205 lines
5.7 KiB
Python
205 lines
5.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
def tie_weights(src, trg):
|
|
assert type(src) == type(trg)
|
|
trg.weight = src.weight
|
|
trg.bias = src.bias
|
|
|
|
|
|
OUT_DIM = {2: 39, 4: 35, 6: 31}
|
|
|
|
'''
|
|
class PixelEncoder(nn.Module):
|
|
"""Convolutional encoder of pixels observations."""
|
|
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32):
|
|
super().__init__()
|
|
|
|
assert len(obs_shape) == 3
|
|
|
|
self.feature_dim = feature_dim
|
|
self.num_layers = num_layers
|
|
|
|
self.convs = nn.ModuleList(
|
|
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
|
|
)
|
|
for i in range(num_layers - 1):
|
|
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
|
|
|
|
out_dim = OUT_DIM[num_layers]
|
|
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim)
|
|
self.ln = nn.LayerNorm(self.feature_dim)
|
|
|
|
self.outputs = dict()
|
|
|
|
def reparameterize(self, mu, logstd):
|
|
std = torch.exp(logstd)
|
|
eps = torch.randn_like(std)
|
|
return mu + eps * std
|
|
|
|
def forward_conv(self, obs):
|
|
obs = obs / 255.
|
|
self.outputs['obs'] = obs
|
|
|
|
conv = torch.relu(self.convs[0](obs))
|
|
self.outputs['conv1'] = conv
|
|
|
|
for i in range(1, self.num_layers):
|
|
conv = torch.relu(self.convs[i](conv))
|
|
self.outputs['conv%s' % (i + 1)] = conv
|
|
|
|
h = conv.view(conv.size(0), -1)
|
|
return h
|
|
|
|
def forward(self, obs, detach=False):
|
|
h = self.forward_conv(obs)
|
|
|
|
if detach:
|
|
h = h.detach()
|
|
|
|
h_fc = self.fc(h)
|
|
self.outputs['fc'] = h_fc
|
|
|
|
h_norm = self.ln(h_fc)
|
|
self.outputs['ln'] = h_norm
|
|
|
|
out = torch.tanh(h_norm)
|
|
self.outputs['tanh'] = out
|
|
|
|
return out
|
|
|
|
def copy_conv_weights_from(self, source):
|
|
"""Tie convolutional layers"""
|
|
# only tie conv layers
|
|
for i in range(self.num_layers):
|
|
tie_weights(src=source.convs[i], trg=self.convs[i])
|
|
|
|
def log(self, L, step, log_freq):
|
|
if step % log_freq != 0:
|
|
return
|
|
|
|
for k, v in self.outputs.items():
|
|
L.log_histogram('train_encoder/%s_hist' % k, v, step)
|
|
if len(v.shape) > 2:
|
|
L.log_image('train_encoder/%s_img' % k, v[0], step)
|
|
|
|
for i in range(self.num_layers):
|
|
L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step)
|
|
L.log_param('train_encoder/fc', self.fc, step)
|
|
L.log_param('train_encoder/ln', self.ln, step)
|
|
'''
|
|
|
|
class PixelEncoder(nn.Module):
|
|
"""Convolutional encoder of pixels observations."""
|
|
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32):
|
|
super().__init__()
|
|
|
|
assert len(obs_shape) == 3
|
|
|
|
self.feature_dim = feature_dim
|
|
self.num_layers = num_layers
|
|
|
|
self.convs = nn.ModuleList(
|
|
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
|
|
)
|
|
for i in range(num_layers - 1):
|
|
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
|
|
|
|
out_dim = OUT_DIM[num_layers]
|
|
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim * 2)
|
|
self.ln = nn.LayerNorm(self.feature_dim * 2)
|
|
|
|
self.outputs = dict()
|
|
|
|
def reparameterize(self, mu, logstd):
|
|
std = torch.exp(logstd)
|
|
eps = torch.randn_like(std)
|
|
return mu + eps * std
|
|
|
|
def forward_conv(self, obs):
|
|
obs = obs / 255.
|
|
self.outputs['obs'] = obs
|
|
|
|
conv = torch.relu(self.convs[0](obs))
|
|
self.outputs['conv1'] = conv
|
|
|
|
for i in range(1, self.num_layers):
|
|
conv = torch.relu(self.convs[i](conv))
|
|
self.outputs['conv%s' % (i + 1)] = conv
|
|
|
|
h = conv.view(conv.size(0), -1)
|
|
return h
|
|
|
|
def forward(self, obs, detach=False):
|
|
h = self.forward_conv(obs)
|
|
|
|
if detach:
|
|
h = h.detach()
|
|
|
|
h_fc = self.fc(h)
|
|
self.outputs['fc'] = h_fc
|
|
|
|
h_norm = self.ln(h_fc)
|
|
self.outputs['ln'] = h_norm
|
|
|
|
#out = torch.tanh(h_norm)
|
|
|
|
mu, logstd = torch.chunk(h_norm, 2, dim=-1)
|
|
logstd = torch.tanh(logstd)
|
|
self.outputs['mu'] = mu
|
|
self.outputs['logstd'] = logstd
|
|
self.outputs['std'] = logstd.exp()
|
|
|
|
out = self.reparameterize(mu, logstd)
|
|
self.outputs['tanh'] = out
|
|
return out
|
|
|
|
def copy_conv_weights_from(self, source):
|
|
"""Tie convolutional layers"""
|
|
# only tie conv layers
|
|
for i in range(self.num_layers):
|
|
tie_weights(src=source.convs[i], trg=self.convs[i])
|
|
|
|
def log(self, L, step, log_freq):
|
|
if step % log_freq != 0:
|
|
return
|
|
|
|
for k, v in self.outputs.items():
|
|
L.log_histogram('train_encoder/%s_hist' % k, v, step)
|
|
if len(v.shape) > 2:
|
|
L.log_image('train_encoder/%s_img' % k, v[0], step)
|
|
|
|
for i in range(self.num_layers):
|
|
L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step)
|
|
L.log_param('train_encoder/fc', self.fc, step)
|
|
L.log_param('train_encoder/ln', self.ln, step)
|
|
|
|
class IdentityEncoder(nn.Module):
|
|
def __init__(self, obs_shape, feature_dim, num_layers, num_filters):
|
|
super().__init__()
|
|
|
|
assert len(obs_shape) == 1
|
|
self.feature_dim = obs_shape[0]
|
|
|
|
def forward(self, obs, detach=False):
|
|
return obs
|
|
|
|
def copy_conv_weights_from(self, source):
|
|
pass
|
|
|
|
def log(self, L, step, log_freq):
|
|
pass
|
|
|
|
|
|
_AVAILABLE_ENCODERS = {'pixel': PixelEncoder, 'identity': IdentityEncoder}
|
|
|
|
|
|
def make_encoder(
|
|
encoder_type, obs_shape, feature_dim, num_layers, num_filters
|
|
):
|
|
assert encoder_type in _AVAILABLE_ENCODERS
|
|
return _AVAILABLE_ENCODERS[encoder_type](
|
|
obs_shape, feature_dim, num_layers, num_filters
|
|
)
|