180 lines
6.6 KiB
Python
Executable File
180 lines
6.6 KiB
Python
Executable File
# Copyright 2017 The dm_control Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""Humanoid_CMU Domain."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import collections
|
|
|
|
from dm_control import mujoco
|
|
from dm_control.rl import control
|
|
from local_dm_control_suite import base
|
|
from local_dm_control_suite import common
|
|
from dm_control.suite.utils import randomizers
|
|
from dm_control.utils import containers
|
|
from dm_control.utils import rewards
|
|
import numpy as np
|
|
|
|
_DEFAULT_TIME_LIMIT = 20
|
|
_CONTROL_TIMESTEP = 0.02
|
|
|
|
# Height of head above which stand reward is 1.
|
|
_STAND_HEIGHT = 1.4
|
|
|
|
# Horizontal speeds above which move reward is 1.
|
|
_WALK_SPEED = 1
|
|
_RUN_SPEED = 10
|
|
|
|
SUITE = containers.TaggedTasks()
|
|
|
|
|
|
def get_model_and_assets():
|
|
"""Returns a tuple containing the model XML string and a dict of assets."""
|
|
return common.read_model('humanoid_CMU.xml'), common.ASSETS
|
|
|
|
|
|
@SUITE.add()
|
|
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
|
"""Returns the Stand task."""
|
|
physics = Physics.from_xml_string(*get_model_and_assets())
|
|
task = HumanoidCMU(move_speed=0, random=random)
|
|
environment_kwargs = environment_kwargs or {}
|
|
return control.Environment(
|
|
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
|
**environment_kwargs)
|
|
|
|
|
|
@SUITE.add()
|
|
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
|
"""Returns the Run task."""
|
|
physics = Physics.from_xml_string(*get_model_and_assets())
|
|
task = HumanoidCMU(move_speed=_RUN_SPEED, random=random)
|
|
environment_kwargs = environment_kwargs or {}
|
|
return control.Environment(
|
|
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
|
**environment_kwargs)
|
|
|
|
|
|
class Physics(mujoco.Physics):
|
|
"""Physics simulation with additional features for the humanoid_CMU domain."""
|
|
|
|
def thorax_upright(self):
|
|
"""Returns projection from y-axes of thorax to the z-axes of world."""
|
|
return self.named.data.xmat['thorax', 'zy']
|
|
|
|
def head_height(self):
|
|
"""Returns the height of the head."""
|
|
return self.named.data.xpos['head', 'z']
|
|
|
|
def center_of_mass_position(self):
|
|
"""Returns position of the center-of-mass."""
|
|
return self.named.data.subtree_com['thorax']
|
|
|
|
def center_of_mass_velocity(self):
|
|
"""Returns the velocity of the center-of-mass."""
|
|
return self.named.data.sensordata['thorax_subtreelinvel'].copy()
|
|
|
|
def torso_vertical_orientation(self):
|
|
"""Returns the z-projection of the thorax orientation matrix."""
|
|
return self.named.data.xmat['thorax', ['zx', 'zy', 'zz']]
|
|
|
|
def joint_angles(self):
|
|
"""Returns the state without global orientation or position."""
|
|
return self.data.qpos[7:].copy() # Skip the 7 DoFs of the free root joint.
|
|
|
|
def extremities(self):
|
|
"""Returns end effector positions in egocentric frame."""
|
|
torso_frame = self.named.data.xmat['thorax'].reshape(3, 3)
|
|
torso_pos = self.named.data.xpos['thorax']
|
|
positions = []
|
|
for side in ('l', 'r'):
|
|
for limb in ('hand', 'foot'):
|
|
torso_to_limb = self.named.data.xpos[side + limb] - torso_pos
|
|
positions.append(torso_to_limb.dot(torso_frame))
|
|
return np.hstack(positions)
|
|
|
|
|
|
class HumanoidCMU(base.Task):
|
|
"""A task for the CMU Humanoid."""
|
|
|
|
def __init__(self, move_speed, random=None):
|
|
"""Initializes an instance of `Humanoid_CMU`.
|
|
|
|
Args:
|
|
move_speed: A float. If this value is zero, reward is given simply for
|
|
standing up. Otherwise this specifies a target horizontal velocity for
|
|
the walking task.
|
|
random: Optional, either a `numpy.random.RandomState` instance, an
|
|
integer seed for creating a new `RandomState`, or None to select a seed
|
|
automatically (default).
|
|
"""
|
|
self._move_speed = move_speed
|
|
super(HumanoidCMU, self).__init__(random=random)
|
|
|
|
def initialize_episode(self, physics):
|
|
"""Sets a random collision-free configuration at the start of each episode.
|
|
|
|
Args:
|
|
physics: An instance of `Physics`.
|
|
"""
|
|
penetrating = True
|
|
while penetrating:
|
|
randomizers.randomize_limited_and_rotational_joints(
|
|
physics, self.random)
|
|
# Check for collisions.
|
|
physics.after_reset()
|
|
penetrating = physics.data.ncon > 0
|
|
super(HumanoidCMU, self).initialize_episode(physics)
|
|
|
|
def get_observation(self, physics):
|
|
"""Returns a set of egocentric features."""
|
|
obs = collections.OrderedDict()
|
|
obs['joint_angles'] = physics.joint_angles()
|
|
obs['head_height'] = physics.head_height()
|
|
obs['extremities'] = physics.extremities()
|
|
obs['torso_vertical'] = physics.torso_vertical_orientation()
|
|
obs['com_velocity'] = physics.center_of_mass_velocity()
|
|
obs['velocity'] = physics.velocity()
|
|
return obs
|
|
|
|
def get_reward(self, physics):
|
|
"""Returns a reward to the agent."""
|
|
standing = rewards.tolerance(physics.head_height(),
|
|
bounds=(_STAND_HEIGHT, float('inf')),
|
|
margin=_STAND_HEIGHT/4)
|
|
upright = rewards.tolerance(physics.thorax_upright(),
|
|
bounds=(0.9, float('inf')), sigmoid='linear',
|
|
margin=1.9, value_at_margin=0)
|
|
stand_reward = standing * upright
|
|
small_control = rewards.tolerance(physics.control(), margin=1,
|
|
value_at_margin=0,
|
|
sigmoid='quadratic').mean()
|
|
small_control = (4 + small_control) / 5
|
|
if self._move_speed == 0:
|
|
horizontal_velocity = physics.center_of_mass_velocity()[[0, 1]]
|
|
dont_move = rewards.tolerance(horizontal_velocity, margin=2).mean()
|
|
return small_control * stand_reward * dont_move
|
|
else:
|
|
com_velocity = np.linalg.norm(physics.center_of_mass_velocity()[[0, 1]])
|
|
move = rewards.tolerance(com_velocity,
|
|
bounds=(self._move_speed, float('inf')),
|
|
margin=self._move_speed, value_at_margin=0,
|
|
sigmoid='linear')
|
|
move = (5*move + 1) / 6
|
|
return small_control * stand_reward * move
|