Compare commits

..

5 Commits

Author SHA1 Message Date
76442c02f5 Importing Training module 2023-05-16 12:28:27 +02:00
Denis Yarats
7fa560e21c
Merge pull request #1 from denisyarats/add-license-1
Create LICENSE
2020-05-02 21:46:54 -04:00
Denis Yarats
82ebe8cb05
Create LICENSE 2020-05-02 21:46:30 -04:00
Denis Yarats
27643e916d
Update README.md 2020-05-02 21:46:01 -04:00
Denis Yarats
a86c6dfa82
Update conda_env.yml 2020-01-09 14:14:03 -05:00
4 changed files with 86 additions and 10 deletions

21
LICENSE Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Denis Yarats
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -8,6 +8,18 @@ This is PyTorch implementation of SAC+AE from
[[Paper]](https://arxiv.org/abs/1910.01741) [[Webpage]](https://sites.google.com/view/sac-ae/home)
## Citation
If you use this repo in your research, please consider citing the paper as follows
```
@article{yarats2019improving,
title={Improving Sample Efficiency in Model-Free Reinforcement Learning from Images},
author={Denis Yarats and Amy Zhang and Ilya Kostrikov and Brandon Amos and Joelle Pineau and Rob Fergus},
year={2019},
eprint={1910.01741},
archivePrefix={arXiv}
}
```
## Requirements
We assume you have access to a gpu that can run CUDA 9.2. Then, the simplest way to install all required dependencies is to create an anaconda environment by running:
```

View File

@ -11,7 +11,7 @@ dependencies:
- pip:
- termcolor
- git+git://github.com/deepmind/dm_control.git
- git+git://github.com/1nadequacy/dmc2gym.git
- git+git://github.com/denisyarats/dmc2gym.git
- tb-nightly
- imageio
- imageio-ffmpeg

View File

@ -26,13 +26,16 @@ def parse_args():
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--action_repeat', default=1, type=int)
parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--resource_files', type=str)
parser.add_argument('--total_frames', default=10000, type=int)
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=1000000, type=int)
# train
parser.add_argument('--agent', default='sac_ae', type=str)
parser.add_argument('--init_steps', default=1000, type=int)
parser.add_argument('--num_train_steps', default=1000000, type=int)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--batch_size', default=512, type=int)
parser.add_argument('--hidden_dim', default=1024, type=int)
# eval
parser.add_argument('--eval_freq', default=10000, type=int)
@ -143,7 +146,10 @@ def main():
from_pixels=(args.encoder_type == 'pixel'),
height=args.image_size,
width=args.image_size,
frame_skip=args.action_repeat
frame_skip=args.action_repeat,
img_source=args.img_source,
resource_files=args.resource_files,
total_frames=args.total_frames
)
env.seed(args.seed)
@ -212,28 +218,65 @@ def main():
L.log('train/episode', episode, step)
if episode_step == 0:
last_obs = obs
# sample action for data collection
if step < args.init_steps:
last_action = env.action_space.sample()
else:
with utils.eval_mode(agent):
last_action = agent.sample_action(last_obs)
curr_obs, last_reward, last_done, _ = env.step(last_action)
# allow infinit bootstrap
last_done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(last_done)
episode_reward += last_reward
# sample action for data collection
if step < args.init_steps:
action = env.action_space.sample()
else:
with utils.eval_mode(agent):
action = agent.sample_action(curr_obs)
next_obs, reward, done, _ = env.step(action)
# allow infinit bootstrap
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
episode_reward += reward
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
last_obs = curr_obs
last_action = action
last_reward = reward
last_done = done
curr_obs = next_obs
# sample action for data collection
if step < args.init_steps:
action = env.action_space.sample()
else:
with utils.eval_mode(agent):
action = agent.sample_action(obs)
action = agent.sample_action(curr_obs)
# run training update
if step >= args.init_steps:
num_updates = args.init_steps if step == args.init_steps else 1
#num_updates = args.init_steps if step == args.init_steps else 1
num_updates = 1 if step == args.init_steps else 1
for _ in range(num_updates):
agent.update(replay_buffer, L, step)
next_obs, reward, done, _ = env.step(action)
# allow infinit bootstrap
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(
done
)
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
episode_reward += reward
replay_buffer.add(obs, action, reward, next_obs, done_bool)
#replay_buffer.add(obs, action, reward, next_obs, done_bool)
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
obs = next_obs
episode_step += 1