183 lines
5.9 KiB
Python
183 lines
5.9 KiB
Python
import torch
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
import gym
|
|
import os
|
|
from collections import deque
|
|
import random
|
|
|
|
|
|
class eval_mode(object):
|
|
def __init__(self, *models):
|
|
self.models = models
|
|
|
|
def __enter__(self):
|
|
self.prev_states = []
|
|
for model in self.models:
|
|
self.prev_states.append(model.training)
|
|
model.train(False)
|
|
|
|
def __exit__(self, *args):
|
|
for model, state in zip(self.models, self.prev_states):
|
|
model.train(state)
|
|
return False
|
|
|
|
|
|
def soft_update_params(net, target_net, tau):
|
|
for param, target_param in zip(net.parameters(), target_net.parameters()):
|
|
target_param.data.copy_(
|
|
tau * param.data + (1 - tau) * target_param.data
|
|
)
|
|
|
|
|
|
def set_seed_everywhere(seed):
|
|
torch.manual_seed(seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(seed)
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
|
|
|
|
def module_hash(module):
|
|
result = 0
|
|
for tensor in module.state_dict().values():
|
|
result += tensor.sum().item()
|
|
return result
|
|
|
|
|
|
def make_dir(dir_path):
|
|
try:
|
|
os.mkdir(dir_path)
|
|
except OSError:
|
|
pass
|
|
return dir_path
|
|
|
|
|
|
def preprocess_obs(obs, bits=5):
|
|
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
|
|
bins = 2**bits
|
|
assert obs.dtype == torch.float32
|
|
if bits < 8:
|
|
obs = torch.floor(obs / 2**(8 - bits))
|
|
obs = obs / bins
|
|
obs = obs + torch.rand_like(obs) / bins
|
|
obs = obs - 0.5
|
|
return obs
|
|
|
|
|
|
class ReplayBuffer(object):
|
|
"""Buffer to store environment transitions."""
|
|
def __init__(
|
|
self, obs_shape, state_shape, action_shape, capacity, batch_size,
|
|
device
|
|
):
|
|
self.capacity = capacity
|
|
self.batch_size = batch_size
|
|
self.device = device
|
|
|
|
# the proprioceptive obs is stored as float32, pixels obs as uint8
|
|
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
|
|
|
|
self.obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
|
self.next_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
|
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
|
|
self.rewards = np.empty((capacity, 1), dtype=np.float32)
|
|
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
|
|
self.states = np.empty((capacity, *state_shape), dtype=np.float32)
|
|
self.next_states = np.empty((capacity, *state_shape), dtype=np.float32)
|
|
|
|
self.idx = 0
|
|
self.last_save = 0
|
|
self.full = False
|
|
|
|
def add(self, obs, action, reward, next_obs, done, state, next_state):
|
|
np.copyto(self.obses[self.idx], obs)
|
|
np.copyto(self.actions[self.idx], action)
|
|
np.copyto(self.rewards[self.idx], reward)
|
|
np.copyto(self.next_obses[self.idx], next_obs)
|
|
np.copyto(self.not_dones[self.idx], not done)
|
|
np.copyto(self.states[self.idx], state)
|
|
np.copyto(self.next_states[self.idx], next_state)
|
|
|
|
self.idx = (self.idx + 1) % self.capacity
|
|
self.full = self.full or self.idx == 0
|
|
|
|
def sample(self):
|
|
idxs = np.random.randint(
|
|
0, self.capacity if self.full else self.idx, size=self.batch_size
|
|
)
|
|
|
|
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
|
|
actions = torch.as_tensor(self.actions[idxs], device=self.device)
|
|
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
|
|
next_obses = torch.as_tensor(
|
|
self.next_obses[idxs], device=self.device
|
|
).float()
|
|
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
|
|
states = torch.as_tensor(self.states[idxs], device=self.device)
|
|
|
|
return obses, actions, rewards, next_obses, not_dones, states
|
|
|
|
def save(self, save_dir):
|
|
if self.idx == self.last_save:
|
|
return
|
|
path = os.path.join(save_dir, '%d_%d.pt' % (self.last_save, self.idx))
|
|
payload = [
|
|
self.obses[self.last_save:self.idx],
|
|
self.next_obses[self.last_save:self.idx],
|
|
self.actions[self.last_save:self.idx],
|
|
self.rewards[self.last_save:self.idx],
|
|
self.not_dones[self.last_save:self.idx],
|
|
self.states[self.last_save:self.idx],
|
|
self.next_states[self.last_save:self.idx]
|
|
]
|
|
self.last_save = self.idx
|
|
torch.save(payload, path)
|
|
|
|
def load(self, save_dir):
|
|
chunks = os.listdir(save_dir)
|
|
chucks = sorted(chunks, key=lambda x: int(x.split('_')[0]))
|
|
for chunk in chucks:
|
|
start, end = [int(x) for x in chunk.split('.')[0].split('_')]
|
|
path = os.path.join(save_dir, chunk)
|
|
payload = torch.load(path)
|
|
assert self.idx == start
|
|
self.obses[start:end] = payload[0]
|
|
self.next_obses[start:end] = payload[1]
|
|
self.actions[start:end] = payload[2]
|
|
self.rewards[start:end] = payload[3]
|
|
self.not_dones[start:end] = payload[4]
|
|
self.states[start:end] = payload[5]
|
|
self.next_states[start:end] = payload[6]
|
|
self.idx = end
|
|
|
|
|
|
class FrameStack(gym.Wrapper):
|
|
def __init__(self, env, k):
|
|
gym.Wrapper.__init__(self, env)
|
|
self._k = k
|
|
self._frames = deque([], maxlen=k)
|
|
shp = env.observation_space.shape
|
|
self.observation_space = gym.spaces.Box(
|
|
low=0,
|
|
high=1,
|
|
shape=((shp[0] * k,) + shp[1:]),
|
|
dtype=env.observation_space.dtype
|
|
)
|
|
self._max_episode_steps = env._max_episode_steps
|
|
|
|
def reset(self):
|
|
obs = self.env.reset()
|
|
for _ in range(self._k):
|
|
self._frames.append(obs)
|
|
return self._get_obs()
|
|
|
|
def step(self, action):
|
|
obs, reward, done, info = self.env.step(action)
|
|
self._frames.append(obs)
|
|
return self._get_obs(), reward, done, info
|
|
|
|
def _get_obs(self):
|
|
assert len(self._frames) == self._k
|
|
return np.concatenate(list(self._frames), axis=0)
|