sac_ae_if/local_dm_control_suite/wrappers/pixels_test.py
2023-05-16 12:40:47 +02:00

134 lines
4.2 KiB
Python
Executable File

# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for the pixel wrapper."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
# Internal dependencies.
from absl.testing import absltest
from absl.testing import parameterized
from local_dm_control_suite import cartpole
from dm_control.suite.wrappers import pixels
import dm_env
from dm_env import specs
import numpy as np
class FakePhysics(object):
def render(self, *args, **kwargs):
del args
del kwargs
return np.zeros((4, 5, 3), dtype=np.uint8)
class FakeArrayObservationEnvironment(dm_env.Environment):
def __init__(self):
self.physics = FakePhysics()
def reset(self):
return dm_env.restart(np.zeros((2,)))
def step(self, action):
del action
return dm_env.transition(0.0, np.zeros((2,)))
def action_spec(self):
pass
def observation_spec(self):
return specs.Array(shape=(2,), dtype=np.float)
class PixelsTest(parameterized.TestCase):
@parameterized.parameters(True, False)
def test_dict_observation(self, pixels_only):
pixel_key = 'rgb'
env = cartpole.swingup()
# Make sure we are testing the right environment for the test.
observation_spec = env.observation_spec()
self.assertIsInstance(observation_spec, collections.OrderedDict)
width = 320
height = 240
# The wrapper should only add one observation.
wrapped = pixels.Wrapper(env,
observation_key=pixel_key,
pixels_only=pixels_only,
render_kwargs={'width': width, 'height': height})
wrapped_observation_spec = wrapped.observation_spec()
self.assertIsInstance(wrapped_observation_spec, collections.OrderedDict)
if pixels_only:
self.assertLen(wrapped_observation_spec, 1)
self.assertEqual([pixel_key], list(wrapped_observation_spec.keys()))
else:
expected_length = len(observation_spec) + 1
self.assertLen(wrapped_observation_spec, expected_length)
expected_keys = list(observation_spec.keys()) + [pixel_key]
self.assertEqual(expected_keys, list(wrapped_observation_spec.keys()))
# Check that the added spec item is consistent with the added observation.
time_step = wrapped.reset()
rgb_observation = time_step.observation[pixel_key]
wrapped_observation_spec[pixel_key].validate(rgb_observation)
self.assertEqual(rgb_observation.shape, (height, width, 3))
self.assertEqual(rgb_observation.dtype, np.uint8)
@parameterized.parameters(True, False)
def test_single_array_observation(self, pixels_only):
pixel_key = 'depth'
env = FakeArrayObservationEnvironment()
observation_spec = env.observation_spec()
self.assertIsInstance(observation_spec, specs.Array)
wrapped = pixels.Wrapper(env, observation_key=pixel_key,
pixels_only=pixels_only)
wrapped_observation_spec = wrapped.observation_spec()
self.assertIsInstance(wrapped_observation_spec, collections.OrderedDict)
if pixels_only:
self.assertLen(wrapped_observation_spec, 1)
self.assertEqual([pixel_key], list(wrapped_observation_spec.keys()))
else:
self.assertLen(wrapped_observation_spec, 2)
self.assertEqual([pixels.STATE_KEY, pixel_key],
list(wrapped_observation_spec.keys()))
time_step = wrapped.reset()
depth_observation = time_step.observation[pixel_key]
wrapped_observation_spec[pixel_key].validate(depth_observation)
self.assertEqual(depth_observation.shape, (4, 5, 3))
self.assertEqual(depth_observation.dtype, np.uint8)
if __name__ == '__main__':
absltest.main()