49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
import os
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
|
|
|
|
|
|
def tabulate_events(dpath):
|
|
files = os.listdir(dpath)[0]
|
|
summary_iterators = [EventAccumulator(os.path.join(dpath, files)).Reload()]
|
|
|
|
tags = summary_iterators[0].Tags()['scalars']
|
|
|
|
for it in summary_iterators:
|
|
assert it.Tags()['scalars'] == tags
|
|
|
|
out = {t: [] for t in tags}
|
|
steps = []
|
|
|
|
for tag in tags:
|
|
steps = [e.step for e in summary_iterators[0].Scalars(tag)]
|
|
|
|
for events in zip(*[acc.Scalars(tag) for acc in summary_iterators]):
|
|
assert len(set(e.step for e in events)) == 1
|
|
|
|
out[tag].append([e.value for e in events])
|
|
|
|
return out, steps
|
|
|
|
events, steps = tabulate_events('/home/vedant/pytorch_sac_ae/log/runs')
|
|
|
|
data = []
|
|
|
|
for tag, values in events.items():
|
|
for run_idx, run_values in enumerate(values):
|
|
for step_idx, value in enumerate(run_values):
|
|
data.append({
|
|
'tag': tag,
|
|
'run': run_idx,
|
|
'step': steps[step_idx],
|
|
'value': value,
|
|
})
|
|
|
|
df = pd.DataFrame(data)
|
|
print(df.head())
|
|
|
|
plt.figure(figsize=(10,6))
|
|
sns.lineplot(data=df, x='step', y='value', hue='tag', ci='sd')
|
|
plt.show() |