Compare commits

..

2 Commits

Author SHA1 Message Date
8b79f49bb9 Add graphs 2023-05-25 17:53:46 +02:00
82e8a23918 Adding files 2023-05-25 17:51:31 +02:00
4 changed files with 42 additions and 16 deletions

View File

@ -109,10 +109,7 @@ class PixelEncoder(nn.Module):
out_dim = OUT_DIM[num_layers]
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim * 2)
self.ln = nn.LayerNorm(self.feature_dim * 2)
<<<<<<< HEAD
self.combine = nn.Linear(self.feature_dim + 6, self.feature_dim)
=======
>>>>>>> origin/tester_1
self.outputs = dict()
@ -157,12 +154,8 @@ class PixelEncoder(nn.Module):
out = self.reparameterize(mu, logstd)
self.outputs['tanh'] = out
<<<<<<< HEAD
return out, mu, logstd
=======
return out
>>>>>>> origin/tester_1
def copy_conv_weights_from(self, source):
"""Tie convolutional layers"""
# only tie conv layers

View File

@ -1,10 +1,11 @@
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
"""
def tabulate_events(dpath):
files = os.listdir(dpath)[0]
summary_iterators = [EventAccumulator(os.path.join(dpath, files)).Reload()]
@ -43,7 +44,43 @@ for tag, values in events.items():
df = pd.DataFrame(data)
print(df.head())
exit()
plt.figure(figsize=(10,6))
sns.lineplot(data=df, x='step', y='value', hue='tag', ci='sd')
plt.show()
"""
from tensorboard.backend.event_processing import event_accumulator
def data_from_tb(files):
all_steps, all_rewards = [], []
for file in files:
ea = event_accumulator.EventAccumulator(file, size_guidance={'scalars': 0})
ea.Reload()
episode_rewards = ea.Scalars('train/episode_reward')
steps = [event.step for event in episode_rewards][:990000]
rewards = [event.value for event in episode_rewards][:990000]
all_steps.append(steps)
all_rewards.append(rewards)
return all_steps, all_rewards
files = ['/home/vedant/pytorch_sac_ae/log/runs/tb_21_05_2023-13_19_36/events.out.tfevents.1684667976.cpswkstn6-nvidia4090.1749060.0',
'/home/vedant/pytorch_sac_ae/log/runs/tb_22_05_2023-09_56_30/events.out.tfevents.1684742190.cpswkstn6-nvidia4090.1976229.0']
all_steps, all_rewards = data_from_tb(files)
mean_rewards = np.mean(all_rewards, axis=0)
std_rewards = np.std(all_rewards, axis=0)
mean_steps = np.mean(all_steps, axis=0)
df = pd.DataFrame({'Steps': mean_steps,'Rewards': mean_rewards,'Standard Deviation': std_rewards})
sns.relplot(x='Steps', y='Rewards', kind='line', data=df, ci="sd")
plt.fill_between(df['Steps'], df['Rewards'] - df['Standard Deviation'], df['Rewards'] + df['Standard Deviation'], color='b', alpha=.1)
plt.title("Mean Rewards vs Steps with Standard Deviation")
plt.show()

View File

@ -416,15 +416,14 @@ class SacAeAgent(object):
h_dist_enc = torch.distributions.Normal(h_mu, h_logvar.exp())
h_dist_pred = torch.distributions.Normal(mean, std)
enc_loss = torch.distributions.kl.kl_divergence(h_dist_enc, h_dist_pred).mean() * 1e-2
"""
with torch.no_grad():
z_pos, _ , _ = self.critic_target.encoder(next_obs_list[-1])
z_out = self.critic_target.encoder.combine(torch.concat((z_pos, action), dim=-1))
logits = self.lb_loss.compute_logits(h, z_out)
labels = torch.arange(logits.shape[0]).long().to(self.device)
lb_loss = nn.CrossEntropyLoss()(logits, labels) * 1e-2
"""
#with torch.no_grad():
# z_pos, _ , _ = self.critic.encoder(next_obs_list[-1])
#ub_loss = club_loss(state_enc["sample"], mean, state_enc["logvar"], h) * 1e-1
@ -437,7 +436,7 @@ class SacAeAgent(object):
ub_loss = torch.tensor(0.0)
#enc_loss = torch.tensor(0.0)
lb_loss = torch.tensor(0.0)
#lb_loss = torch.tensor(0.0)
#rec_loss = torch.tensor(0.0)
loss = rec_loss + enc_loss + lb_loss + ub_loss
self.encoder_optimizer.zero_grad()

View File

@ -28,10 +28,7 @@ def parse_args():
parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--resource_files', type=str)
<<<<<<< HEAD
parser.add_argument('--resource_files_test', type=str)
=======
>>>>>>> origin/tester_1
parser.add_argument('--total_frames', default=10000, type=int)
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=100000, type=int)