tia/Dreamer/local_dm_control_suite/cheetah.py

98 lines
3.3 KiB
Python
Raw Permalink Normal View History

2021-06-30 01:20:44 +00:00
# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Cheetah Domain."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from dm_control import mujoco
from dm_control.rl import control
from local_dm_control_suite import base
from local_dm_control_suite import common
from dm_control.utils import containers
from dm_control.utils import rewards
# How long the simulation will run, in seconds.
_DEFAULT_TIME_LIMIT = 10
# Running speed above which reward is 1.
_RUN_SPEED = 10
SUITE = containers.TaggedTasks()
def get_model_and_assets():
"""Returns a tuple containing the model XML string and a dict of assets."""
return common.read_model('cheetah.xml'), common.ASSETS
@SUITE.add('benchmarking')
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the run task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Cheetah(random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(physics, task, time_limit=time_limit,
**environment_kwargs)
class Physics(mujoco.Physics):
"""Physics simulation with additional features for the Cheetah domain."""
def speed(self):
"""Returns the horizontal speed of the Cheetah."""
return self.named.data.sensordata['torso_subtreelinvel'][0]
class Cheetah(base.Task):
"""A `Task` to train a running Cheetah."""
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
# The indexing below assumes that all joints have a single DOF.
assert physics.model.nq == physics.model.njnt
is_limited = physics.model.jnt_limited == 1
lower, upper = physics.model.jnt_range[is_limited].T
physics.data.qpos[is_limited] = self.random.uniform(lower, upper)
# Stabilize the model before the actual simulation.
for _ in range(200):
physics.step()
physics.data.time = 0
self._timeout_progress = 0
super(Cheetah, self).initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation of the state, ignoring horizontal position."""
obs = collections.OrderedDict()
# Ignores horizontal position to maintain translational invariance.
obs['position'] = physics.data.qpos[1:].copy()
obs['velocity'] = physics.velocity()
return obs
def get_reward(self, physics):
"""Returns a reward to the agent."""
return rewards.tolerance(physics.speed(),
bounds=(_RUN_SPEED, float('inf')),
margin=_RUN_SPEED,
value_at_margin=0,
sigmoid='linear')