tia/Dreamer/local_dm_control_suite/lqr_solver.py

143 lines
4.6 KiB
Python
Raw Permalink Normal View History

2021-06-30 01:20:44 +00:00
# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
r"""Optimal policy for LQR levels.
LQR control problem is described in
https://en.wikipedia.org/wiki/Linear-quadratic_regulator#Infinite-horizon.2C_discrete-time_LQR
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from dm_control.mujoco import wrapper
import numpy as np
from six.moves import range
try:
import scipy.linalg as sp # pylint: disable=g-import-not-at-top
except ImportError:
sp = None
def _solve_dare(a, b, q, r):
"""Solves the Discrete-time Algebraic Riccati Equation (DARE) by iteration.
Algebraic Riccati Equation:
```none
P_{t-1} = Q + A' * P_{t} * A -
A' * P_{t} * B * (R + B' * P_{t} * B)^{-1} * B' * P_{t} * A
```
Args:
a: A 2 dimensional numpy array, transition matrix A.
b: A 2 dimensional numpy array, control matrix B.
q: A 2 dimensional numpy array, symmetric positive definite cost matrix.
r: A 2 dimensional numpy array, symmetric positive definite cost matrix
Returns:
A numpy array, a real symmetric matrix P which is the solution to DARE.
Raises:
RuntimeError: If the computed P matrix is not symmetric and
positive-definite.
"""
p = np.eye(len(a))
for _ in range(1000000):
a_p = a.T.dot(p) # A' * P_t
a_p_b = np.dot(a_p, b) # A' * P_t * B
# Algebraic Riccati Equation.
p_next = q + np.dot(a_p, a) - a_p_b.dot(
np.linalg.solve(b.T.dot(p.dot(b)) + r, a_p_b.T))
p_next += p_next.T
p_next *= .5
if np.abs(p - p_next).max() < 1e-12:
break
p = p_next
else:
logging.warning('DARE solver did not converge')
try:
# Check that the result is symmetric and positive-definite.
np.linalg.cholesky(p_next)
except np.linalg.LinAlgError:
raise RuntimeError('ARE solver failed: P matrix is not symmetric and '
'positive-definite.')
return p_next
def solve(env):
"""Returns the optimal value and policy for LQR problem.
Args:
env: An instance of `control.EnvironmentV2` with LQR level.
Returns:
p: A numpy array, the Hessian of the optimal total cost-to-go (value
function at state x) is V(x) = .5 * x' * p * x.
k: A numpy array which gives the optimal linear policy u = k * x.
beta: The maximum eigenvalue of (a + b * k). Under optimal policy, at
timestep n the state tends to 0 like beta^n.
Raises:
RuntimeError: If the controlled system is unstable.
"""
n = env.physics.model.nq # number of DoFs
m = env.physics.model.nu # number of controls
# Compute the mass matrix.
mass = np.zeros((n, n))
wrapper.mjbindings.mjlib.mj_fullM(env.physics.model.ptr, mass,
env.physics.data.qM)
# Compute input matrices a, b, q and r to the DARE solvers.
# State transition matrix a.
stiffness = np.diag(env.physics.model.jnt_stiffness.ravel())
damping = np.diag(env.physics.model.dof_damping.ravel())
dt = env.physics.model.opt.timestep
j = np.linalg.solve(-mass, np.hstack((stiffness, damping)))
a = np.eye(2 * n) + dt * np.vstack(
(dt * j + np.hstack((np.zeros((n, n)), np.eye(n))), j))
# Control transition matrix b.
b = env.physics.data.actuator_moment.T
bc = np.linalg.solve(mass, b)
b = dt * np.vstack((dt * bc, bc))
# State cost Hessian q.
q = np.diag(np.hstack([np.ones(n), np.zeros(n)]))
# Control cost Hessian r.
r = env.task.control_cost_coef * np.eye(m)
if sp:
# Use scipy's faster DARE solver if available.
solve_dare = sp.solve_discrete_are
else:
# Otherwise fall back on a slower internal implementation.
solve_dare = _solve_dare
# Solve the discrete algebraic Riccati equation.
p = solve_dare(a, b, q, r)
k = -np.linalg.solve(b.T.dot(p.dot(b)) + r, b.T.dot(p.dot(a)))
# Under optimal policy, state tends to 0 like beta^n_timesteps
beta = np.abs(np.linalg.eigvals(a + b.dot(k))).max()
if beta >= 1.0:
raise RuntimeError('Controlled system is unstable.')
return p, k, beta