory).expanduser()
directory.mkdir(parents=True, exist_ok=True)
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
filenames = []
for episode in episodes:
identifier = str(uuid.uuid4().hex)
length = len(episode['reward'])
filename = directory / f'{timestamp}-{identifier}-{length}.npz'
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open('wb') as f2:
f2.write(f1.read())
filenames.append(filename)
return filenames
def sample_episodes(episodes, length=None, balance=False, seed=0):
random = np.random.RandomState(seed)
while True:
episode = random.choice(list(episodes.values()))
if length:
total = len(next(iter(episode.values())))
available = total - length
if available < 1:
# print(f'Skipped short episode of length {available}.')
continue
if balance:
index = min(random.randint(0, total), available)
else:
index = int(random.randint(0, available + 1))
episode = {k: v[index: index + length] for k, v in episode.items()}
yield episode
def load_episodes(directory, limit=None):
directory = pathlib.Path(directory).expanduser()
episodes = {}
total = 0
for filename in reversed(sorted(directory.glob('*.npz'))):
try:
with filename.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f'Could not load episode: {e}')
continue
episodes[str(filename)] = episode
total += len(episode['reward']) - 1
if limit and total >= limit:
break
return episodes
class DtypeDist:
def __init__(self, dist, dtype=None):
self._dist = dist
self._dtype = dtype or prec.global_policy().compute_dtype
@property
def name(self):
return 'DtypeDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def mean(self):
return tf.cast(self._dist.mean(), self._dtype)
def mode(self):
return tf.cast(self._dist.mode(), self._dtype)
def entropy(self):
return tf.cast(self._dist.entropy(), self._dtype)
def sample(self, *args, **kwargs):
return tf.cast(self._dist.sample(*args, **kwargs), self._dtype)
class SampleDist:
def __init__(self, dist, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def mean(self):
samples = self._dist.sample(self._samples)
return tf.reduce_mean(samples, 0)
def mode(self):
sample = self._dist.sample(self._samples)
logprob = self._dist.log_prob(sample)
return tf.gather(sample, tf.argmax(logprob))[0]
def entropy(self):
sample = self._dist.sample(self._samples)
logprob = self.log_prob(sample)
return -tf.reduce_mean(logprob, 0)
class OneHotDist(tfd.OneHotCategorical):
def __init__(self, logits=None, probs=None, dtype=None):
self._sample_dtype = dtype or prec.global_policy().compute_dtype
super().__init__(logits=logits, probs=probs)
def mode(self):
return tf.cast(super().mode(), self._sample_dtype)
def sample(self, sample_shape=(), seed=None):
# Straight through biased gradient estimator.
sample = tf.cast(super().sample(sample_shape, seed), self._sample_dtype)
probs = super().probs_parameter()
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += tf.cast(probs - tf.stop_gradient(probs), self._sample_dtype)
return sample
class GumbleDist(tfd.RelaxedOneHotCategorical):
def __init__(self, temp, logits=None, probs=None, dtype=None):
self._sample_dtype = dtype or prec.global_policy().compute_dtype
self._exact = tfd.OneHotCategorical(logits=logits, probs=probs)
super().__init__(temp, logits=logits, probs=probs)
def mode(self):
return tf.cast(self._exact.mode(), self._sample_dtype)
def entropy(self):
return tf.cast(self._exact.entropy(), self._sample_dtype)
def sample(self, sample_shape=(), seed=None):
return tf.cast(super().sample(sample_shape, seed), self._sample_dtype)
class UnnormalizedHuber(tfd.Normal):
def __init__(self, loc, scale, threshold=1, **kwargs):
self._threshold = tf.cast(threshold, loc.dtype)
super().__init__(loc, scale, **kwargs)
def log_prob(self, event):
return -(tf.math.sqrt(
(event - self.mean()) ** 2 + self._threshold ** 2) - self._threshold)
class SafeTruncatedNormal(tfd.TruncatedNormal):
def __init__(self, loc, scale, low, high, clip=1e-6, mult=1):
super().__init__(loc, scale, low, high)
self._clip = clip
self._mult = mult
def sample(self, *args, **kwargs):
event = super().sample(*args, **kwargs)
if self._clip:
clipped = tf.clip_by_value(
event, self.low + self._clip, self.high - self._clip)
event = event - tf.stop_gradient(event) + tf.stop_gradient(clipped)
if self._mult:
event *= self._mult
return event
class TanhBijector(tfp.bijectors.Bijector):
def __init__(self, validate_args=False, name='tanh'):
super().__init__(
forward_min_event_ndims=0,
validate_args=validate_args,
name=name)
def _forward(self, x):
return tf.nn.tanh(x)
def _inverse(self, y):
dtype = y.dtype
y = tf.cast(y, tf.float32)
y = tf.where(
tf.less_equal(tf.abs(y), 1.),
tf.clip_by_value(y, -0.99999997, 0.99999997), y)
y = tf.atanh(y)
y = tf.cast(y, dtype)
return y
def _forward_log_det_jacobian(self, x):
log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype))
return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x))
def lambda_return(
reward, value, pcont, bootstrap, lambda_, axis):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
if isinstance(pcont, (int, float)):
pcont = pcont * tf.ones_like(reward)
dims = list(range(reward.shape.ndims))
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
if axis != 0:
reward = tf.transpose(reward, dims)
value = tf.transpose(value, dims)
pcont = tf.transpose(pcont, dims)
if bootstrap is None:
bootstrap = tf.zeros_like(value[-1])
next_values = tf.concat([value[1:], bootstrap[None]], 0)
inputs = reward + pcont * next_values * (1 - lambda_)
returns = static_scan(
lambda agg, cur: cur[0] + cur[1] * lambda_ * agg,
(inputs, pcont), bootstrap, reverse=True)
if axis != 0:
returns = tf.transpose(returns, dims)
return returns
class Optimizer(tf.Module):
def __init__(
self, name, lr, eps=1e-4, clip=None, wd=None, wd_pattern=r'.*',
opt='adam'):
assert 0 <= wd < 1
assert not clip or 1 <= clip
self._name = name
self._clip = clip
self._wd = wd
self._wd_pattern = wd_pattern
self._opt = {
'adam': lambda: tf.optimizers.Adam(lr, epsilon=eps),
'nadam': lambda: tf.optimizers.Nadam(lr, epsilon=eps),
'adamax': lambda: tf.optimizers.Adamax(lr, epsilon=eps),
'sgd': lambda: tf.optimizers.SGD(lr),
'momentum': lambda: tf.optimizers.SGD(lr, 0.9),
}[opt]()
self._mixed = (prec.global_policy().compute_dtype == tf.float16)
if self._mixed:
self._opt = prec.LossScaleOptimizer(self._opt, 'dynamic')
@property
def variables(self):
return self._opt.variables()
def __call__(self, tape, loss, modules, prefix=None):
assert loss.dtype is tf.float32, self._name
modules = modules if hasattr(modules, '__len__') else (modules,)
varibs = tf.nest.flatten([module.variables for module in modules])
count = sum(np.prod(x.shape) for x in varibs)
print(f'Found {count} {self._name} parameters.')
assert len(loss.shape) == 0, loss.shape
tf.debugging.check_numerics(loss, self._name + '_loss')
if self._mixed:
with tape:
loss = self._opt.get_scaled_loss(loss)
grads = tape.gradient(loss, varibs)
if self._mixed:
grads = self._opt.get_unscaled_gradients(grads)
norm = tf.linalg.global_norm(grads)
if not self._mixed:
tf.debugging.check_numerics(norm, self._name + '_norm')
if self._clip:
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
if self._wd:
self._apply_weight_decay(varibs)
self._opt.apply_gradients(zip(grads, varibs))
metrics = {}
if prefix:
metrics[f'{prefix}/{self._name}_loss'] = loss
metrics[f'{prefix}/{self._name}_grad_norm'] = norm
if self._mixed:
metrics[f'{prefix}/{self._name}_loss_scale'] = \
self._opt.loss_scale._current_loss_scale
else:
metrics[f'{self._name}_loss'] = loss
metrics[f'{self._name}_grad_norm'] = norm
if self._mixed:
metrics[f'{self._name}_loss_scale'] = \
self._opt.loss_scale._current_loss_scale
return metrics
def _apply_weight_decay(self, varibs):
nontrivial = (self._wd_pattern != r'.*')
if nontrivial:
print('Applied weight decay to variables:')
for var in varibs:
if re.search(self._wd_pattern, self._name + '/' + var.name):
if nontrivial:
print('- ' + self._name + '/' + var.name)
var.assign((1 - self._wd) * var)
def args_type(default):
def parse_string(x):
if default is None:
return x
if isinstance(default, bool):
return bool(['False', 'True'].index(x))
if isinstance(default, int):
return float(x) if ('e' in x or '.' in x) else int(x)
if isinstance(default, (list, tuple)):
return tuple(args_type(default[0])(y) for y in x.split(','))
return type(default)(x)
def parse_object(x):
if isinstance(default, (list, tuple)):
return tuple(x)
return x
return lambda x: parse_string(x) if isinstance(x, str) else parse_object(x)
def static_scan(fn, inputs, start, reverse=False):
last = start
outputs = [[] for _ in tf.nest.flatten(start)]
indices = range(len(tf.nest.flatten(inputs)[0]))
if reverse:
indices = reversed(indices)
for index in indices:
inp = tf.nest.map_structure(lambda x: x[index], inputs)
last = fn(last, inp)
[o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
if reverse:
outputs = [list(reversed(x)) for x in outputs]
outputs = [tf.stack(x, 0) for x in outputs]
return tf.nest.pack_sequence_as(start, outputs)
def uniform_mixture(dist, dtype=None):
if dist.batch_shape[-1] == 1:
return tfd.BatchReshape(dist, dist.batch_shape[:-1])
dtype = dtype or prec.global_policy().compute_dtype
weights = tfd.Categorical(tf.zeros(dist.batch_shape, dtype))
return tfd.MixtureSameFamily(weights, dist)
def cat_mixture_entropy(dist):
if isinstance(dist, tfd.MixtureSameFamily):
probs = dist.components_distribution.probs_parameter()
else:
probs = dist.probs_parameter()
return -tf.reduce_mean(
tf.reduce_mean(probs, 2) *
tf.math.log(tf.reduce_mean(probs, 2) + 1e-8), -1)
@tf.function
def cem_planner(
state, num_actions, horizon, proposals, topk, iterations, imagine,
objective):
dtype = prec.global_policy().compute_dtype
B, P = list(state.values())[0].shape[0], proposals
H, A = horizon, num_actions
flat_state = {k: tf.repeat(v, P, 0) for k, v in state.items()}
mean = tf.zeros((B, H, A), dtype)
std = tf.ones((B, H, A), dtype)
for _ in range(iterations):
proposals = tf.random.normal((B, P, H, A), dtype=dtype)
proposals = proposals * std[:, None] + mean[:, None]
proposals = tf.clip_by_value(proposals, -1, 1)
flat_proposals = tf.reshape(proposals, (B * P, H, A))
states = imagine(flat_proposals, flat_state)
scores = objective(states)
scores = tf.reshape(tf.reduce_sum(scores, -1), (B, P))
_, indices = tf.math.top_k(scores, topk, sorted=False)
best = tf.gather(proposals, indices, axis=1, batch_dims=1)
mean, var = tf.nn.moments(best, 1)
std = tf.sqrt(var + 1e-6)
return mean[:, 0, :]
@tf.function
def grad_planner(
state, num_actions, horizon, proposals, iterations, imagine, objective,
kl_scale, step_size):
dtype = prec.global_policy().compute_dtype
B, P = list(state.values())[0].shape[0], proposals
H, A = horizon, num_actions
flat_state = {k: tf.repeat(v, P, 0) for k, v in state.items()}
mean = tf.zeros((B, H, A), dtype)
rawstd = 0.54 * tf.ones((B, H, A), dtype)
for _ in range(iterations):
proposals = tf.random.normal((B, P, H, A), dtype=dtype)
with tf.GradientTape(watch_accessed_variables=False) as tape:
tape.watch(mean)
tape.watch(rawstd)
std = tf.nn.softplus(rawstd)
proposals = proposals * std[:, None] + mean[:, None]
proposals = (
tf.stop_gradient(tf.clip_by_value(proposals, -1, 1)) +
proposals - tf.stop_gradient(proposals))
flat_proposals = tf.reshape(proposals, (B * P, H, A))
states = imagine(flat_proposals, flat_state)
scores = objective(states)
scores = tf.reshape(tf.reduce_sum(scores, -1), (B, P))
div = tfd.kl_divergence(
tfd.Normal(mean, std),
tfd.Normal(tf.zeros_like(mean), tf.ones_like(std)))
elbo = tf.reduce_sum(scores) - kl_scale * div
elbo /= tf.cast(tf.reduce_prod(tf.shape(scores)), dtype)
grad_mean, grad_rawstd = tape.gradient(elbo, [mean, rawstd])
e, v = tf.nn.moments(grad_mean, [1, 2], keepdims=True)
grad_mean /= tf.sqrt(e * e + v + 1e-4)
e, v = tf.nn.moments(grad_rawstd, [1, 2], keepdims=True)
grad_rawstd /= tf.sqrt(e * e + v + 1e-4)
mean = tf.clip_by_value(mean + step_size * grad_mean, -1, 1)
rawstd = rawstd + step_size * grad_rawstd
return mean[:, 0, :]
class Every:
def __init__(self, every):
self._every = every
self._last = None
def __call__(self, step):
if not self._every:
return False
if self._last is None:
self._last = step
return True
if step >= self._last + self._every:
self._last += self._every
return True
return False
class Once:
def __init__(self):
self._once = True
def __call__(self):
if self._once:
self._once = False
return True
return False
class Until:
def __init__(self, until):
self._until = until
def __call__(self, step):
if not self._until:
return True
return step < self._until
def schedule(string, step):
try:
return float(string)
except ValueError:
step = tf.cast(step, tf.float32)
match = re.match(r'linear\((.+),(.+),(.+)\)', string)
if match:
initial, final, duration = [float(group) for group in match.groups()]
mix = tf.clip_by_value(step / duration, 0, 1)
return (1 - mix) * initial + mix * final
match = re.match(r'warmup\((.+),(.+)\)', string)
if match:
warmup, value = [float(group) for group in match.groups()]
scale = tf.clip_by_value(step / warmup, 0, 1)
return scale * value
match = re.match(r'exp\((.+),(.+),(.+)\)', string)
if match:
initial, final, halflife = [float(group) for group in match.groups()]
return (initial - final) * 0.5 ** (step / halflife) + final
raise NotImplementedError(string)