tia/Dreamer/local_dm_control_suite/wrappers/action_noise_test.py

137 lines
5.3 KiB
Python
Raw Permalink Normal View History

2021-06-30 01:20:44 +00:00
# Copyright 2018 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for the action noise wrapper."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Internal dependencies.
from absl.testing import absltest
from absl.testing import parameterized
from dm_control.rl import control
from dm_control.suite.wrappers import action_noise
from dm_env import specs
import mock
import numpy as np
class ActionNoiseTest(parameterized.TestCase):
def make_action_spec(self, lower=(-1.,), upper=(1.,)):
lower, upper = np.broadcast_arrays(lower, upper)
return specs.BoundedArray(
shape=lower.shape, dtype=float, minimum=lower, maximum=upper)
def make_mock_env(self, action_spec=None):
action_spec = action_spec or self.make_action_spec()
env = mock.Mock(spec=control.Environment)
env.action_spec.return_value = action_spec
return env
def assertStepCalledOnceWithCorrectAction(self, env, expected_action):
# NB: `assert_called_once_with()` doesn't support numpy arrays.
env.step.assert_called_once()
actual_action = env.step.call_args_list[0][0][0]
np.testing.assert_array_equal(expected_action, actual_action)
@parameterized.parameters([
dict(lower=np.r_[-1., 0.], upper=np.r_[1., 2.], scale=0.05),
dict(lower=np.r_[-1., 0.], upper=np.r_[1., 2.], scale=0.),
dict(lower=np.r_[-1., 0.], upper=np.r_[-1., 0.], scale=0.05),
])
def test_step(self, lower, upper, scale):
seed = 0
std = scale * (upper - lower)
expected_noise = np.random.RandomState(seed).normal(scale=std)
action = np.random.RandomState(seed).uniform(lower, upper)
expected_noisy_action = np.clip(action + expected_noise, lower, upper)
task = mock.Mock(spec=control.Task)
task.random = np.random.RandomState(seed)
action_spec = self.make_action_spec(lower=lower, upper=upper)
env = self.make_mock_env(action_spec=action_spec)
env.task = task
wrapped_env = action_noise.Wrapper(env, scale=scale)
time_step = wrapped_env.step(action)
self.assertStepCalledOnceWithCorrectAction(env, expected_noisy_action)
self.assertIs(time_step, env.step(expected_noisy_action))
@parameterized.named_parameters([
dict(testcase_name='within_bounds', action=np.r_[-1.], noise=np.r_[0.1]),
dict(testcase_name='below_lower', action=np.r_[-1.], noise=np.r_[-0.1]),
dict(testcase_name='above_upper', action=np.r_[1.], noise=np.r_[0.1]),
])
def test_action_clipping(self, action, noise):
lower = -1.
upper = 1.
expected_noisy_action = np.clip(action + noise, lower, upper)
task = mock.Mock(spec=control.Task)
task.random = mock.Mock(spec=np.random.RandomState)
task.random.normal.return_value = noise
action_spec = self.make_action_spec(lower=lower, upper=upper)
env = self.make_mock_env(action_spec=action_spec)
env.task = task
wrapped_env = action_noise.Wrapper(env)
time_step = wrapped_env.step(action)
self.assertStepCalledOnceWithCorrectAction(env, expected_noisy_action)
self.assertIs(time_step, env.step(expected_noisy_action))
@parameterized.parameters([
dict(lower=np.r_[-1., 0.], upper=np.r_[1., np.inf]),
dict(lower=np.r_[np.nan, 0.], upper=np.r_[1., 2.]),
])
def test_error_if_action_bounds_non_finite(self, lower, upper):
action_spec = self.make_action_spec(lower=lower, upper=upper)
env = self.make_mock_env(action_spec=action_spec)
with self.assertRaisesWithLiteralMatch(
ValueError,
action_noise._BOUNDS_MUST_BE_FINITE.format(action_spec=action_spec)):
_ = action_noise.Wrapper(env)
def test_reset(self):
env = self.make_mock_env()
wrapped_env = action_noise.Wrapper(env)
time_step = wrapped_env.reset()
env.reset.assert_called_once_with()
self.assertIs(time_step, env.reset())
def test_observation_spec(self):
env = self.make_mock_env()
wrapped_env = action_noise.Wrapper(env)
observation_spec = wrapped_env.observation_spec()
env.observation_spec.assert_called_once_with()
self.assertIs(observation_spec, env.observation_spec())
def test_action_spec(self):
env = self.make_mock_env()
wrapped_env = action_noise.Wrapper(env)
# `env.action_spec()` is called in `Wrapper.__init__()`
env.action_spec.reset_mock()
action_spec = wrapped_env.action_spec()
env.action_spec.assert_called_once_with()
self.assertIs(action_spec, env.action_spec())
@parameterized.parameters(['task', 'physics', 'control_timestep'])
def test_getattr(self, attribute_name):
env = self.make_mock_env()
wrapped_env = action_noise.Wrapper(env)
attr = getattr(wrapped_env, attribute_name)
self.assertIs(attr, getattr(env, attribute_name))
if __name__ == '__main__':
absltest.main()