Adding files
This commit is contained in:
parent
99558ce92b
commit
ab322e3f86
@ -7,7 +7,6 @@ import torch
|
||||
import torchvision
|
||||
import numpy as np
|
||||
from termcolor import colored
|
||||
from datetime import datetime
|
||||
|
||||
FORMAT_CONFIG = {
|
||||
'rl': {
|
||||
@ -94,10 +93,8 @@ class MetersGroup(object):
|
||||
class Logger(object):
|
||||
def __init__(self, log_dir, use_tb=True, config='rl'):
|
||||
self._log_dir = log_dir
|
||||
now = datetime.now()
|
||||
dt_string = now.strftime("%d_%m_%Y-%H_%M_%S")
|
||||
if use_tb:
|
||||
tb_dir = os.path.join(log_dir, 'runs/tb_'+dt_string)
|
||||
tb_dir = os.path.join(log_dir, 'tb')
|
||||
if os.path.exists(tb_dir):
|
||||
shutil.rmtree(tb_dir)
|
||||
self._sw = SummaryWriter(tb_dir)
|
||||
|
128
sac_ae.py
128
sac_ae.py
@ -6,7 +6,7 @@ import copy
|
||||
import math
|
||||
|
||||
import utils
|
||||
from encoder import make_encoder, club_loss, TransitionModel
|
||||
from encoder import make_encoder
|
||||
from decoder import make_decoder
|
||||
|
||||
LOG_FREQ = 10000
|
||||
@ -70,8 +70,10 @@ class Actor(nn.Module):
|
||||
self.outputs = dict()
|
||||
self.apply(weight_init)
|
||||
|
||||
def forward(self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False):
|
||||
obs, _, _ = self.encoder(obs, detach=detach_encoder)
|
||||
def forward(
|
||||
self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False
|
||||
):
|
||||
obs = self.encoder(obs, detach=detach_encoder)
|
||||
|
||||
mu, log_std = self.trunk(obs).chunk(2, dim=-1)
|
||||
|
||||
@ -98,6 +100,7 @@ class Actor(nn.Module):
|
||||
log_pi = None
|
||||
|
||||
mu, pi, log_pi = squash(mu, pi, log_pi)
|
||||
|
||||
return mu, pi, log_pi, log_std
|
||||
|
||||
def log(self, L, step, log_freq=LOG_FREQ):
|
||||
@ -156,7 +159,7 @@ class Critic(nn.Module):
|
||||
|
||||
def forward(self, obs, action, detach_encoder=False):
|
||||
# detach_encoder allows to stop gradient propogation to encoder
|
||||
obs, _ , _ = self.encoder(obs, detach=detach_encoder)
|
||||
obs = self.encoder(obs, detach=detach_encoder)
|
||||
|
||||
q1 = self.Q1(obs, action)
|
||||
q2 = self.Q2(obs, action)
|
||||
@ -179,53 +182,7 @@ class Critic(nn.Module):
|
||||
L.log_param('train_critic/q1_fc%d' % i, self.Q1.trunk[i * 2], step)
|
||||
L.log_param('train_critic/q2_fc%d' % i, self.Q2.trunk[i * 2], step)
|
||||
|
||||
class CURL(nn.Module):
|
||||
"""
|
||||
CURL
|
||||
"""
|
||||
|
||||
def __init__(self, obs_shape, z_dim, a_dim, batch_size, critic, critic_target, output_type="continuous"):
|
||||
super(CURL, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
self.encoder = critic.encoder
|
||||
|
||||
self.encoder_target = critic_target.encoder
|
||||
|
||||
self.W = nn.Parameter(torch.rand(z_dim, z_dim))
|
||||
self.combine = nn.Linear(z_dim + a_dim, z_dim)
|
||||
self.output_type = output_type
|
||||
|
||||
def encode(self, x, a=None, detach=False, ema=False):
|
||||
"""
|
||||
Encoder: z_t = e(x_t)
|
||||
:param x: x_t, x y coordinates
|
||||
:return: z_t, value in r2
|
||||
"""
|
||||
if ema:
|
||||
with torch.no_grad():
|
||||
z_out = self.encoder_target(x)[0]
|
||||
z_out = self.combine(torch.concat((z_out,a), dim=-1))
|
||||
else:
|
||||
z_out = self.encoder(x)[0]
|
||||
|
||||
if detach:
|
||||
z_out = z_out.detach()
|
||||
return z_out
|
||||
|
||||
def compute_logits(self, z_a, z_pos):
|
||||
"""
|
||||
Uses logits trick for CURL:
|
||||
- compute (B,B) matrix z_a (W z_pos.T)
|
||||
- positives are all diagonal elements
|
||||
- negatives are all other elements
|
||||
- to compute loss use multiclass cross entropy with identity matrix for labels
|
||||
"""
|
||||
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
|
||||
logits = torch.matmul(z_a, Wz) # (B,B)
|
||||
logits = logits - torch.max(logits, 1)[0][:, None]
|
||||
return logits
|
||||
|
||||
class SacAeAgent(object):
|
||||
"""SAC+AE algorithm."""
|
||||
def __init__(
|
||||
@ -267,12 +224,6 @@ class SacAeAgent(object):
|
||||
self.critic_target_update_freq = critic_target_update_freq
|
||||
self.decoder_update_freq = decoder_update_freq
|
||||
self.decoder_latent_lambda = decoder_latent_lambda
|
||||
|
||||
self.transition_model = TransitionModel(
|
||||
encoder_feature_dim,
|
||||
hidden_dim,
|
||||
action_shape[0],
|
||||
encoder_feature_dim).to(device)
|
||||
|
||||
self.actor = Actor(
|
||||
obs_shape, action_shape, hidden_dim, encoder_type,
|
||||
@ -300,11 +251,6 @@ class SacAeAgent(object):
|
||||
# set target entropy to -|A|
|
||||
self.target_entropy = -np.prod(action_shape)
|
||||
|
||||
self.CURL = CURL(obs_shape, encoder_feature_dim, action_shape[0],
|
||||
obs_shape[0], self.critic,self.critic_target, output_type='continuous').to(self.device)
|
||||
|
||||
self.cross_entropy_loss = nn.CrossEntropyLoss()
|
||||
|
||||
self.decoder = None
|
||||
if decoder_type != 'identity':
|
||||
# create decoder
|
||||
@ -335,10 +281,6 @@ class SacAeAgent(object):
|
||||
self.critic.parameters(), lr=critic_lr, betas=(critic_beta, 0.999)
|
||||
)
|
||||
|
||||
self.cpc_optimizer = torch.optim.Adam(
|
||||
self.CURL.parameters(), lr=encoder_lr
|
||||
)
|
||||
|
||||
self.log_alpha_optimizer = torch.optim.Adam(
|
||||
[self.log_alpha], lr=alpha_lr, betas=(alpha_beta, 0.999)
|
||||
)
|
||||
@ -387,6 +329,7 @@ class SacAeAgent(object):
|
||||
target_Q) + F.mse_loss(current_Q2, target_Q)
|
||||
L.log('train_critic/loss', critic_loss, step)
|
||||
|
||||
|
||||
# Optimize the critic
|
||||
self.critic_optimizer.zero_grad()
|
||||
critic_loss.backward()
|
||||
@ -423,38 +366,12 @@ class SacAeAgent(object):
|
||||
alpha_loss.backward()
|
||||
self.log_alpha_optimizer.step()
|
||||
|
||||
def update_decoder(self, last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done, target_obs, L, step):
|
||||
h_curr, mu_h_curr, std_h_curr = self.critic.encoder(curr_obs)
|
||||
def update_decoder(self, obs, target_obs, L, step):
|
||||
h = self.critic.encoder(obs)
|
||||
|
||||
with torch.no_grad():
|
||||
h_last, _, _ = self.critic.encoder(last_obs)
|
||||
self.transition_model.init_states(last_obs.shape[0], self.device)
|
||||
curr_state = self.transition_model.transition_step(h_last, last_action, self.transition_model.prev_history, last_not_done)
|
||||
|
||||
hist = curr_state["history"]
|
||||
next_state = self.transition_model.transition_step(h_curr, action, hist, not_done)
|
||||
|
||||
next_state_mu = next_state["mean"]
|
||||
next_state_sigma = next_state["std"]
|
||||
next_state_sample = next_state["sample"]
|
||||
pred_dist = torch.distributions.Normal(next_state_mu, next_state_sigma)
|
||||
|
||||
h, mu_h_next, logstd_h_next = self.critic.encoder(next_obs)
|
||||
std_h_next = torch.exp(logstd_h_next)
|
||||
enc_dist = torch.distributions.Normal(mu_h_next, std_h_next)
|
||||
enc_loss = torch.mean(torch.distributions.kl.kl_divergence(enc_dist,pred_dist)) * 0.1
|
||||
|
||||
z_pos = self.CURL.encode(next_obs, action.detach(), ema=True)
|
||||
logits = self.CURL.compute_logits(h_curr, z_pos)
|
||||
labels = torch.arange(logits.shape[0]).long().to(self.device)
|
||||
lb_loss = self.cross_entropy_loss(logits, labels) * 0.1
|
||||
|
||||
ub_loss = club_loss(h, mu_h_next, logstd_h_next, next_state_sample) * 0.1
|
||||
|
||||
if target_obs.dim() == 4:
|
||||
# preprocess images to be in [-0.5, 0.5] range
|
||||
target_obs = utils.preprocess_obs(target_obs)
|
||||
|
||||
rec_obs = self.decoder(h)
|
||||
rec_loss = F.mse_loss(target_obs, rec_obs)
|
||||
|
||||
@ -462,35 +379,26 @@ class SacAeAgent(object):
|
||||
# see https://arxiv.org/pdf/1903.12436.pdf
|
||||
latent_loss = (0.5 * h.pow(2).sum(1)).mean()
|
||||
|
||||
loss = rec_loss + enc_loss + lb_loss + ub_loss #self.decoder_latent_lambda * latent_loss
|
||||
loss = rec_loss + self.decoder_latent_lambda * latent_loss
|
||||
self.encoder_optimizer.zero_grad()
|
||||
self.decoder_optimizer.zero_grad()
|
||||
self.cpc_optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
self.encoder_optimizer.step()
|
||||
|
||||
self.encoder_optimizer.step()
|
||||
self.decoder_optimizer.step()
|
||||
self.cpc_optimizer.step()
|
||||
L.log('train_ae/ae_loss', loss, step)
|
||||
L.log('train_ae/lb_loss', lb_loss, step)
|
||||
L.log('train_ae/ub_loss', ub_loss, step)
|
||||
L.log('train_ae/enc_loss', enc_loss, step)
|
||||
L.log('train_ae/dec_loss', rec_loss, step)
|
||||
|
||||
self.decoder.log(L, step, log_freq=LOG_FREQ)
|
||||
|
||||
def update(self, replay_buffer, L, step):
|
||||
last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done = replay_buffer.sample()
|
||||
#obs, action, reward, next_obs, not_done = replay_buffer.sample()
|
||||
obs, action, reward, next_obs, not_done = replay_buffer.sample()
|
||||
|
||||
L.log('train/batch_reward', last_reward.mean(), step)
|
||||
L.log('train/batch_reward', reward.mean(), step)
|
||||
|
||||
#self.update_critic(last_obs, last_action, last_reward, curr_obs, last_not_done, L, step)
|
||||
self.update_critic(curr_obs, action, reward, next_obs, not_done, L, step)
|
||||
self.update_critic(obs, action, reward, next_obs, not_done, L, step)
|
||||
|
||||
if step % self.actor_update_freq == 0:
|
||||
#self.update_actor_and_alpha(last_obs, L, step)
|
||||
self.update_actor_and_alpha(curr_obs, L, step)
|
||||
self.update_actor_and_alpha(obs, L, step)
|
||||
|
||||
if step % self.critic_target_update_freq == 0:
|
||||
utils.soft_update_params(
|
||||
@ -505,7 +413,7 @@ class SacAeAgent(object):
|
||||
)
|
||||
|
||||
if self.decoder is not None and step % self.decoder_update_freq == 0:
|
||||
self.update_decoder(last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done, next_obs, L, step)
|
||||
self.update_decoder(obs, obs, L, step)
|
||||
|
||||
def save(self, model_dir, step):
|
||||
torch.save(
|
||||
|
59
train.py
59
train.py
@ -26,16 +26,13 @@ def parse_args():
|
||||
parser.add_argument('--image_size', default=84, type=int)
|
||||
parser.add_argument('--action_repeat', default=1, type=int)
|
||||
parser.add_argument('--frame_stack', default=3, type=int)
|
||||
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
||||
parser.add_argument('--resource_files', type=str)
|
||||
parser.add_argument('--total_frames', default=10000, type=int)
|
||||
# replay buffer
|
||||
parser.add_argument('--replay_buffer_capacity', default=1000000, type=int)
|
||||
# train
|
||||
parser.add_argument('--agent', default='sac_ae', type=str)
|
||||
parser.add_argument('--init_steps', default=1000, type=int)
|
||||
parser.add_argument('--num_train_steps', default=1000000, type=int)
|
||||
parser.add_argument('--batch_size', default=512, type=int)
|
||||
parser.add_argument('--batch_size', default=128, type=int)
|
||||
parser.add_argument('--hidden_dim', default=1024, type=int)
|
||||
# eval
|
||||
parser.add_argument('--eval_freq', default=10000, type=int)
|
||||
@ -146,10 +143,7 @@ def main():
|
||||
from_pixels=(args.encoder_type == 'pixel'),
|
||||
height=args.image_size,
|
||||
width=args.image_size,
|
||||
frame_skip=args.action_repeat,
|
||||
img_source=args.img_source,
|
||||
resource_files=args.resource_files,
|
||||
total_frames=args.total_frames
|
||||
frame_skip=args.action_repeat
|
||||
)
|
||||
env.seed(args.seed)
|
||||
|
||||
@ -218,65 +212,28 @@ def main():
|
||||
|
||||
L.log('train/episode', episode, step)
|
||||
|
||||
if episode_step == 0:
|
||||
last_obs = obs
|
||||
# sample action for data collection
|
||||
if step < args.init_steps:
|
||||
last_action = env.action_space.sample()
|
||||
else:
|
||||
with utils.eval_mode(agent):
|
||||
last_action = agent.sample_action(last_obs)
|
||||
|
||||
curr_obs, last_reward, last_done, _ = env.step(last_action)
|
||||
|
||||
# allow infinit bootstrap
|
||||
last_done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(last_done)
|
||||
episode_reward += last_reward
|
||||
|
||||
# sample action for data collection
|
||||
if step < args.init_steps:
|
||||
action = env.action_space.sample()
|
||||
else:
|
||||
with utils.eval_mode(agent):
|
||||
action = agent.sample_action(curr_obs)
|
||||
|
||||
next_obs, reward, done, _ = env.step(action)
|
||||
|
||||
# allow infinit bootstrap
|
||||
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
|
||||
episode_reward += reward
|
||||
|
||||
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
|
||||
|
||||
last_obs = curr_obs
|
||||
last_action = action
|
||||
last_reward = reward
|
||||
last_done = done
|
||||
curr_obs = next_obs
|
||||
|
||||
# sample action for data collection
|
||||
if step < args.init_steps:
|
||||
action = env.action_space.sample()
|
||||
else:
|
||||
with utils.eval_mode(agent):
|
||||
action = agent.sample_action(curr_obs)
|
||||
action = agent.sample_action(obs)
|
||||
|
||||
|
||||
# run training update
|
||||
if step >= args.init_steps:
|
||||
#num_updates = args.init_steps if step == args.init_steps else 1
|
||||
num_updates = 1 if step == args.init_steps else 1
|
||||
num_updates = args.init_steps if step == args.init_steps else 1
|
||||
for _ in range(num_updates):
|
||||
agent.update(replay_buffer, L, step)
|
||||
|
||||
next_obs, reward, done, _ = env.step(action)
|
||||
|
||||
# allow infinit bootstrap
|
||||
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
|
||||
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(
|
||||
done
|
||||
)
|
||||
episode_reward += reward
|
||||
|
||||
#replay_buffer.add(obs, action, reward, next_obs, done_bool)
|
||||
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
|
||||
replay_buffer.add(obs, action, reward, next_obs, done_bool)
|
||||
|
||||
obs = next_obs
|
||||
episode_step += 1
|
||||
|
42
utils.py
42
utils.py
@ -75,26 +75,18 @@ class ReplayBuffer(object):
|
||||
# the proprioceptive obs is stored as float32, pixels obs as uint8
|
||||
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
|
||||
|
||||
self.last_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.curr_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.next_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.last_actions = np.empty((capacity, *action_shape), dtype=np.float32)
|
||||
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
|
||||
self.last_rewards = np.empty((capacity, 1), dtype=np.float32)
|
||||
self.rewards = np.empty((capacity, 1), dtype=np.float32)
|
||||
self.last_not_dones = np.empty((capacity, 1), dtype=np.float32)
|
||||
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
|
||||
|
||||
self.idx = 0
|
||||
self.last_save = 0
|
||||
self.full = False
|
||||
|
||||
def add(self, last_obs, last_action, last_reward, curr_obs, last_done, action, reward, next_obs, done):
|
||||
np.copyto(self.last_obses[self.idx], last_obs)
|
||||
np.copyto(self.last_actions[self.idx], last_action)
|
||||
np.copyto(self.last_rewards[self.idx], last_reward)
|
||||
np.copyto(self.curr_obses[self.idx], curr_obs)
|
||||
np.copyto(self.last_not_dones[self.idx], not last_done)
|
||||
def add(self, obs, action, reward, next_obs, done):
|
||||
np.copyto(self.obses[self.idx], obs)
|
||||
np.copyto(self.actions[self.idx], action)
|
||||
np.copyto(self.rewards[self.idx], reward)
|
||||
np.copyto(self.next_obses[self.idx], next_obs)
|
||||
@ -108,31 +100,25 @@ class ReplayBuffer(object):
|
||||
0, self.capacity if self.full else self.idx, size=self.batch_size
|
||||
)
|
||||
|
||||
last_obses = torch.as_tensor(self.last_obses[idxs], device=self.device).float()
|
||||
last_actions = torch.as_tensor(self.last_actions[idxs], device=self.device)
|
||||
last_rewards = torch.as_tensor(self.last_rewards[idxs], device=self.device)
|
||||
curr_obses = torch.as_tensor(self.curr_obses[idxs], device=self.device).float()
|
||||
last_not_dones = torch.as_tensor(self.last_not_dones[idxs], device=self.device)
|
||||
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
|
||||
actions = torch.as_tensor(self.actions[idxs], device=self.device)
|
||||
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
|
||||
next_obses = torch.as_tensor(self.next_obses[idxs], device=self.device).float()
|
||||
next_obses = torch.as_tensor(
|
||||
self.next_obses[idxs], device=self.device
|
||||
).float()
|
||||
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
|
||||
|
||||
return last_obses, last_actions, last_rewards, curr_obses, last_not_dones, actions, rewards, next_obses, not_dones
|
||||
return obses, actions, rewards, next_obses, not_dones
|
||||
|
||||
def save(self, save_dir):
|
||||
if self.idx == self.last_save:
|
||||
return
|
||||
path = os.path.join(save_dir, '%d_%d.pt' % (self.last_save, self.idx))
|
||||
payload = [
|
||||
self.last_obses[self.last_save:self.idx],
|
||||
self.last_actions[self.last_save:self.idx],
|
||||
self.last_rewards[self.last_save:self.idx],
|
||||
self.curr_obses[self.last_save:self.idx],
|
||||
self.last_not_dones[self.last_save:self.idx],
|
||||
self.obses[self.last_save:self.idx],
|
||||
self.next_obses[self.last_save:self.idx],
|
||||
self.actions[self.last_save:self.idx],
|
||||
self.rewards[self.last_save:self.idx],
|
||||
self.next_obses[self.last_save:self.idx],
|
||||
self.not_dones[self.last_save:self.idx]
|
||||
]
|
||||
self.last_save = self.idx
|
||||
@ -146,14 +132,10 @@ class ReplayBuffer(object):
|
||||
path = os.path.join(save_dir, chunk)
|
||||
payload = torch.load(path)
|
||||
assert self.idx == start
|
||||
self.last_obses[start:end] = payload[0]
|
||||
self.last_actions[start:end] = payload[1]
|
||||
self.last_rewards[start:end] = payload[2]
|
||||
self.curr_obses[start:end] = payload[3]
|
||||
self.last_not_dones[start:end] = payload[4]
|
||||
self.obses[start:end] = payload[0]
|
||||
self.next_obses[start:end] = payload[1]
|
||||
self.actions[start:end] = payload[2]
|
||||
self.rewards[start:end] = payload[3]
|
||||
self.next_obses[start:end] = payload[4]
|
||||
self.not_dones[start:end] = payload[4]
|
||||
self.idx = end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user