sac_ae_if/local_dm_control_suite/cartpole.py
2023-05-24 19:51:34 +02:00

231 lines
8.8 KiB
Python
Executable File

# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Cartpole domain."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from dm_control import mujoco
from dm_control.rl import control
from local_dm_control_suite import base
from local_dm_control_suite import common
from dm_control.utils import containers
from dm_control.utils import rewards
from lxml import etree
import numpy as np
from six.moves import range
_DEFAULT_TIME_LIMIT = 10
SUITE = containers.TaggedTasks()
def get_model_and_assets(num_poles=1):
"""Returns a tuple containing the model XML string and a dict of assets."""
return _make_model(num_poles), common.ASSETS
@SUITE.add('benchmarking')
def balance(time_limit=_DEFAULT_TIME_LIMIT, random=None,
environment_kwargs=None):
"""Returns the Cartpole Balance task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Balance(swing_up=False, sparse=False, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
@SUITE.add('benchmarking')
def balance_sparse(time_limit=_DEFAULT_TIME_LIMIT, random=None,
environment_kwargs=None):
"""Returns the sparse reward variant of the Cartpole Balance task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Balance(swing_up=False, sparse=True, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
@SUITE.add('benchmarking')
def swingup(time_limit=_DEFAULT_TIME_LIMIT, random=None,
environment_kwargs=None):
"""Returns the Cartpole Swing-Up task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Balance(swing_up=True, sparse=False, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
@SUITE.add('benchmarking')
def swingup_sparse(time_limit=_DEFAULT_TIME_LIMIT, random=None,
environment_kwargs=None):
"""Returns the sparse reward variant of teh Cartpole Swing-Up task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Balance(swing_up=True, sparse=True, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
@SUITE.add()
def two_poles(time_limit=_DEFAULT_TIME_LIMIT, random=None,
environment_kwargs=None):
"""Returns the Cartpole Balance task with two poles."""
physics = Physics.from_xml_string(*get_model_and_assets(num_poles=2))
task = Balance(swing_up=True, sparse=False, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
@SUITE.add()
def three_poles(time_limit=_DEFAULT_TIME_LIMIT, random=None, num_poles=3,
sparse=False, environment_kwargs=None):
"""Returns the Cartpole Balance task with three or more poles."""
physics = Physics.from_xml_string(*get_model_and_assets(num_poles=num_poles))
task = Balance(swing_up=True, sparse=sparse, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
def _make_model(n_poles):
"""Generates an xml string defining a cart with `n_poles` bodies."""
xml_string = common.read_model('cartpole.xml')
if n_poles == 1:
return xml_string
mjcf = etree.fromstring(xml_string)
parent = mjcf.find('./worldbody/body/body') # Find first pole.
# Make chain of poles.
for pole_index in range(2, n_poles+1):
child = etree.Element('body', name='pole_{}'.format(pole_index),
pos='0 0 1', childclass='pole')
etree.SubElement(child, 'joint', name='hinge_{}'.format(pole_index))
etree.SubElement(child, 'geom', name='pole_{}'.format(pole_index))
parent.append(child)
parent = child
# Move plane down.
floor = mjcf.find('./worldbody/geom')
floor.set('pos', '0 0 {}'.format(1 - n_poles - .05))
# Move cameras back.
cameras = mjcf.findall('./worldbody/camera')
cameras[0].set('pos', '0 {} 1'.format(-1 - 2*n_poles))
cameras[1].set('pos', '0 {} 2'.format(-2*n_poles))
return etree.tostring(mjcf, pretty_print=True)
class Physics(mujoco.Physics):
"""Physics simulation with additional features for the Cartpole domain."""
def cart_position(self):
"""Returns the position of the cart."""
return self.named.data.qpos['slider'][0]
def angular_vel(self):
"""Returns the angular velocity of the pole."""
return self.data.qvel[1:]
def pole_angle_cosine(self):
"""Returns the cosine of the pole angle."""
return self.named.data.xmat[2:, 'zz']
def bounded_position(self):
"""Returns the state, with pole angle split into sin/cos."""
return np.hstack((self.cart_position(),
self.named.data.xmat[2:, ['zz', 'xz']].ravel()))
class Balance(base.Task):
"""A Cartpole `Task` to balance the pole.
State is initialized either close to the target configuration or at a random
configuration.
"""
_CART_RANGE = (-.25, .25)
_ANGLE_COSINE_RANGE = (.995, 1)
def __init__(self, swing_up, sparse, random=None):
"""Initializes an instance of `Balance`.
Args:
swing_up: A `bool`, which if `True` sets the cart to the middle of the
slider and the pole pointing towards the ground. Otherwise, sets the
cart to a random position on the slider and the pole to a random
near-vertical position.
sparse: A `bool`, whether to return a sparse or a smooth reward.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
self._sparse = sparse
self._swing_up = swing_up
super(Balance, self).__init__(random=random)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Initializes the cart and pole according to `swing_up`, and in both cases
adds a small random initial velocity to break symmetry.
Args:
physics: An instance of `Physics`.
"""
nv = physics.model.nv
if self._swing_up:
physics.named.data.qpos['slider'] = .01*self.random.randn()
physics.named.data.qpos['hinge_1'] = np.pi + .01*self.random.randn()
physics.named.data.qpos[2:] = .1*self.random.randn(nv - 2)
else:
physics.named.data.qpos['slider'] = self.random.uniform(-.1, .1)
physics.named.data.qpos[1:] = self.random.uniform(-.034, .034, nv - 1)
physics.named.data.qvel[:] = 0.01 * self.random.randn(physics.model.nv)
super(Balance, self).initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation of the (bounded) physics state."""
obs = collections.OrderedDict()
obs['position'] = physics.bounded_position()
obs['velocity'] = physics.velocity()
return obs
def _get_reward(self, physics, sparse):
if sparse:
cart_in_bounds = rewards.tolerance(physics.cart_position(),
self._CART_RANGE)
angle_in_bounds = rewards.tolerance(physics.pole_angle_cosine(),
self._ANGLE_COSINE_RANGE).prod()
return cart_in_bounds * angle_in_bounds
else:
upright = (physics.pole_angle_cosine() + 1) / 2
centered = rewards.tolerance(physics.cart_position(), margin=2)
centered = (1 + centered) / 2
small_control = rewards.tolerance(physics.control(), margin=1,
value_at_margin=0,
sigmoid='quadratic')[0]
small_control = (4 + small_control) / 5
small_velocity = rewards.tolerance(physics.angular_vel(), margin=5).min()
small_velocity = (1 + small_velocity) / 2
return upright.mean() * small_control * small_velocity * centered
def get_reward(self, physics):
"""Returns a sparse or a smooth reward, as specified in the constructor."""
return self._get_reward(physics, sparse=self._sparse)