tia/Dreamer/local_dm_control_suite/tests/domains_test.py

293 lines
11 KiB
Python
Raw Permalink Normal View History

2021-06-30 01:20:44 +00:00
# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for dm_control.suite domains."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Internal dependencies.
from absl.testing import absltest
from absl.testing import parameterized
from dm_control import suite
from dm_control.rl import control
import mock
import numpy as np
import six
from six.moves import range
from six.moves import zip
def uniform_random_policy(action_spec, random=None):
lower_bounds = action_spec.minimum
upper_bounds = action_spec.maximum
# Draw values between -1 and 1 for unbounded actions.
lower_bounds = np.where(np.isinf(lower_bounds), -1.0, lower_bounds)
upper_bounds = np.where(np.isinf(upper_bounds), 1.0, upper_bounds)
random_state = np.random.RandomState(random)
def policy(time_step):
del time_step # Unused.
return random_state.uniform(lower_bounds, upper_bounds)
return policy
def step_environment(env, policy, num_episodes=5, max_steps_per_episode=10):
for _ in range(num_episodes):
step_count = 0
time_step = env.reset()
yield time_step
while not time_step.last():
action = policy(time_step)
time_step = env.step(action)
step_count += 1
yield time_step
if step_count >= max_steps_per_episode:
break
def make_trajectory(domain, task, seed, **trajectory_kwargs):
env = suite.load(domain, task, task_kwargs={'random': seed})
policy = uniform_random_policy(env.action_spec(), random=seed)
return step_environment(env, policy, **trajectory_kwargs)
class DomainTest(parameterized.TestCase):
"""Tests run on all the tasks registered."""
def test_constants(self):
num_tasks = sum(len(tasks) for tasks in
six.itervalues(suite.TASKS_BY_DOMAIN))
self.assertLen(suite.ALL_TASKS, num_tasks)
def _validate_observation(self, observation_dict, observation_spec):
obs = observation_dict.copy()
for name, spec in six.iteritems(observation_spec):
arr = obs.pop(name)
self.assertEqual(arr.shape, spec.shape)
self.assertEqual(arr.dtype, spec.dtype)
self.assertTrue(
np.all(np.isfinite(arr)),
msg='{!r} has non-finite value(s): {!r}'.format(name, arr))
self.assertEmpty(
obs,
msg='Observation contains arrays(s) that are not in the spec: {!r}'
.format(obs))
def _validate_reward_range(self, time_step):
if time_step.first():
self.assertIsNone(time_step.reward)
else:
self.assertIsInstance(time_step.reward, float)
self.assertBetween(time_step.reward, 0, 1)
def _validate_discount(self, time_step):
if time_step.first():
self.assertIsNone(time_step.discount)
else:
self.assertIsInstance(time_step.discount, float)
self.assertBetween(time_step.discount, 0, 1)
def _validate_control_range(self, lower_bounds, upper_bounds):
for b in lower_bounds:
self.assertEqual(b, -1.0)
for b in upper_bounds:
self.assertEqual(b, 1.0)
@parameterized.parameters(*suite.ALL_TASKS)
def test_components_have_names(self, domain, task):
env = suite.load(domain, task)
model = env.physics.model
object_types_and_size_fields = [
('body', 'nbody'),
('joint', 'njnt'),
('geom', 'ngeom'),
('site', 'nsite'),
('camera', 'ncam'),
('light', 'nlight'),
('mesh', 'nmesh'),
('hfield', 'nhfield'),
('texture', 'ntex'),
('material', 'nmat'),
('equality', 'neq'),
('tendon', 'ntendon'),
('actuator', 'nu'),
('sensor', 'nsensor'),
('numeric', 'nnumeric'),
('text', 'ntext'),
('tuple', 'ntuple'),
]
for object_type, size_field in object_types_and_size_fields:
for idx in range(getattr(model, size_field)):
object_name = model.id2name(idx, object_type)
self.assertNotEqual(object_name, '',
msg='Model {!r} contains unnamed {!r} with ID {}.'
.format(model.name, object_type, idx))
@parameterized.parameters(*suite.ALL_TASKS)
def test_model_has_at_least_2_cameras(self, domain, task):
env = suite.load(domain, task)
model = env.physics.model
self.assertGreaterEqual(model.ncam, 2,
'Model {!r} should have at least 2 cameras, has {}.'
.format(model.name, model.ncam))
@parameterized.parameters(*suite.ALL_TASKS)
def test_task_conforms_to_spec(self, domain, task):
"""Tests that the environment timesteps conform to specifications."""
is_benchmark = (domain, task) in suite.BENCHMARKING
env = suite.load(domain, task)
observation_spec = env.observation_spec()
action_spec = env.action_spec()
# Check action bounds.
if is_benchmark:
self._validate_control_range(action_spec.minimum, action_spec.maximum)
# Step through the environment, applying random actions sampled within the
# valid range and check the observations, rewards, and discounts.
policy = uniform_random_policy(action_spec)
for time_step in step_environment(env, policy):
self._validate_observation(time_step.observation, observation_spec)
self._validate_discount(time_step)
if is_benchmark:
self._validate_reward_range(time_step)
@parameterized.parameters(*suite.ALL_TASKS)
def test_environment_is_deterministic(self, domain, task):
"""Tests that identical seeds and actions produce identical trajectories."""
seed = 0
# Iterate over two trajectories generated using identical sequences of
# random actions, and with identical task random states. Check that the
# observations, rewards, discounts and step types are identical.
trajectory1 = make_trajectory(domain=domain, task=task, seed=seed)
trajectory2 = make_trajectory(domain=domain, task=task, seed=seed)
for time_step1, time_step2 in zip(trajectory1, trajectory2):
self.assertEqual(time_step1.step_type, time_step2.step_type)
self.assertEqual(time_step1.reward, time_step2.reward)
self.assertEqual(time_step1.discount, time_step2.discount)
for key in six.iterkeys(time_step1.observation):
np.testing.assert_array_equal(
time_step1.observation[key], time_step2.observation[key],
err_msg='Observation {!r} is not equal.'.format(key))
def assertCorrectColors(self, physics, reward):
colors = physics.named.model.mat_rgba
for material_name in ('self', 'effector', 'target'):
highlight = colors[material_name + '_highlight']
default = colors[material_name + '_default']
blend_coef = reward ** 4
expected = blend_coef * highlight + (1.0 - blend_coef) * default
actual = colors[material_name]
err_msg = ('Material {!r} has unexpected color.\nExpected: {!r}\n'
'Actual: {!r}'.format(material_name, expected, actual))
np.testing.assert_array_almost_equal(expected, actual, err_msg=err_msg)
@parameterized.parameters(*suite.ALL_TASKS)
def test_visualize_reward(self, domain, task):
env = suite.load(domain, task)
env.task.visualize_reward = True
action = np.zeros(env.action_spec().shape)
with mock.patch.object(env.task, 'get_reward') as mock_get_reward:
mock_get_reward.return_value = -3.0 # Rewards < 0 should be clipped.
env.reset()
mock_get_reward.assert_called_with(env.physics)
self.assertCorrectColors(env.physics, reward=0.0)
mock_get_reward.reset_mock()
mock_get_reward.return_value = 0.5
env.step(action)
mock_get_reward.assert_called_with(env.physics)
self.assertCorrectColors(env.physics, reward=mock_get_reward.return_value)
mock_get_reward.reset_mock()
mock_get_reward.return_value = 2.0 # Rewards > 1 should be clipped.
env.step(action)
mock_get_reward.assert_called_with(env.physics)
self.assertCorrectColors(env.physics, reward=1.0)
mock_get_reward.reset_mock()
mock_get_reward.return_value = 0.25
env.reset()
mock_get_reward.assert_called_with(env.physics)
self.assertCorrectColors(env.physics, reward=mock_get_reward.return_value)
@parameterized.parameters(*suite.ALL_TASKS)
def test_task_supports_environment_kwargs(self, domain, task):
env = suite.load(domain, task,
environment_kwargs=dict(flat_observation=True))
# Check that the kwargs are actually passed through to the environment.
self.assertSetEqual(set(env.observation_spec()),
{control.FLAT_OBSERVATION_KEY})
@parameterized.parameters(*suite.ALL_TASKS)
def test_observation_arrays_dont_share_memory(self, domain, task):
env = suite.load(domain, task)
first_timestep = env.reset()
action = np.zeros(env.action_spec().shape)
second_timestep = env.step(action)
for name, first_array in six.iteritems(first_timestep.observation):
second_array = second_timestep.observation[name]
self.assertFalse(
np.may_share_memory(first_array, second_array),
msg='Consecutive observations of {!r} may share memory.'.format(name))
@parameterized.parameters(*suite.ALL_TASKS)
def test_observations_dont_contain_constant_elements(self, domain, task):
env = suite.load(domain, task)
trajectory = make_trajectory(domain=domain, task=task, seed=0,
num_episodes=2, max_steps_per_episode=1000)
observations = {name: [] for name in env.observation_spec()}
for time_step in trajectory:
for name, array in six.iteritems(time_step.observation):
observations[name].append(array)
failures = []
for name, array_list in six.iteritems(observations):
# Sampling random uniform actions generally isn't sufficient to trigger
# these touch sensors.
if (domain in ('manipulator', 'stacker') and name == 'touch' or
domain == 'quadruped' and name == 'force_torque'):
continue
stacked_arrays = np.array(array_list)
is_constant = np.all(stacked_arrays == stacked_arrays[0], axis=0)
has_constant_elements = (
is_constant if np.isscalar(is_constant) else np.any(is_constant))
if has_constant_elements:
failures.append((name, is_constant))
self.assertEmpty(
failures,
msg='The following observation(s) contain constant elements:\n{}'
.format('\n'.join(':\t'.join([name, str(is_constant)])
for (name, is_constant) in failures)))
@parameterized.parameters(*suite.ALL_TASKS)
def test_initial_state_is_randomized(self, domain, task):
env = suite.load(domain, task, task_kwargs={'random': 42})
obs1 = env.reset().observation
obs2 = env.reset().observation
self.assertFalse(
all(np.all(obs1[k] == obs2[k]) for k in obs1),
'Two consecutive initial states have identical observations.\n'
'First: {}\nSecond: {}'.format(obs1, obs2))
if __name__ == '__main__':
absltest.main()